Uniqueness of an orthogonal 2-handle pair on a surface-link

Akio Kawauchi

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University

Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

 $kawauchi@osaka\-cu.ac.jp$

Keywords: Surface-link, Orthogonal 2-handle pair. Mathematics Subject Classification 2010: Primary 57Q45; Secondary 57N13

ABSTRACT

The proof of uniqueness of an orthogonal 2-handle pair on a surface-link is given from the viewpoint of a normal form of 2-handle core disks. A version to an immersed orthogonal 2-handle pair on a surface-link is also observed.

1. Introduction

A surface-link is a closed oriented (possibly disconnected) surface F embedded in the 4-space \mathbf{R}^4 by a smooth (or a piecewise-linear locally flat) embedding. When \mathbf{F} is connected, it is also called a surface-knot. Two surface-links F and F' are equivalent by an equivalence f if F is sent to F' orientation-preservingly by an orientationpreserving diffeomorphism (or piecewise-linear homeomorphism) $f : \mathbf{R}^4 \to \mathbf{R}^4$. A trivial surface-link is a surface-link F which is the boundary of disjoint handlebodies smoothly embedded in \mathbf{R}^4 , where a handlebody is a 3-manifold which is a 3-ball, a solid torus or a boundary-disk sum of some number of solid tori. A trivial surface-knot is also called an unknotted surface-knot and a trivial disconnected surface-link is also called an unknotted and unlinked surface-link. A trivial surface-link is unique up to equivalences (see [1]). A 2-handle on a surface-link F in \mathbb{R}^4 is an embedded 2-handle $D \times I$ on F with D a core disk such that $D \times I \cap F = \partial D \times I$, where I denotes a closed interval containing 0 and $D \times 0$ is identified with D. If D is an immersed disk, then call it an *immersed 2-handle*. Two (possibly immersed) 2-handles $D \times I$ and $E \times I$ on F are equivalent if there is an equivalence $f : \mathbb{R}^4 \to \mathbb{R}^4$ from F to itself such that the restriction $f|_F : F \to F$ is the identity map and $f(D \times I) = E \times I$. An orthogonal 2-handle pair (or simply, an O2-handle pair) on F is a pair $(D \times I, D' \times I)$ of 2-handles $D \times I, D' \times I$ on F such that

$$D \times I \cap D' \times I = \partial D \times I \cap \partial D' \times I$$

and $\partial D \times I$ and $\partial D' \times I$ meet orthogonally on F, that is, the boundary circles ∂D and $\partial D'$ meet transversely at one point q and the intersection $\partial D \times I \cap \partial D' \times I$ is homeomorphic to the square $Q = q \times I \times I$ (see [2, Fig.1]). An important property of an O2-handle pair $(D \times I, D' \times I)$ on a surface-link F is the following property (see [2] for the proof):

Common 2-handle property Let F be a surface-link in \mathbb{R}^4 , and $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ O2-handle pairs on F in \mathbb{R}^4 with $\partial D \times I = \partial E \times I$ and $\partial D' \times I = \partial E' \times I$. If $D \times I = E \times I$ or $E' \times I = D' \times I$, then the O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ on F are equivalent by an equivalence obtained by 3-cell moves on the unions $D \times I \cup D' \times I$ and $E \times I \cup E' \times I$ which are 3-balls.

In this paper, the following uniqueness theorem of an O2-handle pair on a surfacelink is shown by using a normal form of 2-handle core disks discussed in [4] and Common 2-handle property stated above repeatedly which is announced in [2, Section 3] with incomplete proof although the tools of the present proof appear there.

Theorem 1.1. Let F be a surface-link in \mathbb{R}^4 , and $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ O2-handle pairs on F in \mathbb{R}^4 with $\partial D \times I = \partial E \times I$ and $\partial D' \times I = \partial E' \times I$. Then the O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ on F are equivalent.

This theorem for a trivial surface-link is heavily used for confirming the smooth unknotting conjecture of a surface-knot in [2] and the smooth unknotting-unlinking conjecture for a surface-link in [3]. For an immersed O2-handle pair, the following proposition is provided:

Proposition 1.2. If $(D \times I, D' \times I)$ is an immersed O2-pair on a surface-link F in \mathbb{R}^4 with $D \times I$ immersed and $D' \times I$ embedded, then there is an embedded 2-handle $D_* \times I$ with $\partial D_* \times I = \partial D \times I$ such that $(D_* \times I, D' \times I)$ is an O2-handle pair on F.

For the proof of Proposition 1.2, Finger move canceling operation is used to cancel a double point of an immersed core disk D of the immersed 2-handle $D \times I$ on F, which is explained in Section 3. By Theorem 1.1 and Proposition 1.2, we have the following corollary.

Corollary 1.3. Let F be a surface-link in \mathbb{R}^4 , and $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ immersed O2-handle pairs on F in \mathbb{R}^4 with $\partial D \times I = \partial E \times I$ and $\partial D' \times I = \partial E' \times I$.

(1) If $D' \times I$ and $E' \times I$ are embedded, then there are embedded 2-handles $D_* \times I$ and $E_* \times I$ on F with $\partial D_* \times I = \partial D \times I$ and $\partial E_* \times I = \partial E \times I$ such that $(D_* \times I, D' \times I)$ and $(E_* \times I, E' \times I)$ are equivalent O2-handle pairs on F, so that the surface-links $F(D' \times I)$ and $F(E' \times I)$ are equivalent.

(2) If $D' \times I$ and $E \times I$ are embedded, then there are embedded 2-handles $D_* \times I$ and $E'_* \times I$ on F with $\partial D_* \times I = \partial D \times I$ and $\partial E'_* \times I = \partial E' \times I$ such that $(D_* \times I, D' \times I)$ and $(E \times I, E'_* \times I)$ are equivalent O2-handle pairs on F, so that the surface-links $F(D' \times I)$ and $F(E \times I)$ are equivalent.

The proof of Theorem 1.1 is done in Section 2 and the proof of Proposition 1.2 is done in Section 3. Throughout the paper, the notation

$$XJ = \{(x,t) \in \mathbf{R}^4 | x \in X, t \in J\}$$

is used for a subspace X of \mathbf{R}^3 and a subinterval J of \mathbf{R} .

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into the proof of the case of a trivial surfaceknot F and the proof of the case of a general surface-link F. In the argument, the O2-handle pair $(D \times I, D' \times I)$ is fixed in the 3-space $\mathbf{R}[0]$ and consider normal forms of the core disks E, E' of the 2-handles $E \times I, E' \times I$ in \mathbf{R}^4 . To avoid the complexity of handling the intersection point $q = E \cap E'$, a sufficiently small boundary-collar $n(\partial E')$ of E' is fixed in $\mathbf{R}^3[0]$ and consider a normal form of the disk $E'_n = \operatorname{cl}(E' \setminus n(\partial E'))$ in \mathbf{R}^4 together with a normal form of E.

Proof of Theorem 1.1 in the case of a trivial surface-link F. Assume that the trivial surface-knot F is embedded standardly in $\mathbb{R}^3[0]$ with a standard O2-handle pair $(D \times I, D' \times I)$ on F. By [4], the disk union $G = E \cup E'_n$ is deformed into a disk union G_1 in the following form by an isotopy of \mathbb{R}^4 keeping the boundary

 $\partial G = \partial E \cup \partial E'_n$ (which is a trivial link in $\mathbf{R}^3[0]$), $n(\partial E')$ and F fixed:

$$G_1 \cap \mathbf{R}^3[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ \mathbf{d}'[t], & \text{for } t = 2, \\ o'[t], & \text{for } 1 < t < 2, \\ (\partial G \cup \ell \cup \mathbf{b}')[t], & \text{for } 1 < t < 2, \\ (\partial G \cup \ell \cup \mathbf{b}')[t], & \text{for } t = 1, \\ (\partial G \cup \ell)[t], & \text{for } 0 \le t < 1, \\ \ell[t], & \text{for } -1 < t < 0, \\ (o \cup \mathbf{b})[t], & \text{for } t = -1, \\ o[t], & \text{for } t = -1, \\ o[t], & \text{for } t = -2, \\ \emptyset, & \text{for } t < -2, \end{cases}$$

where the notations o, o' denote trivial links in \mathbb{R}^3 , the notations \mathbf{d}, \mathbf{d}' denote disjoint disk systems in \mathbb{R}^3 bounded by o, o', respectively, the notations \mathbf{b}, \mathbf{b}' denote disjoint band systems in \mathbb{R}^3 spanning o, o', respectively, and the notation ℓ denotes a link in \mathbb{R}^3 . To obtain this disk union G_1 , start the argument of [4] with the assumption that the intersection $G \cap \mathbb{R}^3[0]$ is a link $\ell[0] \cup \partial G$ in $\mathbb{R}^3[0]$ and a boundary-collar $n(\partial G)$ of ∂G in G is in $\mathbb{R}^3[0, c]$ so that

$$n(\partial G) \cap \mathbf{R}^3[t] = \partial G[t], \quad t \in [0, c]$$

for a small number c > 0, where ∂G is regarded to be in \mathbf{R}^3 under the canonical identification $\mathbf{R}^3[0] = \mathbf{R}^3$. Then pull down a minimal point of G in $\mathbf{R}^3(0,\infty)$ to $\mathbf{R}^3(-\infty,0)$ and pull up a maximal point of G in $\mathbf{R}^3(-\infty,0)$ to $\mathbf{R}^3(0,\infty)$. In these deformations, trivial components are increased in the intersection link $G \cap \mathbf{R}^3[0]$. After these preparations, do normalizations of $G \cap \mathbf{R}^3[0,\infty)$ and $G \cap \mathbf{R}^3(-\infty,0]$ keeping $G \cap \mathbf{R}^3[0]$ fixed. The band systems \mathbf{b}, \mathbf{b}' are made disjoint by band slide and band thinning and disjoint from ∂G by band deformation. Let $G_1 = E \cup E'_n$. The following notation is used.

Notation. The disk subsystems of the disk system **d** belonging to E or E'_n are denoted by $\mathbf{d}(E)$ or $\mathbf{d}(E'_n)$, respectively. The band subsystems of the band system **b** belonging to E or E'_n are denoted by $\mathbf{b}(E)$ or $\mathbf{b}(E'_n)$, respectively.

A next deformation of G_1 is to change the level of the band system $\mathbf{b}(E)[-1]$ into $\mathbf{b}(E)[1]$ and the level of the disk system $\mathbf{d}(E)[-2]$ into $\mathbf{d}(E)[0.5]$. To do so, it is observed that in \mathbf{R}^3 , the boundary ∂G and the band system $\mathbf{b}(E'_n)$ meet the disk system $\mathbf{d}(E)$ in finite interior points and in finite interior simple arcs, respectively. For a point $x \in \mathbf{d}(E) \cap \partial G$, find a point $y \in \partial \mathbf{d}(E) \setminus \partial E$ and a simple arc α from x to y in $\mathbf{d}(E)$ which does not meet the band systems \mathbf{b}, \mathbf{b}' by band slide and band thinning. Let $n(\alpha)$ be a disk neighborhood of α in $\mathbf{d}(E)$. Deform the disk system $\mathbf{d}'(E)$ so that $n(\alpha) \subset \mathbf{d}'(E)$. Then the intersection $e(\alpha) = n(\alpha)[-2,2] \cap G_1$ is a disk in the interior of G_1 . Let $\tilde{e}(\alpha) = \operatorname{cl}((\partial(n(\alpha)[-2,2])) \setminus e(\alpha))$ be the complementary disk of the disk $e(\alpha)$ in the 2-sphere $\partial(n(\alpha)[-2,2])$. The disk union

$$\tilde{G}_1 = \operatorname{cl}(G_1 \setminus e(\alpha)) \cup \tilde{e}(\alpha)$$

induces a normal form of the union of a deformed disk \tilde{E} of E and the disk E'_n with $\partial G_1 = \partial G_1$. Note that the disk \tilde{E} may meet with the surface F and the topological position of \tilde{E} in G_1 may be changed from G_1 , although the disk $E' = E'_n \cup n(\partial E')$ is unchanged and the configuration of G_1 is the same as G_1 . Do this deformation for all points of the finite set $\mathbf{d}(E) \cap \partial G$. Further, for an arc β in the finite arc set $\mathbf{d}(E) \cap \mathbf{b}(E'_n)$, find a simple arc α in $\mathbf{d}(E)$ extending this arc β to a point $y \in \partial \mathbf{d}(E) \setminus \partial E$ which does not meet the band systems \mathbf{b}, \mathbf{b}' by band slide and band thinning. For a disk neighborhood $n(\alpha)$ in $\mathbf{d}(E)$, do the same deformation as above. Do this deformation for all arcs β in the finite arc set $\mathbf{d}(E) \cap \mathbf{b}(E'_n)$. Let $\tilde{G}_1 = \tilde{E} \cup E'_n$ be the disk union obtained from $G_1 = E \cup E'_n$ by all these deformations, which is in a normal form with the same configuration as G_1 and we have

$$\mathbf{d}(\tilde{E}) \cap (\partial E \cup n(\partial E')) = \mathbf{d}(\tilde{E}) \cap \mathbf{b}(E'_n) = \emptyset$$

although the disk \tilde{E} may meet F. Now change the level of $\mathbf{b}(\tilde{E})[-1]$ into $\mathbf{b}(\tilde{E})[1]$ and the level of $\mathbf{d}(\tilde{E})[-2]$ into $\mathbf{d}(\tilde{E})[0.5]$. The resulting disk union $G_2 = \tilde{E} \cup E'_n$ is in the following form:

$$G_{2} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ \mathbf{d}'[t], & \text{for } t = 2, \\ o'[t], & \text{for } 1 < t < 2, \\ (\partial G \cup \cup o(\tilde{E}) \cup \mathbf{b}(\tilde{E}) \cup \ell(E'_{n}) \cup \mathbf{b}')[t], & \text{for } t = 1, \\ (\partial G \cup o(\tilde{E}) \cup \ell(E'_{n}))[t], & \text{for } 0.5 < t < 1, \\ (\partial G \cup \mathbf{d}(\tilde{E}) \cup \ell(E'_{n}))[t], & \text{for } t = 0.5, \\ (\partial G \cup \ell(E'_{n}))[t], & \text{for } 0 \le t < 0.5, \\ \ell(E'_{n})[t], & \text{for } -1 < t < 0, \\ (o(E'_{n}) \cup \mathbf{b}(E'_{n}))[t], & \text{for } t = -1, \\ o(E'_{n})[t], & \text{for } t = -1, \\ d(E'_{n})[t], & \text{for } t = -2, \\ \emptyset, & \text{for } t < -2. \end{cases}$$

In the configuration of the disk union G_2 , the pair $(\tilde{E} \times I, E' \times I)$ is an O2-handle pair on F and hence is equivalent to the original O2-handle pair $(E \times I, E' \times I)$ on F by Common 2-handle property. Let $G_2 = E \cup E'_n$. A next deformation of G_2 is to change the level of the band system $\mathbf{b}(E'_n)[-1]$ into $\mathbf{b}(E'_n)[1]$ and the level of the disk system $\mathbf{d}(E'_n)[-2]$ into $\mathbf{d}(E'_n)[0.5]$. To do so, for a point $x \in \mathbf{d}(E'_n) \cap \partial G$, find a point $y \in \partial \mathbf{d}(E'_n) \setminus \partial E'_n$ and a simple arc α from x to y in $\mathbf{d}(E'_n)$ which does not meet the band systems \mathbf{b}, \mathbf{b}' by band slide and band thinning. For a disk neighborhood $n(\alpha)$ of α in $\mathbf{d}(E'_n)$, do a similar deformation on the disk E'_n as above. Namely, deform the disk system $\mathbf{d}'(E'_n)$ so that $n(\alpha) \subset \mathbf{d}'(E'_n)$. Since the intersection $e(\alpha) = n(\alpha)[-2, 2] \cap G_2$ is a disk in the interior of G_2 , let $\tilde{e}(\alpha) = \operatorname{cl}((\partial(n(\alpha)[-2, 2])) \setminus e(\alpha))$ be the complementary disk of the disk $e(\alpha)$ in the 2-sphere $\partial(n(\alpha)[-2, 2])$. The disk union

$$G_2 = \operatorname{cl}(G_2 \setminus e(\alpha)) \cup e(\alpha)$$

induces a normal form of the union of the disk E and a deformed disk \tilde{E}'_n of E'_n with $\partial G_2 = \partial G_2$. Note that the disk \tilde{E}'_n may meet F and the topological position of \tilde{E}'_n in \tilde{G}_1 may be changed from G_1 , although the disk E is unchanged and the configuration of \tilde{G}_2 is the same as G_2 . Do this operation for all points of the finite set $\mathbf{d}(E'_n) \cap \partial G$. Let $\tilde{G}_2 = E \cup \tilde{E}'_n$ be the disk union obtained from G_2 by all these deformations. The disk union $\tilde{G}_2 = E \cup \tilde{E}'_n$ is in a normal form with the same configuration as G_2 and has

$$\mathbf{d}(\tilde{E}'_n) \cap (\partial E \cup n(\partial E')) = \emptyset,$$

although \tilde{E}'_n may meet F. Now change the level of the band system $\mathbf{b}(\tilde{E}'_n)[-1]$ into $\mathbf{b}(\tilde{E}'_n)[1]$ and the level of the disk system $\mathbf{d}(\tilde{E}'_n)[-2]$ into $\mathbf{d}(\tilde{E}'_n)[0.5]$. The resulting disk union $G_3 = E \cup \tilde{E}'_n$ is as follows:

$$G_{3} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ \mathbf{d}'[t], & \text{for } t = 2, \\ o'[t], & \text{for } 1 < t < 2, \\ (\partial G \cup o \cup \mathbf{b} \cup \mathbf{b}')[t], & \text{for } 1 < t < 2, \\ (\partial G \cup o)[t], & \text{for } t = 1, \\ (\partial G \cup o)[t], & \text{for } t = 0.5, \\ (\partial G)[t], & \text{for } t = 0.5, \\ (\partial G)[t], & \text{for } t < 0.5 \end{cases}$$

In the disk union G_3 , the pair $(E \times I, \tilde{E}' \times I)$ with $\tilde{E}' = \tilde{E}'_n \cup n(\partial E')$ is an O2-handle pair on F and hence equivalent to the original O2-handle pair $(E \times I, E' \times I)$ by Common 2-handle property. Let $G_3 = E \cup E'_n$. In the configuration of G_3 , the pairs $(D \times I, E' \times I)$ and $(E \times I, D' \times I)$ are O2-handle pairs on F. Thus, by Common 2-handle property, the O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ on Fare equivalent. This completes the proof of Theorem 1.1 in the case of a trivial surface-link F.

Proof of Theorem 1.1 in the case of a general surface-link F. For a general surface-link F in \mathbb{R}^4 and O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$, let $F(D \times I, D' \times I)$ be the surface-link obtained by surgery along $(D \times I, D' \times I)$ (see [2]). Let F' be a trivial surface-knot in \mathbb{R}^4 obtained from the surface-link $F(D \times$ $I, D' \times I$) obtained by surgery along 1-handles $h_i (j = 1, 2, ..., s)$ embedded in a connected Seifert hypersurface W for $F(D \times I, D' \times I)$ avoiding the intersection loops $E \cap W, E' \cap W$ (cf. [1]). Then there is a trivial torus-knot T in \mathbb{R}^4 such that the connected sum F' # T is a trivial surface-knot in \mathbb{R}^4 obtained from F by surgery along the 1-handles $h_i (j = 1, 2, ..., s)$ and $(D \times I, D' \times I)$ is a standard O2-handle pair on F' # T attached to the connected summand T. By construction, the pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ are O2-handles on the connected sum F' # T attached to the connected summand T whose defining 4-ball is disjoint from the "2-handles" h_j (j = 1, 2, ..., s) on F' # T attached to F'. Let **h** be the core disk system $D(h_j), (j = 1, 2, ..., s)$ of the 2-handle system $h_j (j = 1, 2, ..., s)$ on F' # Tattached to F'. By the proof for the case of a trivial surface-link F, the O2-handle pair $(E \times I, E' \times I)$ is equivalent to $(D \times I, D' \times I)$ on F' # T. To obtain such an equivalence without crossing the core disk system \mathbf{h} , the proof is revised as follows: A normal form of the disk union $\overline{G} = G \cup \mathbf{h} = E \cup E'_n \cup \mathbf{h}$ can be thought of as the following disk union \overline{G}_1 :

$$\bar{G}_{1} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ (d'(\mathbf{h}) \cup \mathbf{d}')[t], & \text{for } t = 2, \\ (o'(\mathbf{h}) \cup o')[t], & \text{for } 1 < t < 2, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup b'(\mathbf{h}) \cup \ell \cup \mathbf{b}')[t] & \text{for } t = 1, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup \ell)[t], & \text{for } 0 \le t < 1, \\ (\ell(\mathbf{h}) \cup \ell)[t], & \text{for } -1 < t < 0, \\ (o(\mathbf{h}) \cup b(\mathbf{h}) \cup o \cup \mathbf{b})[t], & \text{for } t = -1, \\ (o(\mathbf{h}) \cup o)[t], & \text{for } t = -1, \\ (d(\mathbf{h}) \cup \mathbf{d})[t], & \text{for } t = -2, \\ \emptyset, & \text{for } t < -2, \end{cases}$$

where in addition to the notations on G_1 , the following notations are also added. Namely, the notations $o(\mathbf{h}), o'(\mathbf{h})$ denote trivial links in \mathbf{R}^3 coming from \mathbf{h} , the notations $d(\mathbf{h}), d'(\mathbf{h})$ denote disjoint disk systems in \mathbf{R}^3 bounded by $o(\mathbf{h}), o'(\mathbf{h})$, respectively, coming from \mathbf{h} , the notations $b(\mathbf{h}), b'(\mathbf{h})$ denote disjoint band systems in \mathbf{R}^3 spanning $o(\mathbf{h}), o'(\mathbf{h})$, respectively, and the notation $\ell(\mathbf{h})$ denotes a link in \mathbf{R}^3 coming from \mathbf{h} . The band systems $\mathbf{b}, \mathbf{b}', b(\mathbf{h}), b'(\mathbf{h})$ are made disjoint by band slide and band thinning. In this normal form \overline{G}_1 , the disk system \mathbf{h} can be taken as

$$\mathbf{h} \cap D \times I = \mathbf{h} \cap D' \times I = \emptyset,$$

because the defining 4-ball of the connected summand T in the connected sum F' # T

contains the union $D \times I \cup D' \times I$ and is disjoint from the 2-handles h_j (j = 1, 2, ..., s). By a method similar to the process from G_1 to G_2 , we have a deformation $\widetilde{G}_1 = \widetilde{E} \cup E'_n \cup \mathbf{h}$ of \overline{G}_1 with the same configuration as \overline{G}_1 such that

$$\mathbf{d}(\tilde{E}) \cap (\partial E \cup n(\partial E')) = \mathbf{d}(\tilde{E}) \cap \mathbf{b}(E'_n) = \mathbf{d}(\tilde{E}) \cap b(\mathbf{h}) = \emptyset,$$

although \tilde{E} may meet F' # T. Now change the level of $\mathbf{b}(\tilde{E})[-1]$ into $\mathbf{b}(\tilde{E})[1]$ and the level of $\mathbf{d}(\tilde{E})[-2]$ into $\mathbf{d}(\tilde{E})[0.5]$. Then the disk union $\bar{G}_2 = \tilde{E} \cup E'_n \cup \mathbf{h}$ obtained from \widetilde{G}_1 is as follows:

$$\bar{G}_{2} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ (d'(\mathbf{h}) \cup \mathbf{d}')[t], & \text{for } t = 2, \\ (o'(\mathbf{h}) \cup o')[t], & \text{for } 1 < t < 2, \end{cases} \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup b'(\mathbf{h}) \cup o(\tilde{E}) \cup \mathbf{b}(\tilde{E}) \cup \ell(E') \cup \mathbf{b}')[t], & \text{for } t = 1, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup o(\tilde{E}) \cup \ell(E'_{n}))[t], & \text{for } 0.5 < t < 1, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup \mathbf{d}(\tilde{E}) \cup \ell(E'_{n}))[t], & \text{for } t = 0.5, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup \ell(E'_{n}))[t], & \text{for } 0 \le t < 0.5, \\ (\ell(\mathbf{h}) \cup \ell(E'_{n}))[t], & \text{for } -1 < t < 0, \\ (o(\mathbf{h}) \cup b(\mathbf{h}) \cup o(E'_{n}) \cup \mathbf{b}(E'_{n}))[t], & \text{for } t = -1, \\ (o(\mathbf{h}) \cup o(E'_{n}))[t], & \text{for } t = -1, \\ (d(\mathbf{h}) \cup \mathbf{d}(E'_{n}))[t], & \text{for } t = -2, \\ \emptyset, & \text{for } t < -2. \end{cases} \end{cases}$$

In the configuration of \bar{G}_2 , the pair $(\tilde{E} \times I, E' \times I)$ is an O2-handle pair on F' # Tand hence equivalent to the O2-handle pair $(E \times I, E' \times I)$ on F' # T by Common 2-handle property. Let $\bar{G}_2 = E \cup E'_n \cup \mathbf{h}$. By a similar consideration from G_2 to G_3 , we have a deformation $\tilde{G}_2 = E \cup \tilde{E}'_n \cup \mathbf{h}$ of \bar{G}_2 with the same configuration as \bar{G}_2 such that

$$\mathbf{d}(\tilde{E}'_n) \cap (\partial E \cup n(\partial E')) = \mathbf{d}(\tilde{E}'_n) \cap b(\mathbf{h}) = \emptyset,$$

although the disk \tilde{E}'_n may meet F' # T. Now change the level of $\mathbf{b}(\tilde{E}'_n)[-1]$ into $\mathbf{b}(\tilde{E}'_n)[1]$ and the level of $\mathbf{d}(\tilde{E}'_n)[-2]$ into $\mathbf{d}(\tilde{E}'_n)[0.5]$. Then the disk union $\bar{G}_3 =$

 $E \cup \tilde{E}'_n \cup \mathbf{h}$ obtained from \widetilde{G}_2 is as follows:

$$\bar{G}_{3} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ (d'(\mathbf{h}) \cup d')[t], & \text{for } t = 2, \\ (o'(\mathbf{h}) \cup o')[t], & \text{for } 1 < t < 2, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup b'(\mathbf{h}) \cup o \cup \mathbf{b}' \cup \mathbf{b})[t], & \text{for } t = 1, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup o)[t], & \text{for } 0.5 < t < 1, \\ (\partial \bar{G} \cup \ell(\mathbf{h}) \cup \mathbf{d})[t], & \text{for } t = 0.5, \\ (\partial \bar{G} \cup \ell(\mathbf{h}))[t], & \text{for } 0 \le t < 0.5, \\ \ell(\mathbf{h})[t], & \text{for } -1 < t < 0, \\ (o(\mathbf{h}) \cup b(\mathbf{h}))[t], & \text{for } t = -1, \\ o(\mathbf{h})[t], & \text{for } t = -1, \\ d(\mathbf{h})[t], & \text{for } t = -2, \\ \emptyset, & \text{for } t < 0. \end{cases} \end{cases}$$

In the configuration of G_3 , the pair $(E \times I, \tilde{E}' \times I)$ with $\tilde{E}' = \tilde{E}'_n \cup n(\partial E')$ is an O2-handle pair on F' # T and hence equivalent to the O2-handle pair $(E \times I, E' \times I)$ on F' # T by Common 2-handle property. Let $G_3 = E \cup E'_n \cup \mathbf{h}$. Since $(D \times I, D' \times I)$ is in $\mathbf{R}^3[0]$, the disk system \mathbf{h} is disjoint from the O2-handle pair $(D \times I, D' \times I)$, although the disk system $d'(\mathbf{h})[2]$ is isotopically deformed in $\mathbf{R}^3[2]$ in \bar{G}_3 . Thus, in the configuration of G_3 , the pairs $(D \times I, E' \times I)$ and $(E \times I, D' \times I)$ are O2-handle pairs on F' # T and disjoint from \mathbf{h} . This means that the O2-handle pairs $(D \times I, D' \times I)$ and $(E \times I, E' \times I)$ on F' # T are equivalent under 3-cell moves disjoint from the 2-handles $h_j (j = 1, 2, \ldots, s)$ by Common 2-handle property. By the back surgery from F' # T to F on the 2-handles $h_j (j = 1, 2, \ldots, s)$ on F are equivalent under 3-cell moves disjoint from the 1-handles $h_j (j = 1, 2, \ldots, s)$ on F. This completes the proof of Theorem 1.1 in the case of a general surface-link F. \Box

This completes the proof of Theorem 1.1.

3. Proof of Proposition 1.2

The *Finger move canceling* is the following operation to cancel a double point of an immersed disk D in \mathbb{R}^4 .

Finger Move Canceling. Let D be an immersed disk in \mathbb{R}^4 with ∂D embedded, and S a trivial S^2 -knot in \mathbb{R}^4 meeting the immersed disk D at just one point xdifferent from the double points of D. Let y be a double point of D, and α a simple arc in the disk D joining x and y not meeting the other double points of D. Let d_x be a disk neighborhood of x in D, and d_y a disk neighborhood d_y of y in the 2-sphere S, regarding the disks d_x and d_y as disk fibers of a normal disk bundle over D in \mathbb{R}^4 . Let V_{α} be a disk bundle over the arc α in \mathbb{R}^4 such that $(D \cup S) \cap V_{\alpha} = d_x \cup \alpha \cup d_y$. Then the immersed disk D_1 with $\partial D_1 = \partial D$ is constructed from the immersed disk D so that

$$D_1 = \operatorname{cl}(D \setminus d_x) \cup \operatorname{cl}(\partial V_\alpha \setminus (d_x \cup d_y)) \cup \operatorname{cl}(S \setminus d_y).$$

The number of the double points of D_1 is smaller than the number of the double points of D by 1.

The 2-sphere S in Finger Move Canceling is called a *canceling sphere*. If there is a canceling sphere S, then the immersed disk D is changed into an embedded disk D_* by Finger Move Canceling operations of parallel canceling spheres of S. By using Finger Move Canceling, the proof of Proposition 1.2 is done as follows:

Proof of Proposition 1.2. By assumption, the immersed O2-pair $(D \times I, D' \times I)$ on a surface-link F in \mathbb{R}^4 has $D \times I$ as an immersed 2-handle on F and $D' \times I$ as an embedded 2-handle on F. Let d' be a small disk neighborhood of a point $p' \in D'$ in D'. By shrinking $D' \times I$ as $d' \times I$, one finds a trivial S^2 -knot S in in \mathbb{R}^4 such that S meets the immersed core disk D of $D \times I$ at just one point x different from the double points of D and is disjoint from F and $D' \times I$. This 2-sphere S is used for a canceling sphere for the immersed disk D. By Finger Move Canceling, the immersed disk D is changed into an embedded disk D_* , meaning that the pair $(D_* \times I, D' \times I)$ is an O2-handle pair on F. This completes the proof of Proposition 1.2. \Box

Acknowledgements. This work was partly supported by Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849). The author thanks Junpei Yasuda (a graduate student at Osaka University under the adviser Seiichi Kamada) for asking a question on [2, Claim 3.2.1] that motivated to write this paper.

references

- F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16(1979), 233-248.
- [2] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301(2021), 107522 (16pages). arXiv:1804.02654

- [3] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group. arXiv:1804.04269
- [4] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125; II: Singularities and cross-sectional links, Math. Sem. Notes, Kobe Univ. 11(1983), 31-69.