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ABSTRACT

The classical Poincaré conjecture that every homotopy 3-sphere is diffeomor-
phic to the 3-sphere is proved by G. Perelman by solving Thurston’s program on
geometrizations of 3-manifolds. A new confirmation of this conjecture is given
by combining R. H. Bing’s result on this conjecture with Smooth Unknotting
Conjecture for an S%-link and Smooth 4D Poincaré Conjecture.
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1. Introduction

A homotopy 3-sphere is a smooth 3-manifold M homotopy equivalent to the 3-
sphere S3. It is well-known that a simply connected closed connected 3-manifold is
a smooth homotopy 3-sphere. The following theorem, called the classical Poincaré
Conjecture coming from [22, 23] is positively shown by Perelman [20, 21] solving
positively Thurston’s program [24] on geometrizations of 3-manifolds (see [19] for
detailed historical notes).

Theorem 1.1. Every homotopy 3-sphere M is diffeomorphic to the 3-sphere S3.

The purpose of this paper is to give an alternative proof to Theorem 1.1 by
combining R. H. Bing’s result in [2, 3] on the classical Poincaré conjecture with
Smooth Unknotting Conjecture and Smooth 4D Poincaré Conjecture to be explained
from now on. Let F' be a smooth surface-link with a component system F;, (i =



1,2,...,n) in the 4-sphere S*. The fundamental group m(S*\ F,v) (with v a base
point) is a meridian-based free group if the group m(S*\ F,v) is a free group with a
basis represented by a meridian system m; (i = 1,2,...,n) of F;, (i =1,2,...,n) with
a base point v. The smooth surface-link F'is a trivial surface-link if the components
F;, (i = 1,2,...,n) bound a disjoint handlebody system smoothly embedded in S*.
Smooth Unknotting Conjecture for a surface-link is the following conjecture.

Smooth Unknotting Conjecture. Every smooth surface-link F in S* with a
meridian-based free fundamental group 71(S* \ F,v) is a trivial surface-link.

The positive proof of this conjecture is claimed by [13, 15] with supplement [14].
The result when F is an S*-link (i.e., a surface-link with only S?-components) is
applied in this paper. A homotopy 4-sphere is a smooth 4-manifold X homotopy
equivalent to the 4-sphere S*. Smooth 4D Poincaré Conjecture is the following con-
jecture.

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere X is
diffeomorphic to the 4-sphere S*.

The positive proof of this conjecture is claimed by [16, 17]. For the proof of
Theorem 1.1, the following result of R. H. Bing in [2, 3] is used:

Bing’s Theorem. A homotopy 3-sphere M is diffeomorphic to S? if, for every knot
k in M, there is a 3-ball in M containing the knot k.

Thus, the main result of this paper is to prove the following lemma.
Lemma 1.2. For every knot k£ in M, there is a 3-ball in M containing the knot k.

For the proof of Lemma 1.2, Artin’s spinning construction of a knot in S® in [1]
is generalized into a connected graph in a homotopy 3-sphere M to produce a spun
S%link in S* with free fundamental group (not always meridian-based free group).
This explanation is done in Section 2. In Section 3, it is shown that every S2-link
in S* with free fundamental group is a ribbon S2-link by using Smooth Unknotting
Conjecture for an S%link and Smooth 4D Poincaré Conjecture. In Section 4, the
proof of Lemma 1.2 is done. To do this, it is shown that the spun torus-knot of a
knot in M is a ribbon-torus knot in S$* which is a sum of the spun S2-link of a proper
arc system a, in a boundary collar of a compact once-punctured manifold M of
M and the spun S2-link of a proper arc system e, in M(® with meridian-based free
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fundamental group m (M © \ e,,v). To see this, an argument of a chord diagram of
the spun S2-link of a proper arc system a, in a boundary collar of M(®) in [12] is used.
In this way, it is shown that the knot k is in a 3-ball of M completing the proof of
Lemma 1.2 and the proof of Theorem 1.1 is completed.

Conventions. The unit n-disk is denoted by D™ with the origin 0 as a standard
notation, but the unit 2-disk D? is fixed in the complex plane C. A smooth n-
manifold diffeomorphic to the unit n-disk D" is called an n-ball for n > 3 or n-disk
for n = 2. A point 1 is fixed in the n-sphere S™ = 9D,

2. Artin’s spinning construction of a connected graph in a homotopy 3-
sphere

For a homotopy 3-sphere M, let M(°) be the compact once-punctured manifold
cl(M \ B) of M for a 3-ball B in M. Let

S =0B=0M"
be the boundary 2-sphere of M (. The closed smooth 4-manifold X (M) defined by
X(M) =M x StuUS x D?

is called the spun manifold of M with axis 4-submanifold S x D?. As a convention,
the 3-submanifold M x 1 of the product M x S' is identified with M. In
particular, a point (¢,1) € M x 1 is identified with the point ¢ € M©. This
4-manifold X (M) is a smooth homotopy 4-sphere by the van Kampen theorem and
a homological argument and hence X (M) is diffeomorphic to the 4-sphere S* by
Smooth 4D Poincaré Conjecture. A legged loop with base point v is the union k£ U w
of a loop k£ and an arc w joining the base point v with a point of k. The arc w is
called the leg. A legged loop system with base point v is the union

Y= U?:lki U Wi

of n legged loops k; Uw; (i = 1,2,...,n) meeting only at the same base point v.
Let k(y) = U k; = k. denote the loop system of the legged loop system of . Let
Wy = U jw; and v, = k, Nw,. For a maximal tree 7 of v containing the base point v,
a regular neighborhood B of 7 in M with v N B a regular neighborhood of 7 in 7 is
taken as 3-ball B used for the compact once-punctured manifold M© = cl(M \ B)
of M. Deform the subgraph v N B of v so that

we CB, w,NS=0w, and k.NB=kNS=d.
for an arc system a! in k., where note that the base point v is moved into S. Let

a(y) = U a; = a.
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for a proper arc a; = cl(k; \ a}) (i = 1,2,...,n) in M©). Let
a(y) = da, = 0d,

be the set of 2n points in the boundary 2-sphere S of M©). The spun S-link of the
graph v is the S?-link S() in the 4-sphere X (M) defined by

S(v) = a(y) x St Ualy) x D*.

Lemma 2.1. The inclusion M \ a(y) € X (M) \ S(v) induces an isomorphism
o m(M\v,0) = m(X(M)\ S(y),v)

sending a meridian system of the proper arc system a(y) in M) to a meridian system

of S(v).
Proof of Lemma 2.1. Note that there is a canonical isomorphism
m (M@ \ a(y),v) = m (M \ 7,v),

Then the desired isomorphism ¢ is obtained by applying the van Kampen theorem
between (M©\a(y))xS* and (S\a(7)) x D?. This completes the proof of Lemma 2.1.
O

Here is a note on Lemma 2.1.

Note 2.2. A general connected graph v with Euler characteristic x(7) = 1 —n in
M is deformed into a legged loop system v in M by choosing a maximal tree to
shrink to a base point v. Note that there are only finitely many maximal trees of
such that the loop systems k() of the resulting legged loop systems v are distinct as
links. By Lemma 2.1, we can obtain finitely many distinct spun S%links in S* with
isomorphic fundamental groups obtained by taking different maximal trees of the
connected graph . This is a detailed explanation on the spun S2-link of a connected
graph associated with a maximal tree in [7, p.204] when M = S3.

An argument on Lemma 2.1 is further developed when the homotopy 3-sphere M
is given by a Heegaard spitting VUV pasting along a Heegaard surface F' = 9V = 9V’
of genus n. A spine of a handlebody V of genus n is a legged loop system v with
base point v in F' = 0V such that the inclusion map v — V induces an isomorphism
m1(7,v) — m(V,v). A regular neighborhood V of v in F is a planar surface in F.
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By [5, Theorem 10.2], there is a diffeomorphism (V x [0,1],V x 0) — (V, V) sending
every point (z,0) € V x0toz € V. The surface V is called a spine surface of V. Let
~v and 7' be spines of the handlebodies V and V' with the same base point v € F,
respectively. A legged Heegaard loop system in M is the legged loop system ~~' in M
with base point v obtained by pushing v\ v and "\ v into the interiors IntV and IntV”,
respectively. The fundamental groups of the spun S2-links S(vy') = S(7)US(v), S(v)
and S(7) in the 4-sphere X (M) given by Lemma 2.1 are free groups, as shown in the
following lemma:

Lemma 2.3. The fundamental groups m (X (M) \ S(v),v) and 7 (X (M) \ S(v'),v)
are free groups of rank n and the fundamental group m (X (M) \ S(vv'),v) is a free
group of rank 2n.

Proof of Lemma 2.3. The closed complements cl(M \ N(v)), cI(M \ N(v')) and
cl(M\ N (7)) are diffeomorphic to the handlebodies V', V and F(©) x [0, 1] for the once-
punctured surface F(© of I | respectively. Since the fundamental groups m (V’, ),
71(V,v) and 7 (F©) x [0, 1],v) are free groups of ranks n, n and 2n, respectively, the
desired result is obtained from Lemma 2.1. [J

It should be noted that these free groups in Lemma 2.3 are not necessarily
meridian-based free groups. Here is an example.

U

) D

Figure 1: A legged loop system 7 in S? with free fundamental group of rank 2

Example 2.4. Let v be a legged loop system with base point v in S? illustrated in
Fig. 1 with free fundamental group ;(S\ v, v) of rank 2. In fact, a trivial legged loop
system is obtained by sliding an edge along another edge, so that the fundamental
group m1(S%\ k(7),v) is a free group of rank 2. A regular neighborhood V of v in S3
and the closed complement V' = cl(S? \ V') constitute a genus 2 Heegaard splitting
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V UV’ of S? by noting that the 3-manifold V” is a handlebody of genus 2 by the loop
system theorem and the Alexander theorem (cf. e.g., [7]). Thus, the union V UV’
is a genus 2 Heegaard splitting of S®. The legged loop system ~ with vertex v is a
spine of V by sliding the base point v into V. By Lemma 2.3, the spun S*-link S(v)
in the 4-sphere X (S?) = S* has the free fundamental group 71 (X (S%) \ S(v),v) of
rank 2, which does not admit any meridian basis because the S2-link S(v) contains
a component of the spun trefoil S%-knot in S* whose fundamental group is known to
be not infinite cyclic.

Given a proper arc system a, in M| there is a legged loop system ~ in M with
the proper arc system a(y) = a, in M. The S*link S(v) in X (M) is uniquely
determined by the arc system a, and thus denoted by S(a,). The following lemma is
directly used for the proof of Lemma 1.2.

Lemma 2.5. Let a, be a proper arc system in a compact once-punctured manifold
M@ = cl(M \ B) of a homotopy 3-sphere M. If the S2-link S(a,) in the 4-sphere
X (M) is a trivial S?-link, then the proper arc system a, is in a boundary-collar
S x [0,1] of M.

Proof of Lemma 2.5. By Lemma 2.1, the fundamental group (M@ \ a(y),v) is
a meridian-based free group. Consider the 2-sphere S is the boundary of the product
d x [0, 1] for a disk d so that d x 0 contains one end of the proper arc system a, and
d x 1 contains the other end of the proper arc system a,. Let (E; Ey, Ey) be the triplet
obtained from (M, d x 0,d x 1) by removing a tubular neighborhood of a, in M.
Then the inclusion Fy C F induces an isomorphism

m1(Fo,v) = m(FE,v).

By [5, Theorem 10.2], E is diffeomorphic to the connected sum of the product Ey x
[0,1] and a homotopy 3-sphere. This means that the proper arc system a, is in a
boundary-collar S x [0, 1]. This completes the proof of Lemma 2.5. [

3. Ribbonness of an S?-link with free fundamental group The /D handlebody
of genus n is the boundary 3-disk sum

YP = DU, St x D}
obtained from n copies S* x D3 (i = 1,2,...,n) of the 4D solid torus S' x D* and the

4-disk D* by pasting a 3-disk system consisting of a boundary 3-disk in (S'\{1}) x D?
for every i to a system of disjoint n boundary 3-disks of D*. A legged loop system
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7P in the 4D handlebody Y? of genus n is standard if the legged loop system " has
the following two conditions:

e The loop system k(+?) is consistent with the system S* x 1, (i =1,2,...,n), and

e The base point v is in the 4-disk D* and the legs w; (i = 1,2,...,n) of v© do not
meet the 3-disks 1 x D? (i =1,2,...,n).

Note that the legs (i = 1,2,...,n) of v2 are d-relatively unique up to isotopies
in YP. The 4D closed handlebody of genus n is the double of the 4D handlebody Y
of genus n, that is the 4-manifold

OYP x[0,1)) =YP x0u (0YP) x [0,1]uY? x 1
which is canonically identified with the following 4-manifold
Yo = gign S x §3

where the connected summands S? and S' x S? correspond to the doubles of the
3-disk summands D* and S* x D3, respectively. The 4D handlebody Y? x 0 in Y is
identified with Y?. A legged loop system ~ with vertex v of the 4D closed handlebody
Y5 of genus n is standard if it is v-relatively isotopic to a standard legged loop system
AP of YP C Y9, A standard legged loop system of Y is denoted by v°. A homology
4-sphere is a smooth 4-manifold X with an isomorphism H,(X;Z) = H,(S*;Z). A 4D
closed homology handlebody of genus n is a smooth 4-manifold Y with an isomorphism
H.(Y;Z) = H, (Y, Z) for the 4D closed handlebody Y of genus n. For an S2-link L
in X, take a normal disk bundle L x D? in X and a 3-disk system D} with 9D} = L.
This transformation from X into the 4-manifold

Y =c(X\LxD*UD? xS

is called the surgery of X along the S%link L. Conversely, the transformation from
Y into X is called the surgery of Y along the loop system 0, x S! by observing that
D3 x S is a regular neighborhood of 0, x S' in Y. The following lemma is a more
or less known fact.

Lemma 3.1. Let Y be the 4-manifold obtained from a homology 4-sphere X by
surgery along any n-component S%-link L. Then the 4-manifold Y is a 4D closed
homology handlebody of genus n such that the inclusion X \ L x D* C Y induces an
isomorphism

(X \ L x D*v) = m(Y,0).
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Proof of Lemma 3.1. To see that Ho(Y;Z) = 0, use the Euler characteristic
X(Y) = 2n. Since H,(Y;Z) = Z", we have Hy(Y;Z) = 0 by Poincaé duality, which
shows that Y is a 4D closed homology handlebody of genus n. The isomorphism
iv : m (X \ L x D* v) — m (Y, v) is obtained by a general position argument. []

A meridian system of an S2-link L in X is a legged loop system 7y, in the closed
complement cl(X \ L x D?) for a normal disk bundle L x D? in X such that the loop
system k(7r) is the loop system p, x S* for a point system p, in L with one point for
every component of L. By Lemma 3.1, note that the meridian system ~, induces a
legged loop system v in Y such that the loop system k(7) represents a homological
basis of the homology group H;(Y;Z). Conversely, given any legged loop system -y
in Y such that the loop system k() represents a homological basis of H;(Y;Z), then
the 4-manifold X obtained from Y along the loop system k() is a homology 4-sphere
and the legged loop system ~ induces a meridian system ~y;, of an S%link L in X. A
4D closed homotopy handlebody of genus n is a 4D closed homology handlebody Y of
genus n such that the fundamental group (Y, p) is a free group of rank n. A legged
loop system ~ with base point v in a 4D closed homotopy handlebody Y of genus n
is a basis system if the inclusion v C Y induces an isomorphism

m1(y,v) = m (Y, v).

For example, a standard legged loop system ~° of the 4D closed handlebody Y is
a basis system. The following classification lemma is a result of Smooth Unknotting
Conjecture for an S?-link and Smooth 4D Poincaré Conjecture.

Lemma 3.2. Let Y° be the 4D closed handlebody of genus n, and +° a standard
legged loop system with base point v of Y. For every 4D closed homotopy handle-
body Y of genus n and every basis system 7 in Y, there is an orientation-preserving

diffeomorphism
f:Y -YvY?

such that f(v) =~°. Given any spin structures on Y and Y, the diffeomorphism f
can be taken spin-structure-preserving.

Proof of Lemma 3.2. Let X be the 4-manifold obtained from Y by surgery along
the loop system k, = k(7). This 4-manifold X is diffeomorphic to the 4-sphere S*
by Smooth 4D Poincaré Conjecture since it is a smooth homotopy 4-sphere by the
van Kampen theorem and a homological argument. Since X is obtained from Y by
replacing a normal disk bundle k, x D? of k, in Y with D? x S? for the disk system D?
bounded by k.. Then there is an S*link L = 0, x S? in X. Since the basis system ~y
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of Y induces a meridian system of L in X, Lemma 3.1 implies that the fundamental
group 71 (X \ L, v) is a meridian based free group. By Smooth Unknotting Conjecture
for an S2-link, the S?-link L is a trivial S?-link in the 4-sphere X. By the back surgery
replacing D? x S? in X with k(y) x D? in Y, there is an orientation-preserving
diffeomorphism f : Y — Y* with f(k,) = k(y7). Since a regular neighborhood
N(f(7)) of f() in Y* is isotopic to Y in Y the diffeomorphism f :Y — Y is
modified to have f(v) = 7. Given any spin structures on Y and Y, note that there is
an orientation-preserving spin-structure-changing diffeomorphism : S*x S% — S1x §3
(see [4] for a similar diffeomorphism on S* x S?). Thus, by composing f with the
orientation-preserving spin-structure-changing diffeomorphisms on some connected
summands of Y which are copies of S!' x S3, the diffeomorphism f : ¥ — Y’
is modified into an orientation-preserving spin-structure-preserving diffeomorphism.
This completes the proof of Lemma 3.2. [J

The following corollary is directly obtained from Lemmas 2.3, 3.1 and 3.2.

Corollary 3.3. Let v be a legged Heegaard loop system of a homotopy 3-sphere
M associated with a Heegaard.splitting V' U V' of genus n, and Y (M;~v') the 4D
closed homology handlebody obtained from the 4-sphere X (M) by surgery along the
spun S2-link L(yv') of v9. Then the 4D closed homology handlebody Y (M;~7') is
diffeomorphic to the 4D closed handlebody Y of genus 2n.

A surface-link L in S* is a ribbon surface-link if L is equivalent to a surface-link
obtained from a trivial S2-link L* in S* by surgery along embedded 1-handles on L°
(see [18]). The following lemma is obtained.

Lemma 3.4. Any S2-link L in S* with free fundamental group m(S*\ L,v) is a
ribbon S%-link.

Proof of Lemma 3.4. Let K; (i = 1,2,...,n) be the components of L. Let Y be the
4-manifold obtained from S* by surgery along L. Let v be a legged loop system in Y
induced from a meridian system vz, of L in S*. Let k(y) = k. be the loop system of
v in Y. The surgery manifold X of Y along k, is identified with the 4-sphere S*. In
precise, let X = cl(Y'\ N(k.))U D, x S? for a regular neighborhood N (k,) = k, x D3
of k, in Y and the disk system D, with D, = k,, where the 2-sphere system 0, x S?
is identified with L. By Lemma 3.2, Y is identified with the closed 4D handlebody
Y* of genus n. Let v° be a standard legged loop system of Y = Y with the same
vertex v as 7. Let k(7°) = k% be the loop system of v° in Y, which is disjoint from
k.. Let z; (i =1,2,...,n) be a basis of the free group (Y, v) of rank n represented

9



by v°. Let y; (i = 1,2,...,n) be an element system in (Y, v) represented by v. By
a basis change of the basis z; (i = 1,2,...,n), assume that the product z;'y; is in
the commutator subgroup [m (Y, v), (Y, v)] of m (Y, v) for every i. Let

YO =cl(Y \ N(k))
for a regular neighborhood N (k%) = k% x D3 of k¥ in Y. Also, let
X = (X \ N(K))

by considering N(k?) in X. Since the loop system k% is a trivial loop system in the
4-sphere X, there is a disjoint disk system , with 9§, = k¥ smoothly embedded in
X. Note that the intersection N(kJ) N €, is a boundary collar of €,. Let

Q, = cl(Q\ (N (k) N )

which is a proper disk system in X°. Let S x S = kY x S3(i = 1,2,...,n) be
the connected summands of the closed 4D handlebody Y = Y®. For every i, let
S3 = p; x S? for a point p; € k7. Let V; = S?NY? be a 3-ball obtained from
S3 by removing the interior of a 3-ball neighborhood of the point p; = p; X 1 with
oV; C Y. Let

YE=Your, Q; xd

be the 4-manifold obtained from Y° by attaching 2-handles QZ xd (1=1,2,...,n) to
the boundary Y° = U™, k¥ x S? of Y where ; is a disk with 9€; = 92, and a disk
d in the 2-sphere S2%. Similarly, let

Xt =XUr, O xd

be the 4-manifold obtained from X° by attaching 2-handles Q, xd (1=1,2,...,n) to
the boundary 9X° identical to dY°. Let (k2% pf) be a moving of the pair (k2,p.)
into the boundary pair (9Y°,dV,). Let k2% x [0, 1] be an annulus in k57 x S? € 9Y™°
for an arc [0, 1] in S%. Consider that the element x; s represented by the loop k‘f %0
in Y°. Since y; is a word of the letters z; (j = 1,2,...,n) in the fundamental group
m1(Y,v), the element y; is represented in Y° by a band sum k; of the loop kf tx1
and the boundary loop system 0F; of a disk system P; consisting of suitably oriented
parallel disks of Qj in ﬁj xd(j=1,2,...,n) along a band system p;. Let b; be a band
in the anulus &% x [0, 1] spanning the loop k7" and the loop k; with the centerline
b; = pi x [0,1]. Let k! be the loop in Y? obtained by a band sum of k°* x 0 and k;
along the band b;. The union

Ay = cl(EPT x [0,1] \ b)) U, PiU gy
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is considered as a disk smoothly embedded in Y whose boundary loop A, represents
the element z; 'y; in Y°. Further, the disk system A; (i = 1,2,...,n) is made disjoint.
By construction, the disk A; meets the 3-ball system V, only with the isolated finite
point set P; N dV, and with simple proper arcs f3;; (j = 1,2,...,n;) in A; coming
from the transverse intersection of the band system p; and the interior IntV, of the
3-ball system V. Let B;; (j = 1,2,...,n;) be disjoint 3-ball neighborhoods of the
arcs ;;(j = 1,2,...,n;) in IntV;, and S;; (j = 1,2,...,n;) the boundary 2-spheres
of B;; (j =1,2,...,n;). Then the following claim (#) is obtained.

(#) The S*-link Ui, U2, S; ; in Y becomes a trivial S*-link in the 4-sphere X after
the surgery of Y along the loop system k,.

By assuming the proof of the claim (#), the proof of Lemma 3.4 is completed as
follows. Let (53)5*) be a multi-punctured 3-ball obtained from S} by removing the
interiors of the 3-balls B; ; (j = 1,2,...,n;) and a 3-ball neighborhood N(g¢;) = ¢; x D?
of the point ¢; = p x 1 € k; in V;. Note that the S*-link U?_;ON(g;) in Y changes into
the S2-link L = U | K; in X after the surgery of Y along k,. Since K; is equivalent
to a 2-sphere in (5%)*) obtained from the trivial $*link dV; UT_, Ui, S5 in X by
surgery along disjoint embedded 1-handles in (53)5*), it is shown that the S%-link L is
a ribbon S2-link in the 4-sphere X. This completes the proof of Lemma 3.4 assuming
the claim (#).

Proof of (#). Let V! be the 3-ball system obtained from the 3-ball system V., by
removing an open boundary collar which remains containing all the arcs 3; ;, so that
VN (Nlj = (). Since every arc f3; ; splits the disk A, containing the arc f;; into two
regions, there is an arc f; ; such that a region Aj of the disk A splitted by the
By j» does not contain any other arc §;» j» and does not meet the arc system b, N k..
The boundary of a regular neighborhood relative to V; of the region A} in Y is a
3-sphere containing the 3-ball By ;; whose complementary 3-ball is denoted by Ei/’j/.
Let V" be the 3-ball system obtained from V] by replacing the 3-ball By ; with the
3-ball Ei/,j/. Then V"N A}, = ). Continue this process on V" instead of V. Finally,
a system of disjoint 3-balls Eu (t=1,2,...,n;j = 1,2,...,n;) bounded by the 2-
spheres S;; (i = 1,2,...,n;7 = 1,2,...,n;) and a 3-ball system V" disjoint from
the union A, U b, are obtained in Y. Consider that X is obtained from Yt by a
surgery along a loop system k; disjointedly parallel to the loop system k, in Yt so
that & is in the interior Int(Y?) of Y and disjoint from the disk system A,. The
disk system A, is now embedded into X and the 3-ball Ew for any i, 7 is embedded
into a regular neighborhood of A, in the 4-manifold cl(Y T\ N(k])) = cl(X T\ N(L)).
Since the band system u; except for the attaching part is made disjoint from the
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disk system €, the loop system kJ is made disjoint from the disk system .. For
a normal disk bundle Q. x d of Q. in cl(Y?\ N(kf)) = cl(X°\ N(L)), the union
U=Q xduQ, xd=(QUQ)xdin YT\ NKH) = (Xt \ N(L)) is
diffeomorphic to the product S? x d and the intersection U N A, coincides with the
disk system P,. By an isotopy of Xt keeping U setwise fixed and keeping the outside
of a neighborhood of U in X fixed, the disk system P, is deformed into a disk system
PXin . xd C XY, so that the disk system A, is deformed into a disk system AX in
' xdc X° Since the 3-ball Ezg for any i, 7 is embedded in a regular neighborhood
of A, in the 4-manifold X, the 3-ball system Eu is isotopically deformed into a
3-ball systeméi)fj in X% while the 2-spheres S;; (i = 1,2,...,n;j = 1,2,...,n;) are
fixed. This means that the 2-spheres S;; (1 =1,2,...,n;7 =1,2,...,n;) are a trivial
S%link in the surgery manifold X. This completes the proof of (#). O

This completes the proof of Lemma 3.4. [

A group presentation (Y1, Yz, - - ., Ynis| 71,72, .., 7s) of deficiency n is a Wirtinger
presentation if every relator r; is written as a form ?Jj_ilengwi_ ! for two generators
Y;Ji, Yy with distinct indexes ji, j; and a word w; in the letters y; (j = 1,2,...,n+s).
It is known that the fundamental group of an m-component ribbon S2-link has a
Wirtinger presentation of deficiency n for some s (cf. [7, p. 193], [18, pp. 56-60]).
An algebraic version of Lemma 3.4 means the following result in combinatorial group
theory.

Corollary 3.5. Let F,, be the free group of rank n with a basis z; (i = 1,2,...,n). Let
2, (i=1,2,...,n) be a set of elements normally generating the free group F,, written
as words in the letters z; (i = 1,2, ...,n) such that the products iz;* (i = 1,2,...,n)
belong to the commutator subgroup [F,,, F,] of F,,. Then the free group F,, admits
a Wirtinger presentation

(y17 Y2, ... 7yn+5| 1, T2, .. ’TS)
of deficiency n for some s such that the elements y; (i = 1,2,...,n + s) are written
as words in the letters x; (i = 1,2,...,n) containing the elements x} (i = 1,2,...,n)

as the given words.
4. Main result: Proof of Lemma 1.2

The following observation relates a knot to a Heegaard splitting of a closed con-
nected orientable 3-manifold.
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Lemma 4.1. For any knot £ in any closed connected orientable 3-manifold M, there
is a Heegaard splitting V UV of M such that the knot k is equivalent to a component
of the loop system k() of a spine v of V' in M.

Proof of Lemma 4.1. By considering k£ as a polygonal loop in M, there is a
triangulation 7~ of M whose 1-skeleton 7() contains the knot k. The graph 7™ is
deformed into a legged loop system v in M so that k£ is a component of the loop
system k(). Let V be a regular neighborhood of  in M which is a handlebody. The
closed complement V' = cl(M \ V) is also a handlebody, so that we have a Heegaard
splitting V- U V' of M. The legged loop system < is deformed into a spine of the
handlebody V. U

By combining Lemmas 2.3, 3.4 with Lemma 4.1, the following corollary is ob-
tained, because any component of a ribbon S2-link in S* is a ribbon S?-knot in S*.

Corollary 4.2. For any knot k in any homotopy 3-sphere M, the spun-S2-knot S(k)
of kin X(M) = S*is a ribbon S*knot in S*.

A chord diagram is a diagram C' in S? consisting of a based loop system o (i.e.,
a trivial oriented link diagram ) and a chord system « joining the based loops where
intersections among the chords are permitted (see [8, 9, 10, 11, 12] for the detailed
arguments). For a disk § in S?, a chord diagram in the delta ¢ is the intersection
C N6 for a chord diagram C' = C(o,a) in S? such that the circle 6 does not
meet the based loop system o and meets the chord system « transversely. From
a chord diagram C' = C(0,a) in S?, a ribbon surface-link R(C) in the 4-sphere S* is
constructed in a unique way. In fact, the ribbon surface-link R(C') is obtained from a
trivial oriented S%-link LY in S* constructed from the based loop system o by surgery
along an embedded 1-handle system h(a) on L° thickening the chord system a. The
ribbon surface-link R(C) in S* is uniquely constructed from the chord diagram C by
using the Horibe-Yanagawa’s lemma in [18] for uniqueness of the trivial S2-link L°
constructed from the based loop system o and an argument in [6] for uniqueness of
the embedded 1-handle system h(«) constructed from the chord system a.

Lemma 4.3. Let a, be a proper oriented arc system in a compact once-punctured
manifold M(? = cl(M \ B) of a homotopy 3-sphere M which is obtained from an
oriented proper arc diagram D in a disk ¢ contained in the boundary 2-sphere S of
M© by pushing the interior of an upper-arc around every crossing point of D into
the interior of M(?. Then the S2-link S(a,) in X (M) is a ribbon S%link in X (M)
with a chord diagram C' in § obtained from the arc diagram D by changing every
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crossing point as in Fig. 2.

~

= >=CID—-

Figure 2: Changing a crossing point into a based loop with chords

Proof of Lemma 4.3. This fact is observed in [12, Theorem 2.3 (3)] for an inbound
arc diagram whose closure is a knot chord diagram. The present claim is similarly
shown for any oriented arc diagram. [

In Lemma 4.3, note that the arc diagram D is recovered from the chord diagram
C by taking the upper-arc of every based loop. The proof of Lemma 1.2 is given as
follows.

4.4: Proof of Lemma 1.2. Let k be a non-trivial knot in a homotopy 3-sphere
M. By Corollary 4.2, the spun S?-knot S(k) in the 4-sphere X (M) = S* is a ribbon
S%knot. The spun torus-knot of k in the 4-sphere X (M) is given by the inclusion

T(k)=kxS'c M©® x ' c M x S'US x D* = X(M).

The spun S?%-knot S(k) in X (M) is obtained from T'(k) by a 2-handle surgery and
conversely the spun torus-knot 7'(k) is obtained from the spun S?-knot S(k) by 1-
handle surgery. By definition, the spun torus-knot 7'(k) is a ribbon torus-knot and
hence bounds a ribbon solid torus Vg in X(M). Let

VR - U?:lBi U hl

for a disjoint 3-ball system B; (i = 1,2,...,n) in X(M) and an embedded disjoint
I-handle system h; (i = 1,2,...,n) on the 2-sphere system 9B; (i = 1,2,...,n) in
X (M) so that the 1-handle h; spans 0B; and 0B,y for every i with B, ; = B; and
every 3-ball B; meets just one 1-handle h;, for some j; (1 < j; < n) with a transverse
disk d;, in the interior of B;. Since the knot % is non-trivial in M ©) and there is a
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canonical isomorphism
T (MO N\ k,v) = m (X (M) \ T(k),v)

by the van Kampen theorem, the longitude of k in M(® represents an infinite order
element in the fundamental group 71 (X (M)\T(k),v), which implies that the meridian
loop of Vi (i.e., the simple loop of T'(k) bounding a meridian disk of V) is a uniquely
specified loop in T'(k) up to isotopies of T'(k). Fix an orientation of knot k. Then by
the construction of T'(k), the meridian disk orientation of the ribbon solid torus Vj is
uniquely specified and the ribbon solid torus Vg specifies uniquely a disjoint oriented
deformed meridian disk system d; (i = 1,2,...,n) in Vg so that the knot k meets the
disk d; with just one boundary arc orientation-coherently and just one interior point
transversely and the union k£ U}, d; (called a chord-disk system) recovers Vi uniquely
by thickening k and d; (i = 1,2,...,n) (see the left figure of Fig. 3). The disk system
d; (i =1,2,...,n) is isotopically deformed into M© by an isotopy of X (M) keeping
k fixed, so that the chord-disk system k£ U}, d; is in M (©), To show this claim, let a;
be a simple arc in d; joining the point k£ N Intd; with a point in the arc k N dd; for
all i. The arc system «; (i = 1,2,...,n) is deformed into a bi-collar neighborhood
M) x [—1,1] of M®) with M) x0 = M© in X (M) by an isotopy keeping M fixed.
Then the arc system o, (i = 1,2,...,n) is projected into M©) by a general position
argument. A deformed disk system d; (i = 1,2,...,n) in M is obtained from the
arc system a; (i = 1,2,...,n) in M© by extending them as a small disk system,
completing the proof of the claim. Let k* be the graph in M () obtained from the
chord-disk system kU], d; by shrinking every disk d; into a 4-degree vertex for every
i. By taking a maximal tree 7(k*) of k*, one finds a disk § in M containing the
maximal tree 7(k*). Let e; (i = 1,2,...,n+1) be the arc system cl(k* \ 7(k*)) where
the number n + 1 is uniquely determined by the Euler characteristic x(K*) = —n.
Then the chord-disk system

FO= (kUL di) \ (Ui )

can be drawn as a chord diagram C' in the disk § with the based loop system o; =
dd; (i =1,2,...,n) so that the chord diagram of the two arcs of k on the disk d; for
every ¢ are drawn with the two arcs as bold lines transversely meeting as in the right
figure of Fig. 3. Let a; (i = 1,2,...,n+1) be the arc system cl(k\U"}'e;). By replacing
the chord diagram of the two arcs of k on the disk d; for every ¢ with an arc diagram,
that is, by replacing the right diagram of Fig. 2 with the left diagram of Fig. 2, the
diagram C' changes into an arc diagram D of the arc system a; (i = 1,2,...,n) in
the disk §. Deform the disk ¢ into the 2-sphere S = OM(©) so that a collar § x [0, 1]
of 6 in M with § x 0 = § belongs to a boundary collar S x [0,1] of S in M©

with S x 0 = S. The arc system a; (i = 1,2,...,n) is realized in the collar § x [0, 1]
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from the arc diagram D by pushing the interiors of the upper-arcs of D into the
interior of § x [0,1]. By Lemma 4.3, the spun S%link U, S(a;) in X (M) with the
chord system C in § is obtained as in Fig. 2. This means that the spun S2-link
U ,S(a;) bounds a part Vj of the ribbon solid torus Vg belonging to the 4-ball
A= (6§ x[0,1]) x SYUJ x D? in X(M). Since the spun torus-knot T'(k) is the
union of the spun S?-link U ;S(e;) and the spun S?-link U ,S(a;) by deleting the
common disk interiors, the spun S2-link U, S(e;) in X (M) bounds disjoint 3-balls
cl(Vg \ Vj) in the 4-ball A" = cl(X (M) \ A). Let X'(M) be the spun 4-sphere of M
on the once-punctured manifold Méo) = cl(M©\ ¢ x[0,1]) of M, and S" = aMéo)
the boundary 2-sphere. The spun S%link U7, S(e;) is a trivial S*-link in the 4-sphere
X'(M). By Lemma 2.5, the proper arc system e; (i = 1,2,...,n) is in a boundary-
collar S” x [0,1] of the once-punctured manifold M, éo). This means that there is a
3-ball in M containing the knot k. This completes the proof of Lemma 1.2. O

Figure 3: A diagram of the two arcs of k on the disk d;

This completes the proof of Theorem 1.1.
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