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Abstract: We consider the initial value problem for cubic derivative nonlinear Schrödinger
equations possessing weakly dissipative structure in one space dimension. We show that the
small data solution decays like O((log t)−1/4) in L2 as t → +∞. Furthermore, we find that
this L2-decay rate is optimal by giving a lower estimate of the same order.
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1 Introduction and the main results

This article is devoted to the study on large-time behavior of solutions to the initial value
problem for one-dimensional derivative nonlinear Schrödinger equation in the form

i∂tu+
1
2
∂2xu = N(u, ∂xu), t > 0, x ∈ R (1.1)

with

u(0, x) = φ(x), x ∈ R, (1.2)

where i =
√
−1 ∂t = ∂/∂t, ∂x = ∂/∂x, and φ is a prescribed C-valued function on R.

The nonlinear term N(u, ∂xu) is a cubic homogeneous polynomial in (u, u, ∂xu, ∂xu) with
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complex coefficients (which we refer to a “cubic nonlinear term” throughout this article).
Our goal is to refine the previous result [19] from the viewpoint of L2-decay rate under a
certain structural condition on N mentioned below.
Before getting into the details, let us recall why and how we are interested in this problem.

As is well-known, cubic nonlinearity gives a borderline between short-range and long-range
situation for the one-dimensional nonlinear Schrödinger equations. To see typical nonlinear
effects, let us first focus on the power-type nonlinearity case

i∂tu+
1
2
∂2xu = λ|u|2u. (1.3)

According to Hayashi–Naumkin [5], the small data solution u(t, x) to (1.3) with λ ∈ R\{0}
behaves like

u(t, x) =
1√
it
α±(x/t)ei{

x2

2t
−λ|α±(x/t)|2 log t} + o(t−1/2) in L∞(Rx)

as t → ±∞, where α± is a suitable C-valued function on R. The additional logarithmic
correction in the phase reflects a typical long-range character. If λ ∈ C in (1.3), another
kind of long-range effect can be observed. Indeed, it is shown in [26] that the small data
solution u(t, x) to (1.3) decays like O(t−1/2(log t)−1/2) in L∞(Rx) as t → +∞ if Imλ < 0.
This gain of additional logarithmic time decay should be interpreted as another kind of long-
range effect (see also [1], [2], [3], [4], [8], [9], [10], [11], [12], [13], [14], [16], [17], [18], [21],
[24], [25], and so on). Time decay in L2-norm is also investigated by several authors. Among
others, it is pointed out by Kita-Sato [15] that optimal L2-decay rate is O((log t)−1/2) in the
case of (1.3) with Imλ < 0 (see also Section 4 below for the related issue).
Next we turn our attentions to more general derivative nonlinearity case (1.1). In what

follows, we make an assumption that

N(eiθ, 0) = eiθN(1, 0), θ ∈ R, (1.4)

to avoid the worst terms u3, u3, uu2 (it is known that these three terms are quite difficult to
handle in the present setting, and we do not pursue this case here). As pointed out in [22]
(see also [28], [29]), typical results on large-time behavior of global solutions to (1.1) under
(1.4) can be summarized in terms of the function ν : R → C defined by

ν(ξ) =
1

2πi

∮
|z|=1

N(z, iξz)
dz

z2

(see Appendix for some backgrounds on ν(ξ)). For instance,

• Small data global existence holds in C([0,∞);H3 ∩H2,1) under the condition

Im ν(ξ) ≤ 0, ξ ∈ R, (A)

where Hs denotes the L2-based Sobolev space of order s, and the weighted Sobolev
space Hk,m is defined by {ϕ ∈ L2 | ⟨ · ⟩mϕ ∈ Hk} with ⟨x⟩ =

√
1 + x2. See e.g., [6], [7],

etc., for details on global existence.
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• The global solution has (at most) logarithmic phase correction if

Im ν(ξ) = 0, ξ ∈ R. (A0)

Also it is not difficult to see that there is no L2-decay under (A0) for generic initial
data of small amplitude.

• L2-decay of the global solution does occur under the condition

sup
ξ∈R

Im ν(ξ) < 0. (A+)

In [20] and [19], an L2-decay estimate of order O((log t)−3/8+δ) with δ > 0 is derived,
but it seems far from optimal in view of several recent results (such as [3], [4], [24],
[15], etc.) on the power-type nonlinearity case. See Remark 4.2 below for more details.

• Under the stronger condition

Im ν(ξ) ≤ −C∗⟨ξ⟩2, ξ ∈ R (A++)

with some C∗ > 0, we have L2-decay of order O((log t)−1/2), according to [20].

In the previous paper [19], we have pointed out that an interesting case is not covered by
these classifications, that is the case where (A) is safistied but (A0) and (A+) are violated
(for example, if N = −i|ux|2u, we can easily check that Im ν(ξ) = −ξ2 ≤ 0, while the
inequality is not strict because of vanishing at ξ = 0). This is what we are going to address
here.
To going further, let us recall the following lemma given in [19].

Lemma 1.1. Let N be a cubic nonlinear term satisfying (1.4). If (A) is safistied but (A0)
and (A+) are violated, then there exist c0 > 0 and ξ0 ∈ R such that Im ν(ξ) = −c0(ξ − ξ0)

2.
The converse is also true.

This lemma naturally leads us to the following definition.

Definition 1.1. We say that a cubic nonlinear term N is weakly dissipative if the following
two conditions are satisfied:

(i) N(eiθ, 0) = eiθN(1, 0) for θ ∈ R.

(ii) There exist c0 > 0 and ξ0 ∈ R such that Im ν(ξ) = −c0(ξ − ξ0)
2.

In [19], it has been shown that

∥u(t)∥L2 ≤ Cε

(1 + ε2 log(t+ 1))1/4−δ
(1.5)

for t ≥ 0 with an arbitrarily small δ > 0, provided that N is weakly dissipative and ε =
∥φ∥H3∩H2,1 is sufficiently small. However, it is not clear whether this estimate is sharp
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or not. Indeed, the proof in [19] heavily relies on the pointwise estimate for α(t, ξ) =
F [U(−t)u(t, ·)](ξ) in the form

|α(t, ξ)| ≤ Cε

(ε2 log t)θ/2
1

|ξ − ξ0|θ⟨ξ⟩2−2θ
, θ ∈ [0, 1]

for t ≥ 2, where F denotes the Fourier transform and U(t) is the free Schrödinger propa-
gater (see Section 3.1 below). This estimate allows us to reduce the problem to finding the
admissible range of the parameter θ for convergence of the integral∫

R

dξ

|ξ − ξ0|2θ⟨ξ⟩4−4θ
.

A nuisance exponent δ > 0 comes from the choice of θ = 1/2− 2δ.
The aim of this article is to remove an extra δ > 0 from (1.5) by an alternative approach.

We will also show that the L2 decay rate O((log t)−1/4) of global solutions to (1.1) is optimal
in the weakly dissipative case.
Our first result is as follows.

Theorem 1.1. Suppose that N is weakly dissipative and that ε = ∥φ∥H3∩H2,1 is sufficiently
small. Then there exists a positive constant C, not depending on ε, such that the global
solution u to (1.1)–(1.2) satisfies

∥u(t)∥L2
x
≤ Cε

(1 + ε2 log(t+ 1))1/4

for t ≥ 0.

To state our second result, we put a small parameter ε in front of the initial data explicitly
so that the information on the amplitude is separated from the others, that is, we replace
the initial condition (1.2) by

u(0, x) = εψ(x), x ∈ R, (1.6)

where ψ ∈ H3 ∩H2,1 is independent of ε. Then we have the following.

Theorem 1.2. Suppose that N is weakly dissipative and that the Fourier transform of ψ
does not vanish at the point ξ0 coming from (ii) in Definition 1.1. Then we can choose ε0 > 0
such that the global solution u to (1.1)–(1.6) satisfies

lim inf
t→+∞

((log t)1/4∥u(t)∥L2
x
) > 0

for ε ∈ (0, ε0].

Now, let us explain heuristically why L2-decay rate should be O((log t)−1/4) if φ̂(ξ0) ̸= 0.
For this purpose, let us first remember the fact that the solution u0 to the free Schrödinger
equation (i.e., the case of N = 0) behaves like

∂kxu
0(t, x) ∼

(
ix

t

)k
e−iπ/4

√
t
φ̂
(x
t

)
ei

x2

2t + · · ·
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as t → +∞ for k = 0, 1, 2, . . .. Viewing it as a rough approximation of the solution u for
(1.1), we may expect that ∂kxu(t, x) could be better approximated by(

ix

t

)k
1√
t
A
(
log t,

x

t

)
ei

x2

2t

with a suitable function A(τ, ξ), where τ = log t, ξ = x/t and t ≫ 1. Note that A(0, ξ) =
e−iπ/4 φ̂(ξ) and that the extra variable τ = log t is responsible for possible long-range nonlin-
ear effect. Substituting the above expression into (1.1) and keeping only the leading terms,
we can see (at least formally) that A(τ, ξ) should satisfy the ordinary differential equation

i∂τA = ν(ξ)|A|2A+ · · ·

under (1.4). If N is weakly dissipative, we see that

∂τ |A|2 = −2c0(ξ − ξ0)
2|A|4 + · · · .

Then it follows that

|A(τ, ξ)|2 = |φ̂(ξ)|2

1 + 2c0(ξ − ξ0)2|φ̂(ξ)|2τ
+ · · · ,

whence

∥u(t)∥L2
x
∼ ∥A(log t)∥L2

ξ
∼

(∫
R

|φ̂(ξ)|2

1 + 2c0(ξ − ξ0)2|φ̂(ξ)|2 log t
dξ

)1/2

(t→ +∞).

By considering the behavior as t→ +∞ of this integral carefully, we see that L2-decay rate
in the weakly dissipative case should be just O((log t)−1/4) if φ̂(ξ0) ̸= 0.
Our strategy of the proof of Theorems 1.1 and 1.2 is to justify the above heuristic argument.

The key is to concentrate on α(t, ξ) = F [U(−t)u(t, ·)](ξ), which is expected to play the role
of A(log t, ξ) in the above argument. In the previous work [19], we have derived the pointwise
estimate (1.5) for α(t, ξ). Instead of doing so, our proof below will be based on more direct
asymptotic analysis in the spirit of Hayashi-Naumkin [5], [7].
The rest of this paper is organized as follows. In Section 2, we establish some technical

lemmas to make some necessary preparations to obtain our main theorems. In Section 3, we
prove Theorems 1.1 and 1.2. In Section 4, we make several remarks on the strictly dissipative
case. Finally, some backgrounds on ν(ξ) are presented in Appendix.

2 Key Lemmas

In this section we introduce three lemmas which play key roles in our analysis. The first one
is related to the ordinary differential equation in the form

i∂tβ(t, ξ) =
ν(ξ)

t
|β(t, ξ)|2β(t, ξ) + · · · ,
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which we call the profile equation associated with (1.1) under (1.4). The other two are related
to the integral in the form ∫

R

|φ̂(ξ)|2

1 + 2c0(ξ − ξ0)2|φ̂(ξ)|2 log t
dξ, (2.1)

which appears naturally as explained in the introduction.
In what follows we denote several positive constants by the same letter C, which may vary

from one line to another.

2.1 A lemma related to the profile equation

We start with the following lemma which characterizes the large-time asymptotics of solu-
tions to the profile equation.

Lemma 2.1. Let θ0(ξ), µ(ξ) be C-valued continuous functions on R satisfying

|θ0(ξ)| ≤ Cε⟨ξ⟩−2, |µ(ξ)| ≤ C⟨ξ⟩3, Imµ(ξ) ≤ 0, (2.2)

where ε > 0 is a small parameter. Let ρ(t, ξ) be a C-valued continuous function on [1,∞)×R
satisfying

|ρ(t, ξ)| ≤ Cε3

⟨ξ⟩2t1+κ
(2.3)

with some κ > 0. If the function β : [1,∞)× R → C solves

i∂tβ(t, ξ) =
µ(ξ)

t
|β(t, ξ)|2β(t, ξ) + ρ(t, ξ), β(1, ξ) = θ0(ξ) (2.4)

and ε > 0 is suitably small, then we have

|β(t, ξ)− A(log t, ξ)| ≤ Cε3

⟨ξ⟩2tκ−δ

for (t, ξ) ∈ [1,∞)×R, where δ is an arbitrarily small positive real number, and the function
A : [0,∞)× R → C solves

i∂τA(τ, ξ) = µ(ξ)|A(τ, ξ)|2A(τ, ξ), A(0, ξ) = θ0(ξ) + θ1(ξ)

with some θ1 : R → C satisfying |θ1(ξ)| ≤ Cε3⟨ξ⟩−2 .

Proof. Many parts of the argument below are similar to those given in [27] and [7], but we
must be more careful in several parts. Our point of departure is the fact that β(t, ξ) admits
the decomposition

β(t, ξ) =
P (t, ξ)√
Q(t, ξ)

,
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where P : [1,∞)× R → C and Q : [1,∞)× R → R+ satisfy
∂tP (t, ξ) = −iReµ(ξ)

t

∣∣P (t, ξ)∣∣2
Q(t, ξ)

P (t, ξ)− i
√
Q(t, ξ)ρ(t, ξ),

∂tQ(t, ξ) = −2
Imµ(ξ)

t

∣∣P (t, ξ)∣∣2,
P (1, ξ) = θ0(ξ), Q(1, ξ) = 1.

(2.5)

This is a result of uniqueness for the solution to (2.4). We are going to specify the asymptotics
of P (t, ξ) and Q(t, ξ) as t→ +∞. We first show that there exists an ε1 > 0 such that

sup
(t,ξ)∈[1,∞)×R

⟨ξ⟩2|P (t, ξ)| < 2C0ε (2.6)

if ε ∈ (0, ε1], where C0 > 0 is a constant which satisfies

sup
ξ∈R

⟨ξ⟩2|θ0(ξ)| ≤ C0ε.

We shall argue by contradiction: If this is not true, there exists Tε ∈ (1,∞) such that

sup
(t,ξ)∈[1,Tε)×R

⟨ξ⟩2|P (t, ξ)| ≤ 2C0ε and sup
ξ∈R

⟨ξ⟩2|P (Tε, ξ)| = 2C0ε.

Then, by integrating ∂tQ in (2.5) with respect to the time variable from 1 to t, we have

1 ≤ Q(t, ξ) ≤ 1− 2
Imµ(ξ)

⟨ξ⟩4
(2C0)

2ε2 log t (2.7)

for t ∈ [1, Tε] and ξ ∈ R. On the other hand, it follows from the first equation of (2.5) that

∂t

(
|P (t, ξ)|2

)
= 2Re

(
P (t, ξ)∂tP (t, ξ)

)
= 2Re

(
−iP (t, ξ)

√
Q(t, ξ)ρ(t, ξ)

)
≤ 2

∣∣P (t, ξ)∣∣ ∣∣√Q(t, ξ)ρ(t, ξ)
∣∣. (2.8)

By (2.2), (2.3), (2.7) and (2.8), we have

⟨ξ⟩2|P (Tε, ξ)| ≤ ⟨ξ⟩2|θ0(ξ)|+ ⟨ξ⟩2
∫ Tε

1

∣∣√Q(τ, ξ)ρ(τ, ξ)
∣∣ dτ

≤ C0ε+

∫ ∞

1

(1 + Cε2 log τ)1/2
Cε3

τ 1+κ
dτ

≤ C0ε+ C1ε
3

with some C1 > 0 independnt of ε ∈ (0, 1]. If we choose ε1 = min{1,
√
C0/(2C1)}, we have

sup
ξ∈R

⟨ξ⟩2|P (Tε, ξ)| ≤ C0ε+
C0

2
ε < 2C0ε
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for ε ∈ (0, ε1], which is the desired contradiction. Hence (2.6) must hold if ε is suitably
small. Also we see from (2.7) and (2.2) that

1 ≤ Q(t, ξ) ≤ 1 + C
ε2

⟨ξ⟩
log t

for t ≥ 1, ξ ∈ R. Next we define

Ψ(t, ξ) =

∫ t

1

Reµ(ξ)|P (τ, ξ)|2

Q(τ, ξ)

dτ

τ

so that ∂t
(
P (t, ξ)eiΨ(t,ξ)

)
= −i

√
Q(t, ξ)ρ(t, ξ)eiΨ(t,ξ). Note that∣∣∣√Q(t, ξ)ρ(t, ξ)
∣∣∣ ≤ (1 + Cε2 log t)1/2

Cε3

⟨ξ⟩2t1+κ
≤ Cε3

⟨ξ⟩2t1+κ−δ
,

where δ > 0 can be arbitrarily small. So we obtain

|P (t, ξ)− P∞(ξ)e−iΨ(t,ξ)| =
∣∣∣∣ie−iΨ(t,ξ)

∫ ∞

t

√
Q(τ, ξ)ρ(τ, ξ)eiΨ(τ,ξ)dτ

∣∣∣∣
≤ Cε3

⟨ξ⟩2tκ−δ
, (2.9)

where

P∞(ξ) = θ0(ξ)− i

∫ ∞

1

√
Q(τ, ξ)ρ(τ, ξ)eiΨ(τ,ξ) dτ, ξ ∈ R.

Note that

|P∞(ξ)| ≤ |θ0(ξ)|+
∫ ∞

1

|
√
Q(t, ξ)ρ(t, ξ)|dτ ≤ Cε⟨ξ⟩−2. (2.10)

We also set Q∞(t, ξ) = 1− 2Imµ(ξ)
(
|P∞(ξ)|2 log t+ Λ(ξ)

)
with

Λ(ξ) =

∫ ∞

1

(
|P (τ, ξ)|2 − |P∞(ξ)|2

)dτ
τ
.

From (2.6), (2.9) and (2.10) it follows that∣∣|P (t, ξ)|2 − |P∞(ξ)|2
∣∣ ≤ ∣∣P (t, ξ)− P∞(ξ)e−iΨ(t,ξ)

∣∣(|P (t, ξ)|+ |P∞(ξ)|
)

≤ Cε4

⟨ξ⟩4tκ−δ
, (2.11)

which implies

|Q(t, ξ)−Q∞(t, ξ)| = 2

∣∣∣∣Imµ(ξ)

∫ ∞

t

(|P (τ, ξ)|2 − |P∞(ξ)|2)dτ
τ

∣∣∣∣
≤ C⟨ξ⟩3

∫ ∞

t

∣∣|P (τ, ξ)|2 − |P∞(ξ)|2
∣∣dτ
τ

≤ Cε4

⟨ξ⟩tκ−δ
. (2.12)
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We remark that (2.11) also gives us

Q∞(t, ξ) ≥ 1− 2|µ(ξ)||Λ(ξ)|

≥ 1− C⟨ξ⟩3
∫ ∞

1

Cε4

⟨ξ⟩4τκ−δ

dτ

τ

≥ 1− Cε4

⟨ξ⟩

≥ 1

2
(2.13)

for t ≥ 1 and ξ ∈ R, provided that ε > 0 is suitably small. Let us also introduce

Φ(t, ξ) =
Reµ(ξ)

t

(
|P (t, ξ)|2

Q(t, ξ)
− |P∞(ξ)|2

Q∞(t, ξ)

)
.

Then we have

Ψ(t, ξ) = |P∞(ξ)|2Reµ(ξ)
∫ t

1

1

Q∞(τ, ξ)

dτ

τ
+

∫ t

1

Φ(τ, ξ)dτ

= |P∞(ξ)|2Reµ(ξ)
∫ log t

0

dσ

Q∞(eσ, ξ)
+

∫ ∞

1

Φ(τ, ξ) dτ −
∫ ∞

t

Φ(τ, ξ) dτ

and∫ ∞

t

|Φ(τ, ξ)| dτ =

∫ ∞

t

∣∣∣∣∣Reµ(ξ)
(
|P (τ, ξ)|2 − |P∞(ξ)|2

Q(τ, ξ)
−

|P∞(ξ)|2
(
Q(τ, ξ)−Q∞(τ, ξ)

)
Q(τ, ξ)Q∞(τ, ξ)

)∣∣∣∣∣ 1τ dτ
≤ C⟨ξ⟩3

∫ ∞

t

(∣∣|P (τ, ξ)|2 − |P∞(ξ)|2
∣∣

Q(τ, ξ)
+

|P∞(ξ)|2
∣∣Q(τ, ξ)−Q∞(τ, ξ)

∣∣
Q(τ, ξ)Q∞(τ, ξ)

)
dτ

τ

≤ Cε4

⟨ξ⟩

∫ ∞

t

dτ

τ 1+κ−δ

≤ Cε4

⟨ξ⟩tκ−δ
,

whence∣∣∣∣exp(−iΨ(t, ξ)) exp
(
i

∫ ∞

1

Φ(τ, ξ) dτ
)
− exp

(
−i|P∞(ξ)|2Reµ(ξ)

∫ log t

0

dσ

Q∞(eσ, ξ)

)∣∣∣∣
=

∣∣∣∣exp(−i|P∞(ξ)|2Reµ(ξ)
∫ log t

0

dσ

Q∞(eσ, ξ)

)∣∣∣∣ · ∣∣∣∣exp(i∫ ∞

t

Φ(τ, ξ)dτ

)
− 1

∣∣∣∣
≤ 1 ·

∫ ∞

t

|Φ(τ, ξ)| dτ

≤ Cε4

⟨ξ⟩tκ−δ
. (2.14)
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Therefore, putting θ∞(ξ) = P∞(ξ) exp
(
−i

∫∞
1

Φ(τ, ξ) dτ
)
, we deduce from (2.9), (2.10),

(2.14) that

P (t, ξ) =P∞(ξ)e−iΨ(t,ξ) +O(ε3t−κ+δ⟨ξ⟩−2)

=θ∞(ξ) exp

(
−i|θ∞(ξ)|2Reµ(ξ)

∫ log t

0

dσ

Q∞(eσ, ξ)

)
+ θ∞(ξ) ·O(ε4t−κ+δ⟨ξ⟩−1)

+O(ε3t−κ+δ⟨ξ⟩−2)

=θ∞(ξ) exp

(
−i|θ∞(ξ)|2Reµ(ξ)

∫ log t

0

dσ

Q∞(eσ, ξ)

)
+O(ε3t−κ+δ⟨ξ⟩−2)

and from (2.12), (2.13) that

1√
Q(t, ξ)

=
1√

Q∞(t, ξ)
+

Q∞(t, ξ)−Q(t, ξ)√
Q(t, ξ)Q∞(t, ξ)(

√
Q(t, ξ) +

√
Q∞(t, ξ))

=
1√

1− 2Imµ(ξ)
(
|θ∞(ξ)|2 log t+ Λ(ξ)

) +O(ε4⟨ξ⟩−1t−κ+δ).

Piecing them together, we have

β(t, ξ) =
P (t, ξ)√
Q(t, ξ)

=

θ∞(ξ) exp

(
−i|θ∞(ξ)|2Reµ(ξ)

∫ log t

0
dσ

1−2Imµ(ξ)
(
|θ∞(ξ)|2σ+Λ(ξ)

))√
1− 2Imµ(ξ)

(
|θ∞(ξ)|2 log t+ Λ(ξ)

) +O(ε3t−κ+δ⟨ξ⟩−2)

(2.15)

Finally we set

A(τ, ξ) =

θ∞(ξ) exp

(
−i|θ∞(ξ)|2Reµ(ξ)

∫ τ

0
dσ

1−2Imµ(ξ)
(
|θ∞(ξ)|2σ+Λ(ξ)

))√
1− 2Imµ(ξ)

(
|θ∞(ξ)|2τ + Λ(ξ)

) .

Then (2.15) can be rewritten as

|β(t, ξ)− A(log t, ξ)| ≤ Cε3

⟨ξ⟩2tκ−δ
.

Also straightforward calculations give us

i∂τA(τ, ξ) =µ(ξ)|A(τ, ξ)|2A(τ, ξ)
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and

A(0, ξ) =
θ∞(ξ)√

1− 2Imµ(ξ)Λ(ξ)

=

(
θ0(ξ)− i

∫ ∞

1

√
Q(τ, ξ)ρ(τ, ξ)eiΨ(τ,ξ) dτ

)
1 + (e−i

∫∞
1 Φ(τ,ξ) dτ − 1)√

1− 2Imµ(ξ)Λ(ξ)

=
(
θ0(ξ) +O(ε3⟨ξ⟩−2)

) 1 +O(ε4⟨ξ⟩−1)√
1 +O(ε4⟨ξ⟩−1)

=θ0(ξ) +O(ε3⟨ξ⟩−2).

2.2 Lemmas related to the integral (2.1)

In this subsection, we shall derive upper and lower bounds for the integral

S(τ) =

∫
R

|θ(ξ)|2

1 + (ξ − ξ0)2|θ(ξ)|2τ
dξ, τ ≥ 1. (2.16)

These results can be used to investigate estimates on ∥A(log t)∥L2
ξ
later.

Lemma 2.2. Let θ ∈ L∞(R) and ξ0 ∈ R. For the integral S(τ) given by (2.16), we have

S(τ) ≤ 4∥θ∥L∞τ−1/2, τ ≥ 1.

Proof. It suffices to consider the case of ∥θ∥L∞ > 0. We put a = ∥θ∥2L∞ and

S1(τ) =

∫
|ξ−ξ0|≤mτ−1/2

|θ(ξ)|2

1 + (ξ − ξ0)2|θ(ξ)|2τ
dξ, τ ≥ 1,

with a constant m > 0 which is to be fixed. It follows that

S1(τ) ≤
∫ ξ0+mτ−1/2

ξ0−mτ−1/2

a

1 + 0
dξ = 2maτ−1/2.

We also set S2(τ) = S(τ)− S1(τ). Since

|θ(ξ)|2

1 + (ξ − ξ0)2|θ(ξ)|2τ
≤ 1

(ξ − ξ0)2τ
,

we have

S2(τ) ≤
2

τ

∫ ∞

ξ0+mτ−1/2

dξ

(ξ − ξ0)2
=

2

τ
· 1

mτ−1/2
=

2

m
τ−1/2.

By choosing m = a−1/2 (that is, ma = 1/m), we arrive at

S(τ) ≤ 2

(
ma+

1

m

)
τ−1/2 = 4∥θ∥L∞τ−1/2.

11



Lemma 2.3. Let θ, ξ0 and S(τ) be as in Lemma 2.2. Assume that there exists an open
interval I with I ∋ ξ0 such that infξ∈I |θ(ξ)| > 0. Then we can choose a positive constant
C2, which is independent of τ ≥ 1 but may depend on θ and ξ0, such that

S(τ) ≥ C2τ
−1/2, τ ≥ 1.

Proof. As before we put a = ∥θ∥2L∞ . We also set b = infξ∈I |θ(ξ)|2 so that

|θ(ξ)|2

1 + (ξ − ξ0)2|θ(ξ)|2τ
≥ b

1 + (ξ − ξ0)2aτ
, ξ ∈ I.

We take m > 0 so small that [ξ0 − m, ξ0 + m] ⊂ I. Then, by the change of variable
η = (ξ − ξ0)τ

1/2, we see that

S(τ) ≥
∫ ξ0+mτ−1/2

ξ0−mτ−1/2

b

1 + (ξ − ξ0)2aτ
dξ =

∫ m

−m

b

1 + aη2
τ−1/2dη,

which yields the desired lower estimate with

C2 =

∫ m

−m

b

1 + aη2
dη.

3 Proof of the main results

In this section we are going to prove Theorems 1.1 and 1.2. First we make a reduction of
the original equation (1.1) to the profile equation. Then we will apply the lemmas prepared
in the previous section to reach the main results.

3.1 Reduction to the profile equation

The argument in this subsection is exactly the same as that given in [19]. We write L =
i∂t +

1
2
∂2x and J = x + it∂x. Important relations are [∂x,J ] = 1, [L,J ] = 0, where [·, ·]

denotes the commutator. Next we set α(t, ξ) = F [U(−t)u(t, ·)](ξ) for the solution u(t, x) to
(1.1), where U(t) = exp(i t

2
∂2x) and

Fϕ(ξ) = ϕ̂(ξ) =
1√
2π

∫
R
ϕ(y)e−iyξ dy.

By virtue of the previous works [22] and [19], We have already known the following.

Lemma 3.1. Let ε = ∥φ∥H3∩H2,1 be suitably small. Assume that (1.4) and (A) are fulfilled.
Then the solution u to (1.1)–(1.2) satisfies

|α(t, ξ)| ≤ Cε

⟨ξ⟩2
(3.1)
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for t ≥ 0, ξ ∈ R, and

∥u(t)∥H3 + ∥J u(t)∥H2 ≤ Cε(1 + t)γ (3.2)

for t ≥ 0, where 0 < γ < 1/12. Moreover, we have α(t, ξ) = β(t, ξ) + σ(t, ξ) with

|σ(t, ξ)| ≤ Cε3

t1/2⟨ξ⟩4

and

i∂tβ(t, ξ) =
ν(ξ)

t
|β(t, ξ)|2β(t, ξ) +R(t, ξ), |R(t, ξ)| ≤ Cε3

t1+κ⟨ξ⟩2

for t ≥ 1, where 0 < κ < 1/4.

The proof can be found in Section 2 of [19] or Section 4 of [22], so we skip it here.

3.2 Proof of Theorem 1.1

We are ready to prove Theorem 1.1. First we consider the easier case 0 ≤ t ≤ e. It follows
from (3.2) that

∥u(t)∥L2
x
≤ Cε(1 + t)γ

(
1 + ε2 log(t+ 1)

1 + ε2 log(t+ 1)

)1/4

≤ Cε

(1 + ε2 log(t+ 1))1/4
.

Let us turn to the main case t ≥ e (i.e., log t ≥ 1). By (3.1) and the L2-unitarity of F , U(t),
we have

∥u(t)∥L2
x
= ∥α(t)∥L2

ξ
≤ Cε.

Also we see from Lemma 3.1 that there exists a function β(t, ξ) satisfying

∥α(t)− β(t)∥L2
ξ
≤

(∫
R

Cε6

t⟨ξ⟩8
dξ

)1/2

=
Cε3

t1/2
(3.3)

and

i∂tβ(t, ξ) =
ν(ξ)

t
|β(t, ξ)|2β(t, ξ) +R(t, ξ)

with

|R(t, ξ)| ≤ Cε3

t1+κ⟨ξ⟩2
, |β(1, ξ)| ≤ Cε⟨ξ⟩−2.

Now we apply Lemma 2.1. Then we find A : [0,∞)× R → C satisfying

∥β(t)− A(log t)∥L2
ξ
≤ Cε3

tκ−δ
(3.4)

and

i∂τA(τ, ξ) = ν(ξ)|A(τ, ξ)|2A(τ, ξ), A(0, ξ) = β(1, ξ) + θ1(ξ)
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with some θ1 : R → C such that |θ1(ξ)| ≤ Cε3⟨ξ⟩−2. Since N is weakly dissipative, we have

∂τ |A(τ, ξ)|2 = 2Im
(
A(τ, ξ)i∂τA(τ, ξ)

)
= 2Im ν(ξ) |A(τ, ξ)|4

= −2c0(ξ − ξ0)
2(|A(τ, ξ)|2)2,

which leads to

|A(τ, ξ)|2 = |A(0, ξ)|2

1 + 2c0(ξ − ξ0)2|A(0, ξ)|2τ
.

By Lemma 2.2 with τ = log t and θ(ξ) =
√
2c0A(0, ξ), we obtain

∥A(log t)∥2L2
ξ
=

1

2c0

∫
R

2c0|A(0, ξ)|2

1 + 2c0(ξ − ξ0)2|A(0, ξ)|2 log t
dξ

≤
4(∥β(1)∥L∞

ξ
+ ∥θ1∥L∞

ξ
)

√
2c0(log t)1/2

≤ Cε

(log t)1/2
(3.5)

for t ≥ e. By (3.5), (3.4) and (3.3), we arrive at

∥u(t)∥L2
x
= ∥α(t)∥L2

ξ

≤ ∥A(log t)∥L2
ξ
+ ∥A(log t)− β(t)∥L2

ξ
+ ∥β(t)− α(t)∥L2

ξ

≤ Cε1/2

(log t)1/4
+
Cε3

tκ−δ
+
Cε3

t1/2

≤ Cε

(ε2 log t)1/4
,

whence

(1 + ε2 log(t+ 1))1/4∥u(t)∥L2
x
≤ ∥u(t)∥L2

x
+ C(ε2 log t)1/4∥u(t)∥L2

x
≤ Cε

for t ≥ e. This completes the proof of Theorem 1.1.

3.3 Proof of Theorem 1.2

In order to prove Theorem 1.2, we need one more lemma.

Lemma 3.2. We put α(t, ξ) = F
[
U(−t)u(t, ·)

]
(ξ) for solution u to (1.1)–(1.6) with small

ε. Then we have

|α(1, ξ)− εψ̂(ξ)| ≤ Cε2

⟨ξ⟩2
, ξ ∈ R.
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Proof. We follow the method used in [23]. We set

Y = sup
ξ∈R

⟨ξ⟩2|α(1, ξ)− εψ̂(ξ)|.

By the inequality ∥ϕ̂∥2L∞ ≤ 2∥ϕ̂∥L2∥∂ξϕ̂∥L2 ≤ 2∥ϕ∥L2∥ϕ∥H0,1 and the relation J = U(t)xU(t)−1,
we have

Y 2 ≤ C∥U(1)−1u(1, ·)− u(0, ·)∥H2
x
· ∥U(1)−1u(1, ·)− u(0, ·)∥H2,1

x

≤ C

∫ 1

0

∥∥U(t)−1N(u(t), ux(t))
∥∥
H2

x
dt ·

(
∥J u(1)∥H2

x
+ ∥u(0)∥H2,1

x

)
≤ C

(
sup
t∈[0,1]

∥u(t)∥H3
x

)3 · Cε
≤ Cε4,

whence

|α(1, ξ)− εψ̂(ξ)| ≤ Y

⟨ξ⟩2
≤ Cε2

⟨ξ⟩2
.

Now we are in a position to finish the proof of Theorem 1.2. It follows from Lemma 3.2
that

|α(1, ξ0)| ≥ ε|ψ̂(ξ0)| − Cε2 ≥ ε|ψ̂(ξ0)|
2

if ε > 0 is suitably small. By the continuity of ξ 7→ α(1, ξ), we can choose an open interval
I with I ∋ ξ0 such that

inf
ξ∈I

|α(1, ξ)| ≥ ε|ψ̂(ξ0)|
3

> 0.

Now let A(τ, ξ) be as in the previous subsection. Then by Lemmas 2.1 and 3.1 we have

inf
ξ∈I

|A(0, ξ)| ≥ inf
ξ∈I

|β(1, ξ)| − Cε3

≥ inf
ξ∈I

|α(1, ξ)| − sup
ξ∈R

|σ(1, ξ)| − Cε3

≥ ε|ψ̂(ξ0)|
3

− Cε3

≥ ε|ψ̂(ξ0)|
4

> 0

and
|A(0, ξ)| ≤ |β(1, ξ)|+ |θ1(ξ)| ≤ Cε,

if ε > 0 is suitably small. So Lemma 2.3 gives us

∥A(log t)∥2L2
ξ
=

1

2c0

∫
R

2c0|A(0, ξ)|2

1 + 2c0(ξ − ξ0)2|A(0, ξ)|2 log t
dξ ≥ C2

(log t)1/2
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with some C2 > 0. Therefore, by Lemmas 2.1 and 3.1 we obtain

∥u(t)∥L2
x
= ∥α(t)∥L2

ξ

≥ ∥A(log t)∥L2
ξ
− ∥A(log t)− β(t)∥L2

ξ
− ∥σ(t)∥L2

ξ

≥
√
C2

(log t)1/4
− Cε2

tκ−δ

≥
√
C2

2(log t)1/4

for sufficiently large t, whence

lim inf
t→∞

(log t)1/4∥u(t)∥L2
x
≥

√
C2

2
> 0,

as desired.

4 Remarks on the strictly dissipative case

The lower bound part of our approach presented in the previous section is available also for
the strictly dissipative case, that is the case where (1.4) and (A+) are satisfied. In fact, we
can show the following.

Theorem 4.1. Assume that (1.4) and (A+) are satisfied. If ψ does not identically vanish,
we can choose ε0 > 0 such that the global solution u to (1.1)–(1.6) satisfies

lim inf
t→+∞

(log t)1/2∥u(t)∥L2 > 0

for ε ∈ (0, ε0].

Remark 4.1. For the power-type nonlinearity case (1.3), similar result has been obtained
by Kita-Sato [15]. In other words, Theorem 4.1 is an extension of their result to derivative
nonlinearity case.

Proof. We set c∗ = − supξ∈R Im ν(ξ). Suppose that ψ̂(ξ∗) ̸= 0 at some ξ∗ ∈ R. Then, in
exactly the same way as the proof of Theorem 1.2, we have

∥u(t)∥L2
x
≥

(∫
R

|A(0, ξ)|2

1 + 2c∗|A(0, ξ)|2 log t
dξ

)1/2

− Cε2

tκ−δ
(4.1)

if ε is suitably small. Also we can take an open interval I = (ξ∗ − r, ξ∗ + r) with small r > 0
such that

inf
ξ∈I

|A(0, ξ)| ≥ ε|ψ̂(ξ∗)|
4

> 0.
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With M = supξ∈I |A(0, ξ)|, we obtain∫
R

|A(0, ξ)|2

1 + 2c∗|A(0, ξ)|2 log t
dξ ≥

∫
I

ε2|ψ̂(ξ∗)|2

16(1 + 2c∗M2 log t)
dξ =

rε2|ψ̂(ξ∗)|2

8(1 + 2c∗M2 log t)
. (4.2)

By (4.1) and (4.2), we arrive at the desired lower estimate.

Remark 4.2. It would be natural to ask if the sharp upper bound could be also obtained
by the similar approach. However, it is not trivial at all to specify the decay rate as t→ +∞
of the integral ∫

R

|A(0, ξ)|2

1− 2Im ν(ξ)|A(0, ξ)|2 log t
dξ

in general, because it depends essentially on behavior of |A(0, ξ)| as |ξ| → ∞. Going back to
the x-side, this corresponds to regularity of the initial data (see e.g., [24] and the references
cited therein for the details on this issue). This should be contrasted with the weakly
dissipative case, and the authors have no idea so far how to handle the strictly dissipative
case generally.

Appendix Some backgrounds on ν(ξ)

We shall give a few comments on the backgrounds on ν(ξ). Without loss of generality, the
cubic nonlinear term N satisfying (1.4) can be written explicitly as

N(u, ux) =a1u
2ux + a2uu

2
x + a3u

3
x

+ b1u2ux + b2uu2x + b3u3x

+ c1u2ux + c2|u|2ux + c3uu2x + c4|ux|2u+ c5|ux|2ux
+ λ1|u|2u+ λ2|u|2ux + λ3u

2ux + λ4|ux|2u+ λ5uu
2
x + λ6|ux|2ux

with suitable coefficients aj, bj, cj, λj ∈ C. With this expression of N , we have

N(eiθ, iξeiθ) =(ia1ξ − a2ξ
2 − ia3ξ

3)ei3θ

+ (−ib1ξ − b2ξ
2 + ib3ξ

3)e−i3θ

+ (ic1ξ − ic2ξ − c3ξ
2 + c4ξ

2 − ic5ξ
3)e−iθ

+ (λ1 + iλ2ξ − iλ3ξ + λ4ξ
2 − λ5ξ

2 + iλ6ξ
3)eiθ,

whence

ν(ξ) =
1

2π

∫ 2π

0

N(eiθ, iξeiθ)e−iθ dθ

=λ1 + i(λ2 − λ3)ξ + (λ4 − λ5)ξ
2 + iλ6ξ

3.

We see that ν(ξ) depends only on the coefficients of the gauge-invariant terms. In this sense,
ν(ξ) extracts the contribution from the gauge-invariant part of N , and in particular, its
imaginary part is expected to have something to do with the dissipativity of the nonlinear
terms. As pointed out in [28], [29], [22], [20], [19], etc., it is the case at the level of the profile
equation.
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