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Abstract

This is a detailed exposition of our old paper [KS], in which we introduced a certain finite Lie
algebra associated to a finite group of Lie type and exhibited a Lie correspondence between them.
The finite Lie algebra is obtained from the Lie algebra of the ambient simple algebraic group of the
finite group as the set of fixed points under a linearization of the endomorphism of the algebraic
group defining the finite group. We show along the way a bijection between the set of subalgebras
of the finite Lie algebra containing a maximal toral subalgebra and the set of subalgebras of the Lie
algebra of the ambient algebraic group, stabilized by the linearization of the endomorphism of the
algebraic group defining the finite group and contain a maximal toral subalgebra stabilized also by
the endomorphism, which is a linearization of the correspondence established earlier for the finite
group and the ambient algebraic group by Seitz [S].

1◦ Introduction

Let G be a simple algebraic group scheme over an algebraically closed field K of positive
characteristic p. Let Ḡ = G(K) and σ an endomorphism of G such that σ(K) is surjective
with G = Ḡσ(K) = {g ∈ Ḡ|σ(K)(g) = g} finite. Thus, G is a finite group of Lie type. We
will discuss Ḡ in the classical algebraic geometry with reduced objects, and abbreviate
σ(K) simply as σ.

Throughout the paper we assume that p ≥ 5. Under the assumption Ḡ admits an
Fq-form ḠFq , q a power of p, and σ decompose into a commuting product of the geometric
Frobenius endomorphism F of Ḡ defined by ḠFp and a graph automorphism τ̃ of Ḡ
stabilizing ḠFp . Let k = Fq, and let K[Ḡ] (resp. k[Ḡ] = k[Ḡk]) denote the associated
Hopf algebra of Ḡ (resp. Ḡk) over K (resp. k). Thus,

K⊗k k[Ḡk] K[Ḡ] K⊗k k[Ḡk]

K⊗k k[Ḡk] K[Ḡ] K⊗k k[Ḡk].

∼

K⊗k?
q

F ♯ τ̃ ♯

∼

K⊗kτ̃
♯
k

∼ ∼

Let now ḡ = Lie(Ḡ) (resp. ḡk = Lie(Ḡk)) be the Lie algebra of Ḡ (resp. Ḡk), and
F ′ =?q ⊗k ḡk the arithmetic Frobenius endomorphism of ḡ with respect to ḡk. We let
σ∗ = F ′ ◦ dτ̃ = dτ̃ ◦ F ′, and set g = ḡσ∗ = {x ∈ ḡ|σ∗x = x} which is equipped with a
structure of p-Lie algebra. We call g the finite Lie algebra associated to G.
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Let S(G) be the set of subgroups of G generated by maximal tori of G, and S(g) the
set of subalgebras of g containing a maximal toral subalgebra of g. Assume further that
q ≥ 13. For each X ∈ S(G) we define a Lie algebra L(X) and show that L : S(G) → S(g)
is a bijection. The definition of L requires a previous work of Seitz [S], which proved under
the additional restriction of q that the fixed point functor ?σ by σ gives a bijection from
the set S(Ḡ) of closed connected σ-invariant subgroups of Ḡ containing a maximal torus of
Ḡ to S(G). This is a deep theorem exploiting the classification of finite simple groups. We
give a linearization that the fixed point functor ?σ∗ under σ∗ yields a bijection from the set
S(ḡ) of σ∗-invariant subalgebras of ḡ containing a σ∗-invariant maximal toral subalgebra
of ḡ to S(g). We also show that the functor Lie restricts to a bijection from S(Ḡ) to S(ḡ).
Composing the 3 obtains L:

S(Ḡ) S(G)

S(ḡ) S(g).

?σ

∼

Lie ∼ L

∼
?σ∗

2◦ A finite Lie algebra associated to a finite group of Lie type

2.1. Let Ḡ be a simple algebraic group over an algebraically closed field K of characteristic
p > 0, and σ a surjective endomorphism of Ḡ with finite fixed-point group G = Ḡσ; there
should be no confusion of Ḡ with the closure of G in the Zariski topology. We begin with
an elaborate description of the set-up. As the differential dσ vanishes, the fixed-point set
by dσ does not lead to a good definition of the Lie algebra associated to G.

We assume throughout the paper that p ≥ 5. Under the hypothesis we show first

Lemma: σ is a commuting composite of a geometric Frobenius and a graph automor-
phism of Ḡ.

2.2. Fix once and for all a pair (B̄, H̄) of σ-stable Borel subgroup B̄ of Ḡ and a σ-stable
maximal torus H̄ of B̄, which exists by Lang’s theorem [St67, 10.10]; if X is a Borel
subgroup of Ḡ, σX = gXg−1 for some g ∈ Ḡ. Write g = σ(x)−1x for some x ∈ Ḡ. Then
σ(xXx−1) = σ(x)gXg−1σ(x)−1 = xXx−1. Our definition of the Lie algebra associated to
G will depend on our choice of the pair (B̄, H̄).

Let Gm = GL1(K), Λ = GrpK(H̄,Gm) the character group of H̄ and put ΛR = Λ⊗ZR.
We let σ∗ denote the transpose of σ|H̄ extended to ΛR:

σ∗v = v ◦ (σ ⊗Z R), v ∈ ΛR.(1)

Let R = R(Ḡ, H̄) be the set of roots of Ḡ with respect to H̄, N̄ = NḠ(H̄) the normalizer of
H̄ in Ḡ, and W = N̄/H̄ the Weyl group of R. For each α ∈ R we choose an isomorphism
of algebraic groups xα : Ga → Ūα from the 1-dimensional unipotent group Ga onto
a closed subgroup Ūα of Ḡ such that txα(ξ)t

−1 = xα(α(t)ξ) ∀t ∈ H̄, ∀ξ ∈ K, and
that xα(1)x−α(−1)xα(1) ∈ N̄ giving reflection sα in W , i.e., the (xα|α ∈ R) realize R
[Sp, 8.1.4]. We call Ūα the H̄-root subgroup of Ḡ associated to α. For later use put
nα = xα(1)x−α(−1)xα(1).
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Let R+ be the positive system of roots consisting of the roots of B̄; B̄ = H̄⋉
∏

α∈R+ Ūα.
Then [St67, 11.2] there is a permutation τ of R and a power q(α) of p for each α ∈ R
such that

τR+ = R+,(2)

∀α ∈ R, σ∗τα = q(α)α,(3)

∀α ∈ R, ∃cα ∈ K× : ∀ξ ∈ K, σ(xα(ξ)) = xτα(cαξ
q(α)).(4)

For, as H̄ is σ-stable, the H̄-root subgroups of Ḡ are permuted by σ. Define a permutation
τ of R by setting σŪα = Ūτα ∀α ∈ R. Write σxα(ξ) = xτα(m(ξ)), ξ ∈ K. Thus,
m ∈ GrpK(Ga,Ga). ∀t ∈ H̄,

xτα((τα)(σ(t))m(ξ)) = σ(t)xτα(m(ξ))σ(t)−1 = σ(t)σ(xα(ξ))σ(t)
−1 = σ(txα(ξ)t

−1)

= σ(xα(α(t)ξ)) = xτα(m(α(t)ξ)),

and hence (τα)(σ(t))m(ξ) = m(α(t)ξ). As K is infinite, mmust be homogeneous of degree
q(α), say. Then (α(t)ξ)q(α) = (τα)(σ(t))ξq(α), and hence α(t)q(α) = (τα)(σ(t)). Written
additively, σ∗τα = q(α)α. As m is additive, q(α) must be a power of p [HLAG, 20.3.A].

By [St67, 11.5] on roots of a given length q is constant. If q is not constant with α

long and β short, (α,α)
(β,β⟩ =

⟨α,β∨)
⟨β,α∨⟩ = p = q(β)

q(α)
, and hence under our standing hypothesis that

p ≥ 5

q is constant on the whole of R,(5)

the value of which we will abbreviate as q. Thus, τ is additive, and preserves the set Rs

of simple roots. Recall also from [St67, 11.6] that τ preserves the orthogonality and the
lengths of roots:

(τα, τβ) = 0 iff (α, β) = 0 ∀α, β ∈ R,(6)

(τα, τα) = (α, α) ∀α ∈ R.(7)

For let α ∈ R and sα the associated reflection. Then (σ∗)−1sασ
∗ is a reflection in the

hyperplane {v ∈ ΛR|⟨σ∗v, α∨⟩ = 0} = {v ∈ ΛR|(σ∗v, α) = 0} with τα 7→ −τα. Thus,
(σ∗)−1sασ

∗ = sγ for some γ ∈ R [HLART, Lem. 9.1], and hence γ = ±τα and

(σ∗)−1sασ
∗ = sτα.(8)

Then, ∀β ∈ R, (α, β) = 0 iff sαsβ = sβsα iff (σ∗)−1sαsβσ
∗ = (σ∗)−1sβsασ

∗ iff sταsτβ =
sτβsτα iff (τα, τβ) = 0, and (6) holds. Assume that α ∈ R is short, and just suppose τα
is long. If we take β ∈ R with ⟨β, α∨⟩ > 1,

qβ − ⟨τβ, (τα)∨⟩qα = σ∗(τβ − ⟨τβ, (τα)∨⟩τα) = σ∗sτατβ

= sασ
∗τβ by (8)

= sαqβ = q(β − ⟨β, α∨⟩α),

and hence ⟨β, α∨⟩ = ⟨τβ, (τα)∨⟩ = ±1, absurd.

It follows that τ induces an automorphism of Dynkin diagram of R [HLART, p. 57].
Thus, either τ = id, or ordτ = 2 and Ḡ is of type Al, l ≥ 2, Dl, l ≥ 4, E6, or ordτ = 3
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and Ḡ is of type D4. In all cases the isomorphisms xα : Ga → Ūα may be rearranged so
that cα = 1; ∀α ∈ R, ∀ξ ∈ K,

σ(xα(ξ)) = xτα(qξ
q).(9)

For let α ∈ R. One now has that xτα(cα)x−τα(−c−α)xτα(cα) = σ(xα(1)x−α(−1)xα(1)) ∈
σ(N̄) = N̄ while xτα(cα)x−τα(−c−1

α )xτα(cα) = (τα)∨(cα)nτα ∈ N̄ by [Sp, 8.1.4.(i)], and
hence by the unicity [Sp, 8.1.4.(iii)]

cαc−α = 1.(10)

Assume first that τ = id. Take dα ∈ K with cα = d1−q
α and define

(11)

dαξ Ga Ūα.

ξ Ga

xα

∼
yα

Then σ(yα(ξ)) = σ(xα(dαξ)) = xα(cα(dαξ)
q) = xα(dαξ

q) = yα(ξ
q). ∀t ∈ H̄, tyα(ξ)t

−1 =
txα(dαξ)t

−1 = xα(α(t)dαξ) = yα(α(t)ξ).

Assume next that ordτ = 2. Partition R into the τ -orbits, and let Ω be an orbit. If
Ω = {α}, define yα as in (11) with dα such that cα = d1−q

α . If Ω = {α, τα} is of length 2,

take dτα ∈ K such that cαc
q
τα = d1−q2

τα and let dα = cταd
q
τα. Define yα and yτα with dα and

dτα, resp., as before. Then

σ(yα(ξ)) = σ(xα(dαξ)) = xτα(cα(dαξ)
q) = xτα(cαd

q
αξ

q) = xτα(cα(cταd
q
τα)

qξq)

= xτα(dταξ
q) = yτα(ξ

q),

σ(yτα(ξ)) = σ(xτα(dταξ)) = xα(cτα(dταξ)
q) = xα(cταd

q
ταξ

q) = xα(dαξ
q) = yα(ξ

q).

Thus, σ(yα(ξ)) = yτα(ξ
q) ∀α ∈ R.

If ordτ = 3, let Ω be a τ -orbit. If Ω = {α}, define yα with dα such that cα = d1−q
α , as

before. If Ω = {α, τα, τ 2α} is of length 3, take dα ∈ K such that cq
2

α cqταcτ2α = d1−q3

α and

put dτα = cαd
q
α, dτ2α = cταd

q
τα = cqαcταd

q2

α . Define yα, yτα, yτ2α with dα, dτα, dτ2α, resp. as
above. Then

σ(yα(ξ)) = σ(xα(dαξ)) = xτα(cα(dαξ)
q) = xτα(cαd

q
αξ

q) = xτα(dταξ
q) = yτα(ξ

q),

σ(yτα(ξ)) = σ(xτα(dταξ)) = xτ2α(cτα(dταξ)
q) = xτ2α(dτ2αξ

q) = yτ2α(ξ
q),

σ(yτ2α(ξ)) = σ(xτ2α(dτ2αξ)) = xα(cτ2α(dτ2αξ)
q) = xα(cτ2αd

q
τ2αξ

q)

= xα(cτ2α(c
q
acταd

q2

α )qξq) = xα(dαξ
q) = yα(ξ

q),

and hence σ(yβ(ξ)) = yτβ(ξ
q) ∀β ∈ K.

In all cases one can by (10) take d−α so that dαd−α = 1. Then yα(1)y−α(−1)yα(1) =
xα(dα)x−α(−d−1

α )xα(dα) ∈ N̄ . Thus, (yα|α ∈ R) realizes R, and (9) holds with the yα’s.

2.3. Keep the notation of 2.2, and assume that τ ̸= id. Let Λ̃ = {λ ∈ Z ⊗Z Q|⟨λ, α⟩ ∈
Z ∀α ∈ R} the weight lattice of R. In all cases except in type Dl with l even Λ̃/Z is
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cyclic. Assume now that R is of type Dl with l even. Label the Dynkin diagram as

αl−1

α1 α2 · · · αl−2

αl

The fundamental weights ϖi’s are given by

ϖi = α1 + 2α2 + · · ·+ (l − 1)αl−1 + i(αi + αi+1 + · · ·+ αl−2) +
i

2
(αl−1 + αl)

if i < l − 1,

ϖl−1 =
1

2
(α1 + 2α2 + · · ·+ (l − 2)αl−2 +

l

2
αl−1 +

l − 2

2
αl),

ϖl =
1

2
(α1 + 2α2 + · · ·+ (l − 2)αl−2 +

l − 2

2
αl−1 +

l

2
αl).

Thus, Λ̃/ZR ≃ (Z/2Z) × (Z/2Z) and the elements of order 2 in Λ̃/ZR are given by
ϖ1, ϖl−1, ϖl [BLA]. In particular, σ∗ would not stabilize Λ if (Λ : ZR) = 2 unless τ = id.

It follows that in our set-up τ induces an automorphism τ̃ of the root datum of Ḡ.
In turn, τ̃ induces an automorphism of algebraic group Ḡ , denoted still by τ̃ , such that
xα(ξ) 7→ xτα(ξ) ∀α ∈ ±Rs, ∀ξ ∈ K [Sp, 9.6.2]. Then σ ◦ τ̃ = τ̃ ◦ σ on Ūα ∀α ∈ ±Rs, and
hence on the whole of Ḡ as Ḡ is simple [Sp, 8.1.5]; the morphisms are determined at the
points of the domain as it is reduced. As in 2.2 one may rearrange the xα’s such that

τ̃−1 ◦ σ(xα(ξ)) = xα(ξ
q) ∀α ∈ R, ∀ξ ∈ K.(1)

Let now F = σ ◦ τ̃−1 = τ̃−1 ◦ σ. Then

Fnα = F (xα(1)x−α(−1)xα(1)) = nα ∀α ∈ R.(2)

Recall from [Sp, 8.1.4.(i)] again that xα(ζ)x−α(−ζ−1)xα(ζ) = α∨(ζ)nα ∀α ∈ R, ∀ζ ∈ K×.
Then

F (α∨(ζ))nα = F (α∨(ζ)nα) = F (xα(ζ)x−α(−ζ−1)xα(ζ)) = xα(ζ
q)x−α(−ζ−q)xα(ζ

q)

= α∨(ζq)nα,

and hence F (α∨(ζ)) = α∨(ζq) = α∨(ζ)q. As the α∨(ζ)’s generate H̄ [Sp, 8.1.5],

Ft = tq ∀t ∈ H̄.(3)

If w ∈ W , write w = sα1 . . . sαr for α1, . . . , αr ∈ R, and let nw = nα1 . . . nαr . Letting
Ū− =

∏
α∈−R+ Ūα, one has

(Ga)
−R+ × (Gm)

Rs × (Ga)
R+

nwŪ
−H̄Ū

(Ga)
−R+ × (Gm)

Rs × (Ga)
R+

nwŪ
−H̄Ū ,

?q

∼

F

∼

5



and hence there is induced an Fq-algera Fq[nwŪ
−H̄Ū ] such that

K[nwŪ
−H̄Ū ] K⊗Fq Fq[nwŪ

−H̄Ū ]

K[nwŪ
−H̄Ū ] K⊗Fq Fq[nwŪ

−H̄Ū ].

F ♯ K⊗Fq ?
q

Then in Frac(K[Ḡ])

K[Ḡ] = ∩w∈WK[nwŪ
−H̄Ū ] = ∩w∈WK⊗Fq Fq[nwŪ

−H̄Ū ]

= K⊗Fq ∩w∈WFq[nwŪ
−H̄Ū ] by [BCA, Lem. I.2.6.7],

and hence, putting Fq[Ḡ] = ∩w∈WFq[nwŪ
−H̄Ū ] yields

K[Ḡ] K⊗Fq Fq[Ḡ]

K[Ḡ] K⊗Fq Fq[Ḡ].

F ♯ K⊗Fq ?
q

Thus, F is the geometric Frobenius K⊗Fq Frq on Ḡ with respect to an Fq-form ḠFq defined
by Fq[Ḡ].

Setting τ̃ = idḠ when τ = id, we have obtained σ = F ◦ τ̃ in all cases, and Lem. 2.1
holds. As F is a morphism of algebraic groups, F ♯ is a morphism of Hopf algebras on
K[Ḡ]. It follows that Fq[Ḡ] = {a ∈ K[Ḡ]|F ♯(a) = aq} forms a Hopf subalgebra of K[Ḡ]
over Fq, and SpFq(Fq[Ḡ]) = AlgFq

(Fq[Ḡ], ?) gives an Fq-form of G.

2.4. Let k = Fq. The augmentation ideal m of K[Ḡ] now admits a k-form mk, so therefore
does the algebra of distribution Dist(Ḡ) on Ḡ a k-form Dist(Ḡk). In particular, the Lie
algebra ḡ = (m/m2)∗ of Ḡ admits a k-form ḡk. As Dist(Ḡ) = Dist(Ū−H̄Ū , e), Dist(Ḡk) is
invariant under Dist(τ̃), so therefore is ḡk under dτ̃ . Let F∗ be the arithmetic Frobenius
on Dist(Ḡ) defined by Dist(Ḡk)

Dist(Ḡ) Dist(Ḡ)

K⊗k Dist(Ḡk) K⊗k Dist(Ḡk).

F∗

?q⊗kDist(Ḡk)

As dτ̃ is defined over k, one has F∗ ◦ dτ̃ = dτ̃ ◦ F∗. Set σ∗ = F∗ ◦ dτ̃ , and g = ḡσ∗ =
{x ∈ ḡ|σ∗x = x}. As F∗ preserves the multiplication on Dist(Ḡk), so does σ∗, and hence g
forms a p-subalgeba of ḡ over k. By definition σ∗ is K-semilinear: σ∗(ξx) = ξqσ∗x ∀ξ ∈ K
∀x ∈ ḡ.

Definition: We call g the finite Lie algebra associated to G = Ḡσ.

2.5. As we have just noted, σ∗ is an automorphism of p-Lie algebra ḡ over k.

Lemma: ∀g ∈ Ḡ, Ad(σ(g)) ◦ σ∗ = σ∗ ◦ Ad(g) on ḡ. In particular, G acts on g under
Ad.
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Proof: Let us first imbed Ḡ in some GLn(K) over k. Consider the left regular action of
Ḡ on K[Ḡ]: ga = a(g−1?) ∀g ∈ Ḡ ∀a ∈ K[Ḡ]. Let ∆ : K[Ḡ] → K[Ḡ]⊗K K[Ḡ] denote the
corresponding comodule map [J, I.2.8]:

∆ = tp♯ ◦ (S ⊗K K[Ḡ]) ◦∆Ḡ,(1)

where tp : Ḡ× Ḡ → Ḡ× Ḡ is the transposition (g1, g2) 7→ (g2, g1) and S (resp. ∆Ḡ) is the
antipode (resp. comultiplication) on K[Ḡ]. In particular, ∆ is defined over k:

(2)
K[Ḡ] K[Ḡ]⊗K K[Ḡ]

K⊗k k[Ḡk] K⊗k (k[Ḡk]⊗k k[Ḡk])

∆

≀

K⊗k∆k

with ∆k = tp♯
k ◦ (Sk ⊗ k[Ḡk]) ◦∆Ḡk .

For a ∈ K[Ḡ] the Ḡ-submodule generated by a is Dist(Ḡ)a = {µa = {(K[Ḡ] ⊗K
µ) ◦ ∆}(a)|µ ∈ Dist(Ḡ)} [J, I.7.15]. Thus, ∆(Dist(Ḡ)a) ⊆ Dist(Ḡ)a ⊗K K[Ḡ]. Write
∆(a) =

∑
i ai ⊗ bi, ai ∈ Dist(Ḡ)a, bi ∈ K[Ḡ], with the ai linearly independent over K.

Then, ∀µ ∈ Dist(Ḡ), µa =
∑

i aiµ(bi) ∈
∑

i Kai =
⨿

iKai. It follows that

Dist(Ḡ)a =
⨿
i

Kai.(3)

In case a ∈ k[Ḡk], as ∆ is defined over k by (2), taking all ai in Dist(Ḡk)a yields

Dist(Ḡ)a = (K⊗k Dist(Ḡk))a = K⊗k {Dist(Ḡk)a} = K⊗k
⨿
i

kai.(4)

Let now f1, . . . , fr be a set of k-algebra generators of k[Ḡk], and let c1, . . . , cn be a
K-linear basis of

∑r
i=1 Dist(Ḡ)fi. By (4) one may take all ci in k[Ḡk]. ∀i ∈ [1, n],

write ∆(ci) = ∆k(ci) =
∑n

j=1 cj ⊗ mij, mij ∈ k[Ḡk]. Let GLn(K) = GL(
⨿n

i=1Kci) with

respect to the basis c1, . . . , cn. One thus obtains a group homomorphism Ḡ → GLn(K)
via g 7→ [(mij(g))]. Write K[GLn(K)] = K[xij,

1
det

|i, j ∈ [1, n]] with xij(y) = yij ∀y ∈
GLn(K). Then En = [(mij(g))][(mij(g

−1))], and hence 1 = det[(mij(g))] det[(mij(g
−1))]. As

mij(?
−1) ∈ k[Ḡk], det[(mij(g))] ∈ k[Ḡk]

×. ∀i, ∀g ∈ Ḡ, ci(g
−1?) = gci =

∑
j cjmij(g). In

particular, ci(1) =
∑

j cj(g)mij(g), and hence

[(mij(g))]

c1(g)
...

cn(g)

 =

c1(1)
...

cn(1)

 ∈ kn as all ci ∈ k[Ḡk].

Then c1(g)
...

cn(g)

 = [(mij(g
−1))][(mij(g))]

c1(g)
...

cn(g)

 = [(mij(g
−1))]

c1(1)
...

cn(1)

 ,

and hence ci(g) =
∑

j mij(g
−1)cj(1). It follows that all ci ∈ k[mij,

1
det[(mij)]

|i, j ∈ [1, n]].
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Thus,
xij mij

K[GLn(K)] K[Ḡ] = K[c1, . . . , cn]

K⊗k k[xij,
1
det

|i, j]] K⊗k k[Ḡk]

k[xij,
1
det

|i, j] k[Ḡk] = k[c1, . . . , cn],

and the group hommomorphism Ḡ → GLn(K) is an imbedding of algebraic groups.

If F̂ is the geometric Frobenius on GLn(K) defined by k[xij,
1
det

|i, j], it is compatible
with the geometric Frobenius F on Ḡ:

K[Ḡ] K[GLn(K)]

K⊗k k[Ḡk] K⊗k k[xij,
1
det

|i, j]

K⊗k k[Ḡk] K⊗k k[xij,
1
det

|i, j].

⟳
F̂ ♯=K⊗k?

q K⊗k?
q=F̂ ♯

Define F̂∗ : gln(K) → gln(K) to be the arithmetic Frobenius with respect to gln(k):

gln(K) gln(K)

K⊗k gln(k) K⊗k gln(k).

F̂∗

?q⊗kgln(k)

Then

Ad(F̂ (g)) ◦ F̂∗ = F̂∗ ◦ Ad(g) ∀g ∈ GLn(K).(5)

For let g = [(gij)] ∈ GLn(K) and y = [(yij)] =
∑

i,j yijeij ∈ gln(K) with eij ∈ gln(K) such

that (eij)ab = δi,aδj,b ∀i, j, a, b ∈ [1, n]. Then

{Ad(F̂ (g)) ◦ F̂∗}(y) = [(gqij)][(y
q
ij)][(g

q
ij)]

−1 = F̂∗([(gij)][(yij)][(gij)]
−1) = {F̂∗ ◦ Ad(g)}(y),

and hence also

Ad(F (g)) ◦ F∗ = F∗ ◦ Ad(g) ∀g ∈ Ḡ.(6)

As Int(τ̃(g)) = τ̃(gτ̃−1(?)g−1) = τ̃ ◦ Int(g)◦ τ̃−1, Ad(τ̃(g)) = dτ̃ ◦Ad(g)◦ (dτ̃)−1. Thus,

Ad(σ(g)) ◦ σ∗ = dτ̃ ◦ Ad(F (g)) ◦ (dτ̃)−1 ◦ F∗ ◦ dτ̃ = dτ̃ ◦ Ad(F (g)) ◦ F∗

= dτ̃ ◦ F∗ ◦ Ad(g) by (5)

= σ∗ ◦ Ad(g).

2.6. Let Ḡ⟨σ⟩ = Ḡ⋊ ⟨σ⟩. Thus, in Ḡ⟨σ⟩, ∀i, j ∈ Z, ∀g, g′ ∈ Ḡ,

gσig′σj = gσi(g′)σi+j.
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Then

Ad(g)σi
∗Ad(g

′)σj
∗ = Ad(g)Ad(σi(g′))σi+j

∗ by 2.5

= Ad(gσi(g′))σi+j
∗ ,

and hence one obtains a homomorphism of abstract groups

Ḡ⟨σ⟩ → pLAk(ḡ, ḡ)
× via gσi 7→ Ad(g)σi

∗,

where pLAk(ḡ, ḡ)
× denotes the set of automorphisms of p-Lie algebra ḡ over k.

2.7. Let h̄ = Lie(H̄) and ḡα = Lie(Ūα), α ∈ R. As Ū−H̄Ū is open in Ḡ, one has a Cartan
decomposition

ḡ = h̄⊕
⨿
α∈R

ḡα with ḡα = {x ∈ ḡ|Ad(t)x = α(t)x ∀t ∈ H̄}.(1)

Thus, each ḡα, α ∈ R, is a 1-dimensional H̄-module under Ad affording α, and hence also
an h̄-module under ad affording dα. ∀α, β ∈ R,

H̄ Gm ζ⟨α,β
∨⟩

Gm ζ

α

β∨
d

h̄ k ⟨α, β∨⟩ξ.

k ξ

dα

dβ∨

As p ≥ 5 by the standing hypothesis, ⟨α, α∨⟩ = 2 ̸= 0 in K, and hence

dα ̸= 0 ∀α ∈ R.(2)

Moreover, from [HLART, 13.1]

det[(⟨α, β∨⟩)]α,β∈Rs =



l + 1 if R is of type Al,

2 if R is of type Bl,Cl,E7,

4 if R is of type Dl,

3 if R is of type E6,

1 if R is of type E8,F4,G2,

and hence

dα ̸= dβ if α, β ∈ R are distinct;(3)

in case p|l + 1 in type Al, by separate inspection. Thus,

ḡα = ḡdα ∀α ∈ R.(4)

2.8. Let F be a field, V be a finite dimensional F-linear space and ϕ an F-linear endo-
morphism of V . For λ ∈ F let Vλ(ϕ) = {v ∈ V |(ϕ − λ)nv = 0 ∃n ∈ N} the generalized
λ-eigen space of f in V . Thus, Vλ(ϕ) = {v ∈ V |(ϕ − λ)dimV v = 0}. More generally,
for Γ ⊆ LinF(V, V ) and f : Γ → F let Vf (Γ) = ∩x∈ΓV0(x − f(x)), called the Fitting
f -component of Γ in V .
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If F is algebraically closed, Zassenhaus’ theorem [SF, 1.4.4] asserts for a nilpotent Lie
algebra n that

V =
⨿

f∈Set(n,F)

Vf (n).(1)

Let L be a finite dimensional Lie algebra. For K ⊆ L under the adjoint representation
L0(K) forms a subalgebra of L by Leibniz’s rule; ∀x, y, z ∈ L, ∀n ∈ N,

(adx)n([y, z]) =
n∑

i=0

(
n

i

)
[(adx)iy, (adx)n−iz].

We call CL(K) = {x ∈ L|[x, y] = 0 ∀y ∈ K} the centralizer of K in L. Thus, CL(K) is a
subalgebra of L0(K). In case K is a subalgebra of L, We call K a Cartan subalgebra of
L iff K = L0(K).

Let also CḠ(h̄) = {g ∈ Ḡ|Ad(g)(x) = x ∀x ∈ h̄}, and NḠ(h̄) = {g ∈ Ḡ|Ad(g)(x) ∈
h̄ ∀x ∈ h̄}.

Lemma: (i) h̄ = ḡ0(h̄) = Cḡ(h̄) is a Cartan subalgebra of ḡ.

(ii) CḠ(h̄) = H̄.

(iii) NḠ(h̄) = N̄ .

Proof: (i) follows from 2.7.

(ii) and (iii) Let Z = CḠ(h̄)
0 the connected component of CḠ(h̄) around the unity and

z = Lie(Z). Just suppose Z > H̄. Then z > h, and hence ḡα ⊆ z for some α ∈ R by 2.7.
Let Zα = CZ((kerα)

0), which is connected [Sp, 6.4.7.(i)] with

Lie(Zα) = Cz((kerα)
0) [Sp, 5.4.7]

≥ h⊕ ḡα.

Then a Borel subgroup of Zα cannot be equal to H̄ [HLAG, Prop. 21.4 B]/[Sp, 6.2.10].
Take a Borel subgroup Bα of Zα containing H̄, which extends to a Borel sub group B′

of Ḡ. As Ru(Bα) ≤ Ru(B
′) [HLAG, 19.5], Ru(Bα) is directly spanned by H̄-invariant

1-dimensional unipotent groups [HLAG, 28.1], and hence Ūα ≤ Ru(Bα). Let Gα =
⟨Ūα, Ū−α⟩, and consider a morphism SL2(K) → Gα of algebraic groups [Sp, 8.1.4] such
that (

1 ξ
0 1

)
7→ xα(ξ) and

(
1 0
ξ 1

)
7→ x−α(ξ).

As p ≥ 5, Lie(SL2(K)) is simple, and hence is sent isomorphically onto Lie(Gα). On the
other hand, ∀ξ ∈ K, (

1 ξ
0 1

)(
1 0
0 −1

)(
1 −ξ
0 1

)
=

(
1 −2ξ
0 −1

)
,

and hence Ūα ̸≤ Z, absurd. Thus, H̄ = Z ⊴ NḠ(h̄). Then NḠ(h̄) ≤ N̄ ≤ NḠ(h̄), and (iii)
follows.
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Finally, if Z < CḠ(h̄), CḠ(h̄) ≤ NḠ(Z) = NḠ(H̄) = N̄ , and hence CḠ(h̄) \ Z =
CḠ(h̄) \ H̄ ⊆ N̄ \ H̄, absurd. Thus, CḠ(h̄) = Z = H̄, and (ii) holds.

2.9. Recall from 2.4 that dτ̃ leaves ḡk invariant, permuting a Chevalley basis {dxβ(1)|β ∈
R} of

⨿
β∈R ḡβ; unless Ḡ is of type Al with p|l + 1, {dα∨(1)|α ∈ Rs} forms a basis of h̄

[H67, 5.4] and dτ̃ permutes the dα∨(1)’s.

Lemma: g forms a k-form of ḡ: one has a commutative diagram

ḡ ḡ

K⊗k g K⊗k g.

≀

σ∗

≀

?q⊗kg

Proof: Recall from 2.4 that ḡk is a dτ̃ -invariant k-form of ḡ. If dτ̃ = id, g = ḡk and the
assertion holds.

Assume next that ord(dτ̃) = 2. As p ≥ 5, 1 ̸= −1, and ḡk admits an eigenspace
decompsition with respect to dτ̃ : ḡk = (ḡk)1⊕ (ḡk)−1 with (ḡk)±1 = {y ∈ ḡk|(dτ̃)y = ±y},
resp. Then (K ⊗k (ḡk)1)

σ∗ = (ḡk)1 is a k-form of K ⊗k (ḡk)1. Let v ∈ (ḡk)−1 \ 0. In
K⊗k kv = Kv,

(Kv)σ∗ = {λv|λ ∈ K,−λq = λ}
= kλ0v with λ0 ∈ K such that λq−1

0 = −1

as xq + x = x(xq−1 + 1) = x
∏

µ∈k×(x− λ0µ) =
∏

µ∈k(x− λ0µ) in the polynomial algebra

K[x]. Thus, (Kv)σ∗ = kλ0v is a k-form of K ⊗k kv. It follows that g = ḡσ∗ = {K ⊗k
(ḡk)1}σ∗ ⊕ {K⊗k (ḡk)−1}σ∗ forms a k-form of ḡ.

Assume finally ord(dτ̃) = 3, and let ω ∈ K be the primitive 3rd root of 1, which exists
as p ≥ 5 again. Then ḡk = (ḡk)1⊕(ḡk)ω⊕(ḡk)ω2 . If v ∈ (ḡk)ω \0. one has in K⊗kkv = Kv

(Kv)σ∗ = {λv|λ ∈ K, λqω = λ} = {λv|λ ∈ K, λq = λω−1}
= kλ0v with λ0 ∈ K such that λq−1

0 = ω−1 = ω2

as xq − ω2x =
∏

µ∈k(x − λ0µ) in K[x]. Thus, (Kv)σ∗ = kλ0v gives a k-form of K ⊗k kv.
Likewise, if v ∈ (ḡk)ω2 \ 0. It follows that g = ḡσ∗ = {K ⊗k (ḡk)1}σ∗ ⊕ {K ⊗k (ḡk)ω}σ∗ ⊕
{K⊗k (ḡk)ω2}σ∗ forms a k-form of ḡ.

2.10. Unless p|l+ 1 in type Al, under our restriction p ≥ 5, ḡ is a simple Lie algebra over
K by [H67, 5.4], so therefore is g over k by 2.9.

If Xβ = (dβ)(1), β ∈ R, (Xβ|β ∈ R) forms a k-linear basis of (
⨿

β∈R ḡβ)
F∗ =⨿

β∈R(ḡk)β, permuted by dτ̃ such that (dτ̃)Xβ = Xτβ ∀β ∈ R. Let Ω be a τ -orbit of

length r in R and β ∈ Ω. Let
∑r

i=1 λi ⊗ (dτ̃)i−1Xβ ∈
∑r

i=1K ⊗k (dτ̃)
i−1Xβ =

⨿
γ∈Ω ḡγ,

λi ∈ K ∀i. If
∑r

i=1 λi ⊗ (dτ̃)i−1Xβ = σ∗(
∑r

i=1 λi ⊗ (dτ̃)i−1Xβ) =
∑r

i=1 λ
q
i ⊗ (dτ̃)iXβ,
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λ2 = λq
1, λ3 = λq

2 = λq2

1 , . . . , λr = λqr−1

1 , λ1 = λqr

1 . Thus,

(
r∑

i=1

K⊗k (dτ̃)
i−1Xβ)

σ∗ = {
r∑

i=1

λqi−1 ⊗ (dτ̃)i−1Xβ =
r−1∑
i=0

σi
∗(λ⊗Xβ)|λ ∈ Fqr}

≃ Fqr as k-linear spaces.

Let µ ∈ F×
qr be a generator. Thus, degk µ = r, and 1, µ, . . . , µr−1 form a k-linear basis of

Fqr . Then {
∑r−1

i=0 σ
i
∗(µ

j ⊗Xβ)|j ∈ [0, r[} forms a k-linear basis of (
⨿

γ∈Ω ḡγ)
σ∗ . If h ∈ h̄σ∗ ,

[h,
r−1∑
i=0

σi
∗(µ

j ⊗Xβ)] =
r−1∑
i=0

[σi
∗h, σ

i
∗(µ

j ⊗Xβ)] =
r−1∑
i=0

σi
∗([h, µ

j ⊗Xβ])

=
r−1∑
i=0

σi
∗((dβ)(h)µ

j ⊗Xβ) =
r−1∑
i=0

(dβ)(h)q
i

σi
∗(µ

j ⊗Xβ).

In case h = λ0v with λ0 ∈ K \ k as in 2.9, (dβ)(h) = λ0(dβ)(v) ̸∈ k unless (dβ)(v) = 0.

If R = Ω1 ⊔ · · · ⊔ Ωm is the τ -orbit decomposition of R and if ḡi =
⨿

α∈Ωi
ḡα, ḡ =

h̄⊕
⨿m

i=1 ḡi with each component σ∗-invariant, and hence from 2.9

Proposition: g = h⊕
⨿m

i=1(ḡi)
σ∗ with h = h̄σ∗ (resp. (ḡi)

σ∗, i ∈ [1,m]) forming a k-form
of h̄ (resp. ḡi).

3◦ Twisting

We will often abbreviate Ad(g), g ∈ Ḡ, simply as g. ∀n ∈ N̄ , σ∗n = σ∗Ad(n) ∈
pLAk(ḡ, ḡ)

× an automorphism of p-Lie algebra over k. In this section we discuss the
structure of p-Lie algebra ḡσ∗n = {x ∈ ḡ|σ∗n(x) = x} over k.

3.1. Lemma: ∀n ∈ N, ḡσ∗n is conjugate to g under Ad(Ḡ). In particular, ḡσ∗n gives a
k-form of ḡ.

Proof: By Lang’s theorem [St67, 10.10] write n = gσ(g)−1 for some g ∈ Ḡ. As n =
gσg−1σ−1 in Ḡ⟨σ⟩, nσ∗ = Ad(n)σ∗ = Ad(g)σ∗Ad(g)

−1 = gσ∗g
−1 in pLAk(ḡ, ḡ)

×. Then,
∀x ∈ ḡ, nσ∗x = x iff gσ∗g

−1x = x iff σ∗g
−1x = g−1x iff g−1x ∈ ḡσ∗ = g iff x ∈ gg. Thus,

ḡσ∗n = gg.

3.2. As n ∈ N̄ permutes the H̄-root subgroups of Ḡ, σ∗n permutes {ḡα|α ∈ R} in such a
way that σ∗nḡα = ḡτnα with nα = α(n−1?). Let O1, . . . ,Or be the τn-orbits on R. Set
ḡi =

⨿
αOi

ḡα ∀i ∈ [1, r], which is invariant under σ∗n.

Proposition: Let n ∈ N̄ .

(i) ḡσ∗n = h̄σ∗n ⊕
⨿r

i=1(ḡi)
σ∗n forms a k-form of ḡ with all h̄σ∗n, (ḡi)

σ∗n, i ∈ [1, r],
forming k-forms of h̄, ḡi, resp.

(ii) The (ḡi)
σ∗n, i ∈ [1, r], are all pairwise nonisomorphic irreducible h̄σ∗n-modules.
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(iii) ∀i, j ∈ [1, r], [(ḡi)
σ∗n, (ḡj)

σ∗n] = [ḡi, ḡj]
σ∗n, [h̄σ∗n, (ḡj)

σ∗n] = [h̄, ḡj]
σ∗n. In particu-

lar, h̄σ∗n = (ḡσ∗n)0(h̄
σ∗n) = {x ∈ ḡσ∗n| ad(h)dim ḡx = 0 ∀h ∈ h̄σ∗n} = {x ∈ ḡσ∗n|[h, x] =

0 ∀h ∈ h̄σ∗n}, and hence h̄σ∗n is a Cartan subalgebra of ḡσ∗n.

(iv) Unless p|l + 1 in type Al, g
σ∗n is a simple Lie algebra over k.

Proof: (i) follows from 2.10 by 3.1. Then (iv) follows from the fact [H67, 5.4] that ḡ is
simple over K.

(ii) and (iii) By (i)

[(ḡi)
σ∗n, (ḡj)

σ∗n] ≤ [ḡi, ḡj]
σ∗n = [K⊗k (ḡi)

σ∗n,K⊗k (ḡj)
σ∗n]σ∗n

= {K⊗k [(ḡi)
σ∗n, (ḡj)

σ∗n]}σ∗n ≤ [(ḡi)
σ∗n, (ḡj)

σ∗n],

and hence [(ḡi)
σ∗n, (ḡj)

σ∗n] = [ḡi, ḡj]
σ∗n. Likewise, [h̄σ∗n, (ḡi)

σ∗n] = [h̄, ḡi]
σ∗n. As [h̄, ḡi] = ḡi

under the standing hypothesis p ≥ 5, h̄σ∗n = (ḡσ∗n)0(h̄
σ∗n).

Let M be a nonzero h̄σ∗n-submodule of (ḡi)
σ∗n. Then K⊗kM is a nonzero ḡ-submodule

of ḡi-module by (i) again, and hence ḡβ ⊆ K⊗kM for some β ∈ Oi. As K⊗kM is invariant
under σ∗n =?q ⊗k dτ̃Ad(n), one must have K ⊗k M = ḡi. Then M = (ḡi)

σ∗n, and hence
(ḡi)

σ∗n is irreducible over h̄σ∗n. Likewise, an isomorphism f : (ḡi)
σ∗n → (ḡj)

σ∗n of h̄σ∗n-
modules yields an isomorphism K⊗k f : ḡi → ḡj of h̄-modules, and hence i = j.

4◦ Maximal tori

A maximal torus of G is by definition T̄ σ = {t ∈ T̄ |σt = t} for a σ-invariant maximal
torus T̄ of Ḡ. We will first recall the definition of a toral subalgebra of a p-Lie algebra,
abbreviated as a TSA, or simply called a torus. We then determine the maximal TSA’s
of g, and show that they are all Ḡ-conjugate to some h̄σ∗n, n ∈ N̄ , in ḡσ∗n, and exhaust
the Cartan subalgebras of g. We thus obtain a Cartan decomposition of g with respect
to any Cartan subalgebra of g.

4.1. Let x be a p-Lie algebra over a field F of characteristic p > 0 with a p-power map
?[p]. We say x ∈ x is p-nilpotent (resp. p-semisimple) iff x[p]r = 0 for some r ∈ N (resp.

x ∈
∑

i∈N+ Fx[p]i) [SF, 2.1.5 (resp. 2.3.3)]. Let f : x → gl(V ) is a p-representation, i.e., a
homomorphism of p-Lie algebras, of x in a finite dimensional F-linear space V . From [SF,
2.3.3.vi] one has that

(1) f(x) is semisimple (resp. nilpotent) in the classical sense

for x p-semisimple (resp. p-nilpotent), and conversely if f is an imbedding.

A toral subalgebra, abbreviated as TSA, or simply a torus, of x is an abelian p-
subalgebra Y of X consisting entirely of p-semisimple elements [SF, 2.4.1], equivalently,
iff F̄ ⊗F Y contains no nonzero p-nilpotents, F̄ denoting the algebraic closure of F [W,
4.5.2]. Recall from [W, 4.5.18] that

a maximal TSA remains so under base field extension.(2)

In case x is the Lie algebra of a connected algebraic group X over K one has from [BS,
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1.3] that

(3) x ∈ x is p-semisimple (resp. p-nilpotent)

iff x is contained in the Lie algebra of a torus (resp. a unipotent subgroup) of X.

For if T is a torus of X, y[p] = y ∀y ∈ Lie(T ) [J, I.7.8]. If V is a unipotent subgroup of
X, Lie(V ) is nilpotent, and hence “if” holds. The converse is more subtle; the functor
Lie is in general not compatible with taking an intersection [Mi, 10.14]. In [BS] they call
x ∈ X semisimple (resp. nilpotent) iff x is contained in the Lie algebra of a torus (resp.
a unipotent subgroup) of X and show in [BS, 1.3] that

(4) each x ∈ x admits a unique decomposition x = xs+xn with xs semisimple, xn nilpotent
and [xs, xn] = 0, and that if ϕ : X → GLn(K) is a morphism of algebraic groups,
dϕ(x) = dϕ(xs) + dϕ(xn) gives the classical Jordan decomposition of dϕ(x).

As the 2nd part of (4) follows from the existence of such a decomposition in the 1st
part, one obtains the unicity of the decomposition in the 1st part by taking ϕ to be an
imbedding. Likewise, “only if” of (3) follows from the existence of the decomposition in
the 1st part by (1). Now, to see the existence, if M ia a Borel subgroup of X, X =
∪g∈XAd(g)Lie(M) by [SGA3, XIV, Th. 4.11], and hence we may assume that X is
solvable. Let x ∈ x. We argue by induction on dimX. Write X = TRu(X) with T a
maximal torus and Ru(X) the unipotent radical of X [Bo, 10.6]/[HLAG, 19.3]. There is
a 1-dimensional central subgroup Y of Ru(X) normalized by X [Bo, 10.4]. Let π : X →
X/Y be the quotient, and let x̄ = Lie(X/Y ) = x/y with y = Lie(Y ). By induction one has
dπ(x) = ā+ b̄ with ā semisimple, b̄ nilpotent in x̄ and [ā, b̄] = 0. As Ru(X/Y ) = π(Ru(X))
[Bo, 10.6] and as a torus of X/Y lifts to a torus of X [Bo, 11.14, 8.3]/[HLAG, 21.3.C,
16.2], one can write x = a + b with a semisimple, b nilpotent in x, b ∈ Lie(Ru(X)),
dπ(a) = ā and dπ(b) = b̄. Let T ′ be a maximal torus of X with a ∈ T ′. Under Ad(T ′)
write Lie(Ru(X)) = r⊕ y, and let b = b1 + b2 with b1 ∈ r and b2 ∈ y. Then

y ∋ [a, b] as Y ⊴ X

= [a, b1] + [a, b2] with [a, b1] ∈ r while [a, b2] ∈ y,

and hence [a, b1] = 0. If [a, b2] = 0, we are done. Thus, assume that [a, b2] ̸= 0. One has
only to check show that a+ b2 is semisimple. Write Y as a T ′-root group: Y = {yγ(ξ)|ξ ∈
K} for some isomorphism yγ : Ga → Y of algebraic groups and character γ : T ′ → GL1(K)
such that tyγ(ξ)t

−1 = yγ(γ(t)ξ) ∀t ∈ T ′, ∀ξ ∈ K. If y = (dyγ)(1),

Ad(yγ(ξ))a− a =
∑
i∈N

ξi
yi

i!
• a− a [J, II.1.19.6]

= (a+ ξ[y, a] + ξ2
y2

2!
• a+ . . . )− a [HLAG, 10.4]

= ξ[y, a] as
yi

i!
a ∈ Lie(T ′Y )iγ [J, II.1.19.5],

and hence a+ [a,−ξy] = Ad(yγ(ξ))a is semisimple. As Y is 1-dimensional, there is ξ ∈ K
such that b2 = −ξy.
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Back to the general x we let T (x) denote the set of maximal TSA’s of x. In particular,
we let T (ḡ)σ∗ dentote set of maximal TSA’s of ḡ stabilized by σ∗. For groups we let T (Ḡ)
denote the set of maximal tori of Ḡ, and T (Ḡ)σ the set of σ-invariant maximal tori of
Ḡ. A maximal tous of G is by definition T̄ σ for some T̄ ∈ T (Ḡ)σ, the collection of all
maximal tori is denoted T (G). By (3) one has from [H67, 13,6] a bijection

T (Ḡ) → T (ḡ) via T 7→ Lie(T ),(5)

which is Ḡ-equivariant with respect to the conjugation on Ḡ and Ad on ḡ. As h̄ ∈ T (ḡ)
by 2.8,

T (ḡ) = {Ad(g)h̄|g ∈ Ḡ}.(6)

4.2. We will show

Theorem: (i) There is a G-equivariant bijection between T (G) and T (g).

(ii) ∀t ∈ T (g), there is n ∈ N̄ such that (g, t) is Ḡ-conjugate to (ḡσ∗n, h̄σ∗n).

(iii) The G-conjugacy classes of T (g) are in bijective correspondence with the W -
conjugacy classes in Wσ.

(iv) T (g) coincides with the set of Cartan subalgebras of g.

4.3. In 4.2.(iii) by the G-conjugacy classes we mean those under the Ad(G)-action on g
defined in 2.5, and by the W -conjugacy classes in Wσ we mean those such that wσ and
w′σ, w,w′ ∈ W , are W -conjugate iff wσ = yw′σy−1 for some y ∈ W in W ⟨σ⟩. The proof
of 4.2 will rely on the lemmas to follow.

Lemma: (i) ∀t ∈ T (g), K⊗k t ∈ T (ḡ)σ∗.

(ii) ∀t̄ ∈ T (ḡ)σ∗, (g, t̄σ∗) is Ḡ-conjugate to some (ḡσ∗n, h̄σ∗n), n ∈ N̄ .

(iii) There is a bijection T (ḡ)σ∗ → T (g) via t̄ 7→ t̄σ∗ with inverse t 7→ Kt the K-span
of t.

Proof: (i) is immediate from 4.1.2 and 2.9.

(ii) By 4.1.6 write t̄ = gh̄. Then

gh̄ = t̄ = σ∗t̄ = σ∗gh̄

= σ(g)σ∗h̄ by 2.5

= σ(g)h̄,

and hence 2.8 yields that

g−1σ(g) ∈ N̄ .(1)

Now let y ∈ t̄ and write y = gx, x ∈ h̄. As σH̄ = H̄, σ−1(g−1σ(g)) ∈ N̄ . Letting
n = σ−1(g−1σ(g)), σ∗gx = gx iff σ(g)σ∗x = gx by 2.5 again iff σ(n)σ∗x = x iff σ∗nx = x
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iff x ∈ h̄σ∗n, and hence t̄σ∗ = gh̄σ∗n. As ḡ = gḡ, the same argument yields that g = ḡσ∗ =
gḡσ∗n, and hence

(2)

g ḡσ∗n

t̄σ∗ h̄σ∗n.

Ad(g)

∼

∼

(iii) now follows from (i) and (ii) as h̄σ∗n is a CSA, and hence also a maximal TSA of
ḡσ∗n by 3.2.

4.4. Recall next from [S, 2.6] that, ∀T ∈ T (G),

CḠ(T )
0 ∈ T (Ḡ)σ.(1)

For write T = T̄ σ for some T̄ ∈ T (Ḡ)σ. Then

T̄ ≤ CḠ(T )
0 ≤ CḠ(T ∩Op′(G))

≤ T̄ by [S, loc. cit.].

This is key to all that follows.

Lemma: (i) There is a bijection T (G) → T (Ḡ)σ via T 7→ CḠ(T )
0 with inverse T̄ 7→ T̄ σ.

(ii) The Ḡ-equivariant bijection 4.1.5 restricts to a G-equivariant bijection T (Ḡ)σ →
T (ḡ)σ∗.

Proof: (i) is immediate from (1).

(ii) Let T̄ ∈ T (Ḡ)σ, and write T̄ = gH̄g−1, g ∈ Ḡ. Then gH̄g−1 = T̄ = σ(T̄ ) =
σ(gH̄g−1) = σ(g)H̄σ(g)−1, and hence g−1σ(g) ∈ N̄ . Putting n = g−1σ(g) and t̄ = Lie(T̄ )
yields

σ∗t̄ = σ∗gh̄ = σ(g)σ∗h̄ by 2.5

= σ(g)h̄ = gnh̄ = gh̄ = t̄,

and hence t̄ ∈ T (ḡ)σ∗ .

On the other hand, let t̄′ ∈ T (ḡ)σ∗ . Write t̄′ = yh̄ for some y ∈ Ḡ by 4.1.6. Then
y−1σ(y) ∈ N̄ by 4.3.1. Thus, letting z = y−1σ(y) yields that σ(yH̄y−1) = σ(y)σ(H̄)σ(y)−1 =
yzH̄z−1y−1 = yH̄y−1, and hence yH̄y−1 ∈ T (Ḡ)σ with Lie(yH̄y−1) = Ad(y)h̄ = t̄′.

4.5. We are now ready to show 4.2.

(i) now follows from composing the bijections 4.4.(i), (ii) and 4.3.(iii)

(1)
T (G) T (Ḡ)σ T (ḡ)σ∗ T (g)

T CḠ(T )
0 Lie(CḠ(T )

0) Lie(CḠ(T )
0)σ∗ ,

∼ ∼ ∼
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which are all G-equivariant.

(ii) Given t ∈ T (g), write t = t̄σ∗ for some t̄ ∈ T (ḡ)σ∗ by 4.3.(iii), and t̄ = gh̄ for some
g ∈ Ḡ as in 4.3.(ii). With n = σ−1(g−1σ(g)) ∈ N̄ one has

g ḡσ∗n

t̄σ∗ h̄σ∗n.

Ad(g)

∼

∼

(iv) If t ∈ T (g), (g, t) is Ḡ-conjugate to some (ḡσ∗n, h̄σ∗n), n ∈ N̄ , by (ii), and h̄σ∗n is a
CSA of ḡσ∗n by 3.2, so therefore is t.

On the other hand, if X is a CSA of g,

X = Cg(t
′) for some t′ ∈ T (g) by [W, 4.5.17]

⊆ g0(t
′) = t′ as t′ is a CSA of g by above

⊆ Cg(t
′),

and hence X = t′ ∈ T (g).

(iii) Let M = Ḡ/N̄ . Thus, M ≃ T (Ḡ) via gN̄ 7→ gH̄g−1. As H̄ is σ-stable, so is N̄ ,
and hence σ acts on M to yield bijections

(2)
Mσ T (Ḡ)σ T (G)

gN̄ gH̄g−1 (gH̄g−1)σ.

∼ ∼
4.4.(i)

Consider the left action of Ḡ on M , which is σ-equivariant: σ(gm) = σ(g)σ(m) ∀g ∈ Ḡ
∀m ∈ M . As the stabilizer of N̄ ∈ M under the left multiplication by Ḡ is N̄ itself and
as N̄/N̄0 = N̄/H̄ ≃ W , an application of [SS, I.2.7, the end of I.2.5] yields a bijection

G\Mσ ≃ W/ ∼ via GgN̄ 7→ [g−1σ(g)],(3)

where the equivalence ∼ on W is defined such that w ∼ w′ iff w = yw′σ(y)−1 for some
y ∈ W , equivalently, wσ(y) = yw′ for some y ∈ W iff wσyσ−1 = yw′ in W ⟨σ⟩ for
some y ∈ W iff y−1wσy = w′σ in W ⟨σ⟩ for some y ∈ W . As (2) is G-equivariant, the
G-conjugacy classes of T (G) corresponds bijectively to the W -conjugacy classes in Wσ.
Altogether, one has a commutative diagram

(4)

Lie(CḠ((gH̄g−1)σ)0)σ∗ T (g) G\T (g)

(gH̄g−1)σ T (G) G\T (G)

gH̄g−1 T (Ḡ)σ G\T (Ḡ)σ

gN̄ (Ḡ/N̄)σ G\(Ḡ/N̄)σ

N̄/H̄ = W W/ ∼ W\Wσ

g−1σ(g)H̄ [g−1σ(g)] [g−1σ(g)σ] = [g−1σgσ−1σ] = [g−1σg].

∼ ∼

∼ ∼

∼ ∼

∼

∼
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5◦ Subgroups and subalgebras containing maximal tori

In this section we show how, under additional field restrictions, to assign a subalgebra
of g to each subgroup of G containing a maximal torus. We extend the bijection 4.2.(i)
to a bijection from the collection S(G) of subgroups of G generated by maximal tori
onto the collection S(g) of subalgebras of g containing maximal tori, i.e., maximal TSA’s.
Throughout the section we make a further restriction that q ≥ 13, so that the results of
[S] apply.

5.1. Let X be a subgroup of G containing a maximal torus T of G. Let X0 = ⟨TX⟩ be
the normal closure of T in X. Recall from [S, Th. 12.2] that X0 is independent of the
choice of the maximal torus contained in X, the proof of which requires the classification
of finite simple groups. Thus, S(G) consists precisely of those X containing a maximal
torus with X = X0.

Let also S(Ḡ) be the collection of closed connected σ-invariant subgroups of Ḡ con-
taining a maximal torus of Ḡ. From [S, Th. 12.1] one has a bijection S(Ḡ) → S(G) via
Ȳ 7→ Ȳ σ. Thus, for X ∈ S(G) there is a unique X̄ ∈ S(Ḡ) such that X̄σ = X. It turns
out that Lie(X̄) is σ∗-invariant. We set L(X) = Lie(X̄)σ∗ , and call it the Lie algebra
associated to X. We will show

Theorem: X 7→ L(X) gives a bijection from S(G) onto S(g).

5.2. We first need

Lemma: Let Ȳ be a closed connected subgroup of Ḡ containing H̄, and let R(Ȳ ) = {α ∈
R|Ūα ≤ Ȳ }. Let ȳ be a subalgebra of ḡ containing h̄, and let R(ȳ) = {α ∈ R|ḡα ≤ ȳ}.

(i) R(Ȳ ) = R(Lie(Ȳ )).

(ii) R(ȳ) = R(Lie(⟨H̄, Ūα|α ∈ R(ȳ)⟩)).

Proof: Recall from [S, 2.5] that Ȳ = Ru(Ȳ ) ⋊ L̄ with L̄ reductive containing H̄ and
Ru(Ȳ ) =

∏
α∈R1

Ūα for some R1 ⊆ R. Let R2 = R(L̄), so R1 ⊔ R2 ⊆ R(Ȳ ). On the other

hand, ∀α ∈ R(Ȳ ), ḡα ≤ Lie(Ȳ ) = Lie(Ru(Ȳ )) ⊕ Lie(L̄) = (
⨿

α∈R1
ḡα) ⊕ h̄ ⊕ (

⨿
α∈R2

ḡα),

and hence α ∈ R(Lie(Ȳ )) = R1 ⊔R2. Thus,

R(Ȳ ) = R1 ⊔R2 = R(Lie(Ȳ )), Ȳ = ⟨H̄, Ūα|α ∈ R(Ȳ )⟩, Lie(Ȳ ) = h̄⊕
⨿

α∈R(Ȳ )

ḡα,(1)

and (i) holds.

In (ii), by definition LHS ⊆ RHS. Let α, β ∈ R with α + β ∈ R. If (Zα + β) ∩
R = {−aα + β, . . . , β, . . . , bα + β}, a, b ∈ N, is the α-string through β [HLART, 8.4],
[Xα, Xβ] = ±(a + 1)Xα+β [HLART, Th. 25.2], where Xγ = dxγ(1) ∀γ ∈ R. Under the
standing characteristic restriction, Xα+β ∈ [Xα, Xβ] as (Zα+Zβ)∩R forms a root system
of rank 2. Thus, R(ȳ) is closed. Write R(ȳ) = R′

1 ⊔ R′
2 such that R′

1 ∩ −R′
1 = ∅ and

R′
2 = −R′

2. Then R′
2 forms a closed subsystem of R. Let W2 be the Weyl group of R′

2,
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and let Ḡ1 = ⟨Ūα|α ∈ R′
1⟩, Ḡ2 = ⟨H̄, Ūα|α ∈ R′

2⟩. Then

Ḡ1 =
∏
α∈R′

1

Ūα is unipotent.(2)

For let α, β ∈ R′
1 with α ̸= β. By the Chevalley commutator relation [Sp, 8.2.3] one has

[Ūα, Ūβ] ⊆
∏
i,j>0

Ūiα+jβ.

If α + β ̸∈ R, Ūα and Ūβ commute. Suppose now that α + β ∈ R. Then (Zα + Zβ) ∩ R
forms a root system of type A2, B2, or G2. By inspectioon one has

(N+α + N+β) ∩R =



{α + β} in type A2,

{α + β, α + 2β} in type B2 if α is long,

{α + β} in type B2 if α is short,

{α + β, α + 2β, α + 3β, 2α + 3β} in type G2 if α is long,

{α + β, 2α + β, 3α + β, 3α + 2β} in type B2 if α is short.

In all cases (N+α + N+β) ∩ R ⊆ R′
1 as R(ȳ) is closed, and hence Ḡ1 =

∏
α∈R′

1
Ūα by the

commutator formula. As R′
1 extends to a positive system of R [BLA, Prop. VI.1.7.22],

Ḡ1 is unipotent. On the other hand, Ḡ2 is reductive. As R(ȳ) is closed again, (NR′
1 +

NR′
2) ∩R(y) ⊆ R′

1, and hence Ḡ2 normalize Ḡ1. Thus,

⟨H̄, Ūα|α ∈ R(ȳ)⟩ = Ḡ1Ḡ2

= Ḡ1 ⋊ Ḡ2 as R′
1 ∩R′

2 = ∅.

If Ūβ ≤ ⟨H̄, Ūα|α ∈ R(ȳ)⟩,

β ∈ R(Lie(G1 ⋊G2)) by (1)

= R′
1 ∪R′

2 = R(ȳ),

and (ii) holds.

5.3. We now check

Lemma: ∀X̄ ∈ S(Ḡ), Lie(X̄) is σ∗-invariant.

Proof: As X̄ is connected, all maximal tori are conjugate under X̄ [HLAG, Cor. 21.3A],
and hence X̄ contains a σ-invariant maximal torus of X̄ [St67, 10.10]. Thus, let T̄ ∈ T (Ḡ)σ

with T̄ ≤ X̄. Write T̄ = gH̄g−1 for some g ∈ Ḡ. As in 4.4 one has g−1σ(g) ∈ N̄ . Let
n = g−1σ(g). Then σ(g−1X̄g) = σ(g−1)σ(X̄)σ(g) = n−1g−1X̄gn, and hence

nσ(g−1X̄g)n−1 = g−1X̄g.(1)

Now let Ȳ = g−1X̄g, and write Ȳ = Ru(Ȳ )⋊ L̄ as in 5.2 with Ru(Ȳ ) =
∏

α∈R1
Ūα and

L̄ = ⟨H̄, Ūα|α ∈ R2⟩. Thus, R1 ∩ (−R1) = ∅, R2 = −R2, and Ȳ = ⟨H̄, Ūα|α ∈ R1 ⊔ R2⟩.
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Then Lie(Ȳ ) = h̄⊕
⨿

α∈R1⊔R2
ḡα by 5.2.1, and hence

nσ∗Lie(Ȳ ) = h̄⊕
⨿

α∈R1⊔R2

ḡnτα

= Lie(Ȳ ) as Ūnτα = nσ(Ūα)n
−1 ⊆ Ȳ ∀α ∈ R1 ∪R2 by (1).

Then

σ∗Lie(X̄) = σ∗gLie(Ȳ ) = σ(g)σ∗Lie(Ȳ ) by 2.5

= gnσ∗Lie(Ȳ ) = gLie(Ȳ ) = Lie(X̄).

5.4. Let S(ḡ) be the collection of σ∗-invariant subalgebras of ḡ containing a σ∗-invariant
maximal TSA of ḡ.

Let now x̄ ∈ S(ḡ) and t̄ ∈ T (ḡ)σ∗ with x̄ ≥ t̄. As in 4.3 write t̄ = gh̄ for some g ∈ Ḡ,
and let n = σ−1(g−1)g ∈ N̄ . Then

g−1x̄ = g−1σ∗x̄ = σ∗σ
−1(g−1)x̄ by 2.5

= σ∗ng
−1x̄,

and hence g−1x̄ is σ∗n-invariant. Write g−1x̄ = h̄ ⊕
⨿

α∈R′ ḡα with R′ = R(g−1x̄). As h̄ is
σ∗n-invariant, h̄⊕

⨿
α∈R′ ḡα = g−1x̄ = σ∗n(g

−1x̄) = h̄⊕
⨿

α∈R′ ḡτnα, and hence

R′ is τn-invariant.(1)

We now let Ȳ = ⟨H̄, Ūα|α ∈ R′⟩ and X̄ = gȲ g−1. As σ(gH̄g−1) = σ(g)H̄σ(g)−1 =
gσ(n)σ(H̄)σ(n)−1g−1 = gH̄g−1,

gH̄g−1 ∈ T (Ḡ)σ.(2)

Also, ∀α ∈ R′,

σ(gŪαg
−1) = σ(g)σ(Ūα)σ(g)

−1 = gσ(n)σ(Ūα)σ(n)
−1g−1 = gσ(Ūnα)g

−1 = gŪτnαg
−1.

As R′ is τn-invariant, X̄ ∈ S(Ḡ).

We check next that X̄ is independent of the choice of t̄ ∈ T (ḡ)σ∗ and g ∈ Ḡ. Let
t̄′ ∈ T (ḡ)σ∗ with t̄′ ≤ x̄, and write t̄′ = ah̄, a ∈ Ḡ. Then h̄ = g−1ah̄, and hence g−1a ∈ N̄ by
2.8. Let z = g−1a and n′ = σ−1(a−1)a ∈ N̄ . Then a−1x̄ = h̄⊕

⨿
α∈R′′ ḡα with R′′ = R(a−1x̄)

σ∗n
′-invariant as in (1). One has that aH̄a−1 = gg−1aH̄(g−1a)−1g−1 = gH̄g−1 as g−1a ∈

N̄ . Also, g−1x̄ = g−1aa−1x̄ = g−1a(h̄ ⊕
⨿

α∈R′′ ḡα) = z(h̄ ⊕
⨿

α∈R′′ ḡα) = h̄ ⊕
⨿

α∈R′′ ḡzα,
and hence zR′′ = R′. Thus, ∀α ∈ R′′,

aŪαa
−1 = gg−1aŪα(g

−1a)−1g−1 = gzŪαz
−1g−1 = gŪzαg

−1 ≤ X̄,

and hence a⟨H̄, Ūα|α ∈ R′′⟩a−1 = X̄, as desired.

We now set X̄ = G(x̄).

Proposition: The map S(Ḡ) → S(ḡ) via X̄ 7→ Lie(X̄) is a bijection with inverse x̄ 7→
G(x̄).
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Proof: Given X̄ ∈ S(Ḡ), let T̄ ∈ T (Ḡ)σ with T̄ ≤ X̄, g ∈ Ḡ with T̄ = gH̄g−1, and
let Ȳ = g−1X̄g. Then Ȳ = ⟨H̄, Ūα|α ∈ R(Ȳ )⟩ = ⟨H̄, Ūα|α ∈ R(Lie(Ȳ ))⟩ by 5.2.1. As
Lie(Ȳ ) = g−1(Lie(X̄)), G(Lie(X̄)) = gȲ g−1 = X̄ by definition.

Given x̄ ∈ S(ḡ), let t̄ ∈ T (ḡ)σ∗ with t̄ ≤ x̄, and a ∈ Ḡ with t̄ = ah̄. Then G(x̄) =
a⟨H̄, Ūα|α ∈ R(a−1x̄)⟩a−1 by definition. Then

Lie(G(x̄)) = a{Lie(⟨H̄, Ūα|α ∈ R(a−1x̄)⟩)}

= a(h̄⊕
⨿

α∈R(a−1 x̄)

ḡα) by 5.2.1 again

= a(a−1x̄) = x̄.

5.5. Finally, one has from 4.3 a commutative diagram

S(ḡ) S(g)

T (ḡ)σ∗ T (g).

?σ∗

∼

Proposition: ?σ∗ : S(ḡ) → S(g) is a bijection with inverse x 7→ Kx the K-span of x.

Proof: Let x ∈ S(g). By 4.3 one has S(ḡ) ∋ Kx ≃ K⊗k x, and hence (Kx)σ∗ = x.

On the other hand, let x̄ ∈ S(ḡ) and let t̄ ∈ T (ḡ)σ∗ with x̄ ≥ t̄. As in 5.4 write t̄ = gh̄
for some g ∈ Ḡ, and let n = σ−1(g−1)g ∈ N̄ . Then g−1x̄ = h̄⊕

⨿
α∈R(g−1 x̄) ḡα with R(g−1x̄)

τn-invariant as in 5.4.1. ∀x ∈ x̄, x ∈ x̄σ∗ iff g−1x = g−1σ∗x = σ∗σ
−1(g−1)x = σ∗ng

−1x by
2.5 iff g−1x ∈ (g−1x̄)σ∗n. Thus, x̄σ∗ = g(g−1x̄)σ∗n = g{h̄σ∗n ⊕ (

⨿
α∈R(g−1 x̄) ḡα)

σ∗n}. Then

K(x̄σ∗) = g(h̄⊕
⨿

α∈R(g−1 x̄)

ḡα) by 3.2

= x̄.

5.6. The bijectivity of L now follows from a commutative diagram

S(Ḡ) S(G)

S(ḡ) S(g)

Lie ∼

?σ

∼

L

?σ∗
∼

with bijections from [S, Th. 12.2], 5.4, and 5.5.

5.7. As a consequence of 5.1 certain questions concerning generation by subsets of S(G)
can be settled by passing to S(g).

Corollary: Let X1, . . . , Xr ∈ S(G).
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(i) L(⟨X1, . . . , Xr⟩) = ⟨L(X1), . . . ,L(Xr)⟩.

(ii) ⟨X1, . . . , Xr⟩ = G(⟨L(X1), . . . ,L(Xr)⟩).

(iii) L(X1 ∩ · · · ∩Xr) = L(X1) ∩ · · · ∩ L(Xr) if X1 ∩ · · · ∩Xr ∈ S(G).

(iv) X1 ∩ · · · ∩Xr = G(L(X1) ∩ · · · ∩ L(Xr)) if X1 ∩ · · · ∩Xr ∈ S(G).

Proof: (ii) (resp. (iv)) follows from (i) (resp. (iii)) by 5.1.

(i) As L : S(G) → S(g) and G : S(g) → S(G) both preserve inclusions,

L(⟨X1, . . . , Xr⟩) ≥ ⟨L(X1), . . . ,L(Xr)⟩,(1)

L(X1 ∩ · · · ∩Xr) ≤ L(X1) ∩ · · · ∩ L(Xr) if X1 ∩ · · · ∩Xr ∈ S(G).(2)

(i) As Xi = G(L(Xi)) ≤ G(⟨L(X1), . . . ,L(Xr)⟩) ∀i ∈ [1, r], ⟨X1, . . . , Xr⟩ ≤
G(⟨L(X1), . . . ,L(Xr)⟩), and hence

L(⟨X1, . . . , Xr⟩) ≤ L(G(⟨L(X1), . . . ,L(Xr)⟩)) = ⟨L(X1), . . . ,L(Xr)⟩.

Together with (1), (i) follows.

(iii) As ∩
i
Xi ∈ S(G) by the hypothesis,

S(g) ∋ L(∩
i
Xi) ≤ ∩

i
L(Xi),(3)

and hence ∩
i
L(Xi) ∈ S(g). Then G(∩

i
L(Xi)) ≤ ∩

j
G(L(Xj)) = ∩

j
Xj, and

∩
i
L(Xi) = L(G(∩

i
L(Xi))) ≤ L(∩

i
Xi)

≤ ∩
i
L(Xi) by (3),

and (iii) holds.
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