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ABSTRACT

The proof of uniqueness of an orthogonal 2-handle pair on a surface-link is

given from the viewpoint of a normal form of 2-handle core disks. A version to

an immersed orthogonal 2-handle pair on a surface-link is also observed.

1. Introduction
A surface-link is a closed oriented (possibly disconnected) surface F embedded in

the 4-space R4 by a smooth (or a piecewise-linear locally flat) embedding. When F is
connected, it is also called a surface-knot. Two surface-links F and F ′ are equivalent
by an equivalence f if F is sent to F ′ orientation-preservingly by an orientation-
preserving diffeomorphism (or piecewise-linear homeomorphism) f : R4 → R4. A
trivial surface-link is a surface-link F which is the boundary of disjoint handlebodies
smoothly embedded in R4, where a handlebody is a 3-manifold which is a 3-ball, a
solid torus or a boundary-disk sum of some number of solid tori. A trivial surface-knot
is also called an unknotted surface-knot and a trivial disconnected surface-link is also
called an unknotted and unlinked surface-link. A trivial surface-link is unique up to



equivalences (see [1]). A 2-handle on a surface-link F in R4 is an embedded 2-handle
D × I on F with D a core disk such that D × I ∩ F = ∂D × I, where I denotes a
closed interval containing 0 and D× 0 is identified with D. If D is an immersed disk,
then call it an immersed 2-handle. Two (possibly immersed) 2-handles D × I and
E × I on F are equivalent if there is an equivalence f : R4 → R4 from F to itself
such that the restriction f |F : F → F is the identity map and f(D× I) = E × I. An
orthogonal 2-handle pair (or simply, an O2-handle pair) on F is a pair (D× I,D′× I)
of 2-handles D × I, D′ × I on F such that

D × I ∩D′ × I = ∂D × I ∩ ∂D′ × I

and ∂D × I and ∂D′ × I meet orthogonally on F , that is, the boundary circles ∂D
and ∂D′ meet transversely at one point q and the intersection ∂D × I ∩ ∂D′ × I is
homeomorphic to the square Q = q× I× I (see [2, Fig.1]). An important property of
an O2-handle pair (D × I,D′ × I) on a surface-link F is the following property (see
[2] for the proof):

Common 2-handle property Let F be a surface-link in R4, and (D×I,D′×I) and
(E×I, E ′×I) O2-handle pairs on F inR4 with ∂D×I = ∂E×I and ∂D′×I = ∂E ′×I.
If D × I = E × I or E ′ × I = D′ × I, then the O2-handle pairs (D × I,D′ × I) and
(E × I, E ′ × I) on F are equivalent by an equivalence obtained by 3-cell moves on
the unions D × I ∪D′ × I and E × I ∪ E ′ × I which are 3-balls.

In this paper, the following uniqueness theorem of an O2-handle pair on a surface-
link is shown by using a normal form of 2-handle core disks discussed in [4] and Com-
mon 2-handle property stated above repeatedly which is announced in [2, Section 3]
with incomplete proof although the tools of the present proof appear there.

Theorem 1.1. Let F be a surface-link in R4, and (D× I,D′× I) and (E× I, E ′× I)
O2-handle pairs on F in R4 with ∂D × I = ∂E × I and ∂D′ × I = ∂E ′ × I. Then
the O2-handle pairs (D × I,D′ × I) and (E × I, E ′ × I) on F are equivalent.

This theorem for a trivial surface-link is heavily used for confirming the smooth
unknotting conjecture of a surface-knot in [2] and the smooth unknotting-unlinking
conjecture for a surface-link in [3]. For an immersed O2-handle pair, the following
proposition is provided:

Proposition 1.2. If (D × I,D′ × I) is an immersed O2-pair on a surface-link F in
R4 with D× I immersed and D′ × I embedded, then there is an embedded 2-handle
D∗ × I with ∂D∗ × I = ∂D× I such that (D∗ × I,D′ × I) is an O2-handle pair on F .
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For the proof of Proposition 1.2, Finger move canceling operation is used to cancel
a double point of an immersed core disk D of the immersed 2-handle D × I on F ,
which is explained in Section 3. By Theorem 1.1 and Proposition 1.2, we have the
following corollary.

Corollary 1.3. Let F be a surface-link in R4, and (D×I,D′×I) and (E×I, E ′×I)
immersed O2-handle pairs on F in R4 with ∂D× I = ∂E× I and ∂D′× I = ∂E ′× I.

(1) If D′× I and E ′× I are embedded, then there are embedded 2-handles D∗× I
and E∗×I on F with ∂D∗×I = ∂D×I and ∂E∗×I = ∂E×I such that (D∗×I,D′×I)
and (E∗ × I, E ′ × I) are equivalent O2-handle pairs on F , so that the surface-links
F (D′ × I) and F (E ′ × I) are equivalent.

(2) If D′ × I and E× I are embedded, then there are embedded 2-handles D∗ × I
and E ′

∗×I on F with ∂D∗×I = ∂D×I and ∂E ′
∗×I = ∂E ′×I such that (D∗×I,D′×I)

and (E × I, E ′
∗ × I) are equivalent O2-handle pairs on F , so that the surface-links

F (D′ × I) and F (E × I) are equivalent.

The proof of Theorem 1.1 is done in Section 2 and and the proof of Proposition 1.2
is done in Section 3. Throughout the paper, the notation

XJ = {(x, t) ∈ R4| x ∈ X, t ∈ J}

is used for a subspace X of R3 and a subinterval J of R.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into the proof of the case of a trivial surface-
knot F and the proof of the case of a general surface-link F . In the argument, the
O2-handle pair (D× I,D′× I) is fixed in the 3-space R[0] and consider normal forms
of the core disks E,E ′ of the 2-handles E×I, E ′×I in R4. To avoid the complexity of
handling the intersection point q = E∩E ′, a sufficiently small boundary-collar n(∂E ′)
of E ′ is fixed in R3[0] and consider a normal form of the disk E ′

n = cl(E ′ \n(∂E ′)) in
R4 together with a normal form of E.

Proof of Theorem 1.1 in the case of a trivial surface-link F . Assume that the
trivial surface-knot F is embedded standardly in R3[0] with a standard O2-handle
pair (D × I,D′ × I) on F . By [4], the disk union G = E ∪ E ′

n is deformed into
a disk union G1 in the following form by an isotopy of R4 keeping the boundary
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∂G = ∂E ∪ ∂E ′
n (which is a trivial link in R3[0]), n(∂E ′) and F fixed:

G1 ∩R3[t] =



∅, for t > 2,
d′[t], for t = 2,
o′[t], for 1 < t < 2,

(∂G ∪ ℓ ∪ b′)[t], for t = 1,
(∂G ∪ ℓ)[t], for 0 ≤ t < 1,

ℓ[t], for −1 < t < 0,
(o ∪ b)[t], for t = −1,

o[t], for −2 < t < −1,
d[t], for t = −2,

∅, for t < −2,

where the notations o, o′ denote trivial links in R3, the notations d,d′ denote disjoint
disk systems in R3 bounded by o, o′, respectively, the notations b,b′ denote disjoint
band systems in R3 spanning o, o′, respectively, and the notation ℓ denotes a link in
R3. To obtain this disk union G1, start the argument of [4] with the assumption that
the intersection G ∩R3[0] is a link ℓ[0] ∪ ∂G in R3[0] and a boundary-collar n(∂G)
of ∂G in G is in R3[0, c] so that

n(∂G) ∩R3[t] = ∂G[t], t ∈ [0, c]

for a small number c > 0, where ∂G is regarded to be in R3 under the canonical
identification R3[0] = R3. Then pull down a minimal point of G in R3(0,∞) to
R3(−∞, 0) and pull up a maximal point of G in R3(−∞, 0) to R3(0,∞). In these
deformations, trivial components are increased in the intersection link G∩R3[0]. After
these preparations, do normalizations of G ∩ R3[0,∞) and G ∩ R3(−∞, 0] keeping
G ∩ R3[0] fixed. The band systems b,b′ are made disjoint by band slide and band
thinning and disjoint from ∂G by band deformation. Let G1 = E∪E ′

n. The following
notation is used.

Notation. The disk subsystems of the disk system d belonging to E or E ′
n are

denoted by d(E) or d(E ′
n), respectively. The band subsystems of the band system b

belonging to E or E ′
n are denoted by b(E) or b(E ′

n), respectively.

A next deformation of G1 is to change the level of the band system b(E)[−1]
into b(E)[1] and the level of the disk system d(E)[−2] into d(E)[0.5]. To do so, it
is observed that in R3, the boundary ∂G and the band system b(E ′

n) meet the disk
system d(E) in finite interior points and in finite interior simple arcs, respectively.
For a point x ∈ d(E) ∩ ∂G, find a point y ∈ ∂d(E) \ ∂E and a simple arc α from
x to y in d(E) which does not meet the band systems b,b′ by band slide and band
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thinning. Let n(α) be a disk neighborhood of α in d(E). Deform the disk system
d′(E) so that n(α) ⊂ d′(E). Then the intersection e(α) = n(α)[−2, 2] ∩G1 is a disk
in the interior of G1. Let ẽ(α) = cl((∂(n(α)[−2, 2])) \ e(α)) be the complementary
disk of the disk e(α) in the 2-sphere ∂(n(α)[−2, 2]). The disk union

G̃1 = cl(G1 \ e(α)) ∪ ẽ(α)

induces a normal form of the union of a deformed disk Ẽ of E and the disk E ′
n with

∂̃G1 = ∂G1. Note that the disk Ẽ may meet with the surface F and the topological
position of Ẽ in G̃1 may be changed from G1, although the disk E ′ = E ′

n ∪ n(∂E ′)
is unchanged and the configuration of G̃1 is the same as G1. Do this deformation
for all points of the finite set d(E) ∩ ∂G. Further, for an arc β in the finite arc
set d(E) ∩ b(E ′

n), find a simple arc α in d(E) extending this arc β to a point y ∈
∂d(E) \ ∂E which does not meet the band systems b,b′ by band slide and band
thinning. For a disk neighborhood n(α) in d(E), do the same deformation as above.
Do this deformation for all arcs β in the finite arc set d(E)∩b(E ′

n). Let G̃1 = Ẽ∪E ′
n

be the disk union obtained from G1 = E ∪ E ′
n by all these deformations, which is in

a normal form with the same configuration as G1 and we have

d(Ẽ) ∩ (∂E ∪ n(∂E ′)) = d(Ẽ) ∩ b(E ′
n) = ∅

although the disk Ẽ may meet F . Now change the level of b(Ẽ)[−1] into b(Ẽ)[1] and
the level of d(Ẽ)[−2] into d(Ẽ)[0.5]. The resulting disk union G2 = Ẽ ∪E ′

n is in the
following form:

G2 ∩R3[t] =



∅, for t > 2,
d′[t], for t = 2,
o′[t], for 1 < t < 2,

(∂G ∪ ∪o(Ẽ) ∪ b(Ẽ) ∪ ℓ(E ′
n) ∪ b′)[t], for t = 1,

(∂G ∪ o(Ẽ) ∪ ℓ(E ′
n))[t], for 0.5 < t < 1,

(∂G ∪ d(Ẽ) ∪ ℓ(E ′
n))[t], for t = 0.5,

(∂G ∪ ℓ(E ′
n))[t], for 0 ≤ t < 0.5,

ℓ(E ′
n)[t], for −1 < t < 0,

(o(E ′
n) ∪ b(E ′

n))[t], for t = −1,
o(E ′

n)[t], for −2 < t < −1,
d(E ′

n)[t], for t = −2,
∅, for t < −2.

In the configuration of the disk union G2, the pair (Ẽ × I, E ′ × I) is an O2-handle
pair on F and hence is equivalent to the original O2-handle pair (E × I, E ′ × I) on
F by Common 2-handle property. Let G2 = E ∪ E ′

n. A next deformation of G2 is to
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change the level of the band system b(E ′
n)[−1] into b(E ′

n)[1] and the level of the disk
system d(E ′

n)[−2] into d(E ′
n)[0.5]. To do so, for a point x ∈ d(E ′

n)∩ ∂G, find a point
y ∈ ∂d(E ′

n) \ ∂E ′
n and a simple arc α from x to y in d(E ′

n) which does not meet the
band systems b,b′ by band slide and band thinning. For a disk neighborhood n(α) of
α in d(E ′

n), do a similar deformation on the disk E ′
n as above. Namely, deform the disk

system d′(E ′
n) so that n(α) ⊂ d′(E ′

n). Since the intersection e(α) = n(α)[−2, 2]∩G2 is
a disk in the interior of G2, let ẽ(α) = cl((∂(n(α)[−2, 2]))\e(α)) be the complementary
disk of the disk e(α) in the 2-sphere ∂(n(α)[−2, 2]). The disk union

G̃2 = cl(G2 \ e(α)) ∪ ẽ(α)

induces a normal form of the union of the disk E and a deformed disk Ẽ ′
n of E ′

n with
∂̃G2 = ∂G2. Note that the disk Ẽ ′

n may meet F and the topological position of Ẽ ′
n in

G̃1 may be changed from G1, although the disk E is unchanged and the configuration
of G̃2 is the same as G2. Do this operation for all points of the finite set d(E ′

n)∩ ∂G.
Let G̃2 = E ∪ Ẽ ′

n be the disk union obtained from G2 by all these deformations. The
disk union G̃2 = E ∪ Ẽ ′

n is in a normal form with the same configuration as G2 and
has

d(Ẽ ′
n) ∩ (∂E ∪ n(∂E ′)) = ∅,

although Ẽ ′
n may meet F . Now change the level of the band system b(Ẽ ′

n)[−1] into
b(Ẽ ′

n)[1] and the level of the disk system d(Ẽ ′
n)[−2] into d(Ẽ ′

n)[0.5]. The resulting
disk union G3 = E ∪ Ẽ ′

n is as follows:

G3 ∩R3[t] =



∅, for t > 2,
d′[t], for t = 2,
o′[t], for 1 < t < 2,

(∂G ∪ o ∪ b ∪ b′)[t], for t = 1,
(∂G ∪ o)[t], for 0.5 < t < 1,
(∂G ∪ d)[t], for t = 0.5,

(∂G)[t], for 0 ≤ t < 0.5,
∅, for t < 0.

In the disk union G3, the pair (E× I, Ẽ ′× I) with Ẽ ′ = Ẽ ′
n ∪n(∂E ′) is an O2-handle

pair on F and hence equivalent to the original O2-handle pair (E × I, E ′ × I) by
Common 2-handle property. Let G3 = E ∪ E ′

n. In the configuration of G3, the pairs
(D × I, E ′ × I) and (E × I,D′ × I) are O2-handle pairs on F . Thus, by Common
2-handle property, the O2-handle pairs (D × I,D′ × I) and (E × I, E ′ × I) on F
are equivalent. This completes the proof of Theorem 1.1 in the case of a trivial
surface-link F .
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Proof of Theorem 1.1 in the case of a general surface-link F . For a general
surface-link F in R4 and O2-handle pairs (D × I,D′ × I) and (E × I, E ′ × I), let
F (D × I,D′ × I) be the surface-link obtained by surgery along (D × I,D′ × I) (see
[2]). Let F ′ be a trivial surface-knot in R4 obtained from the surface-link F (D ×
I,D′ × I) obtained by surgery along 1-handles hj (j = 1, 2, . . . , s) embedded in a
connected Seifert hypersurface W for F (D × I,D′ × I) avoiding the intersection
loops E ∩ W,E ′ ∩ W (cf. [1]). Then there is a trivial torus-knot T in R4 such
that the connected sum F ′#T is a trivial surface-knot in R4 obtained from F by
surgery along the 1-handles hj (j = 1, 2, . . . , s) and (D × I,D′ × I) is a standard
O2-handle pair on F ′#T attached to the connected summand T . By construction,
the pairs (D × I,D′ × I) and (E × I, E ′ × I) are O2-handles on the connected sum
F ′#T attached to the connected summand T whose defining 4-ball is disjoint from
the “2-handles”hj (j = 1, 2, . . . , s) on F ′#T attached to F ′. Let h be the core disk
system D(hj), (j = 1, 2, . . . , s) of the 2-handle system hj (j = 1, 2, . . . , s) on F ′#T
attached to F ′. By the proof for the case of a trivial surface-link F , the O2-handle
pair (E × I, E ′ × I) is equivalent to (D × I,D′ × I) on F ′#T . To obtain such an
equivalence without crossing the core disk system h, the proof is revised as follows:
A normal form of the disk union Ḡ = G ∪ h = E ∪ E ′

n ∪ h can be thought of as the
following disk union Ḡ1:

Ḡ1 ∩R3[t] =



∅, for t > 2,
(d′(h) ∪ d′)[t], for t = 2,
(o′(h) ∪ o′)[t], for 1 < t < 2,

(∂Ḡ ∪ ℓ(h) ∪ b′(h) ∪ ℓ ∪ b′)[t] for t = 1,
(∂Ḡ ∪ ℓ(h) ∪ ℓ)[t], for 0 ≤ t < 1,

(ℓ(h) ∪ ℓ)[t], for −1 < t < 0,
(o(h) ∪ b(h) ∪ o ∪ b)[t], for t = −1,

(o(h) ∪ o)[t], for −2 < t < −1,
(d(h) ∪ d)[t], for t = −2,

∅, for t < −2,

,

where in addition to the notations on G1, the following notations are also added.
Namely, the notations o(h), o′(h) denote trivial links in R3 coming from h, the no-
tations d(h), d′(h) denote disjoint disk systems in R3 bounded by o(h), o′(h), respec-
tively, coming from h, the notations b(h), b′(h) denote disjoint band systems in R3

spanning o(h), o′(h), respectively, and the notation ℓ(h) denotes a link in R3 coming
from h. The band systems b,b′, b(h), b′(h) are made disjoint by band slide and band
thinning. In this normal form Ḡ1, the disk system h can be taken as

h ∩D × I = h ∩D′ × I = ∅,

because the defining 4-ball of the connected summand T in the connected sum F ′#T
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contains the union D×I∪D′×I and is disjoint from the 2-handles hj (j = 1, 2, . . . , s).

By a method similar to the process from G1 to G2, we have a deformation
≃
G1=

Ẽ ∪ E ′
n ∪ h of Ḡ1 with the same configuration as Ḡ1 such that

d(Ẽ) ∩ (∂E ∪ n(∂E ′)) = d(Ẽ) ∩ b(E ′
n) = d(Ẽ) ∩ b(h) = ∅,

although Ẽ may meet F ′#T . Now change the level of b(Ẽ)[−1] into b(Ẽ)[1] and the
level of d(Ẽ)[−2] into d(Ẽ)[0.5]. Then the disk union Ḡ2 = Ẽ∪E ′

n∪h obtained from
≃
G1 is as follows:

Ḡ2∩R3[t] =



∅, for t > 2,
(d′(h) ∪ d′)[t], for t = 2,
(o′(h) ∪ o′)[t], for 1 < t < 2,

(∂Ḡ ∪ ℓ(h) ∪ b′(h) ∪ o(Ẽ) ∪ b(Ẽ) ∪ ℓ(E ′) ∪ b′)[t], for t = 1,

(∂Ḡ ∪ ℓ(h) ∪ o(Ẽ) ∪ ℓ(E ′
n))[t], for 0.5 < t < 1,

(∂Ḡ ∪ ℓ(h) ∪ d(Ẽ) ∪ ℓ(E ′
n))[t], for t = 0.5,

(∂Ḡ ∪ ℓ(h) ∪ ℓ(E ′
n))[t], for 0 ≤ t < 0.5,

(ℓ(h) ∪ ℓ(E ′
n))[t], for −1 < t < 0,

(o(h) ∪ b(h) ∪ o(E ′
n) ∪ b(E ′

n))[t], for t = −1,
(o(h) ∪ o(E ′

n))[t], for −2 < t < −1,
(d(h) ∪ d(E ′

n))[t], for t = −2,
∅, for t < −2.

In the configuration of Ḡ2, the pair (Ẽ × I, E ′ × I) is an O2-handle pair on F ′#T

and hence equivalent to the O2-handle pair (E × I, E ′ × I) on F ′#T by Common
2-handle property. Let Ḡ2 = E ∪ E ′

n ∪ h. By a similar consideration from G2 to G3,

we have a deformation
≃
G2= E ∪ Ẽ ′

n∪h of Ḡ2 with the same configuration as Ḡ2 such
that

d(Ẽ ′
n) ∩ (∂E ∪ n(∂E ′)) = d(Ẽ ′

n) ∩ b(h) = ∅,

although the disk Ẽ ′
n may meet F ′#T . Now change the level of b(Ẽ ′

n)[−1] into
b(Ẽ ′

n)[1] and the level of d(Ẽ ′
n)[−2] into d(Ẽ ′

n)[0.5]. Then the disk union Ḡ3 =
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E ∪ Ẽ ′
n ∪ h obtained from

≃
G2 is as follows:

Ḡ3 ∩R3[t] =



∅, for t > 2,
(d′(h) ∪ d′)[t], for t = 2,
(o′(h) ∪ o′)[t], for 1 < t < 2,

(∂Ḡ ∪ ℓ(h) ∪ b′(h) ∪ o ∪ b′ ∪ b)[t], for t = 1,
(∂Ḡ ∪ ℓ(h) ∪ o)[t], for 0.5 < t < 1,
(∂Ḡ ∪ ℓ(h) ∪ d)[t], for t = 0.5,

(∂Ḡ ∪ ℓ(h))[t], for 0 ≤ t < 0.5,
ℓ(h)[t], for −1 < t < 0,

(o(h) ∪ b(h))[t], for t = −1,
o(h)[t], for −2 < t < −1,
d(h)[t], for t = −2,

∅, for t < 0.

In the configuration of G3, the pair (E × I, Ẽ ′ × I) with Ẽ ′ = Ẽ ′
n ∪ n(∂E ′) is an

O2-handle pair on F ′#T and hence equivalent to the O2-handle pair (E × I, E ′ × I)
on F ′#T by Common 2-handle property. Let G3 = E ∪E ′

n∪h. Since (D× I,D′× I)
is in R3[0], the disk system h is disjoint from the O2-handle pair (D × I,D′ × I),
although the disk system d′(h)[2] is isotopically deformed in R3[2] in Ḡ3. Thus, in the
configuration of G3, the pairs (D× I, E ′× I) and (E× I,D′× I) are O2-handle pairs
on F ′#T and disjoint from h. This means that the O2-handle pairs (D × I,D′ × I)
and (E × I, E ′ × I) on F ′#T are equivalent under 3-cell moves disjoint from the
2-handles hj (j = 1, 2, . . . , s) by Common 2-handle property. By the back surgery
from F ′#T to F on the 2-handles hj (j = 1, 2, . . . , s) on F ′#T , this means that the
O2-handle pairs (D× I,D′ × I) and (E × I, E ′ × I) on F are equivalent under 3-cell
moves disjoint from the 1-handles hj (j = 1, 2, . . . , s) on F . This completes the proof
of Theorem 1.1 in the case of a general surface-link F . □

This completes the proof of Theorem 1.1.

3. Proof of Proposition 1.2

The Finger move canceling is the following operation to cancel a double point of
an immersed disk D in R4.

Finger Move Canceling. Let D be an immersed disk in R4 with ∂D embedded,
and S a trivial S2-knot in R4 meeting the immersed disk D at just one point x
different from the double points of D. Let y be a double point of D, and α a simple
arc in the disk D joining x and y not meeting the other double points of D. Let dx
be a disk neighborhood of x in D, and dy a disk neighborhood dy of y in the 2-sphere
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S, regarding the disks dx and dy as disk fibers of a normal disk bundle over D in R4.
Let Vα be a disk bundle over the arc α in R4 such that (D ∪ S) ∩ Vα = dx ∪ α ∪ dy.
Then the immersed disk D1 with ∂D1 = ∂D is constructed from the immersed disk
D so that

D1 = cl(D \ dx) ∪ cl(∂Vα \ (dx ∪ dy)) ∪ cl(S \ dy).

The number of the double points of D1 is smaller than the number of the double
points of D by 1.

The 2-sphere S in Finger Move Canceling is called a canceling sphere. If there is
a canceling sphere S, then the immersed disk D is changed into an embedded disk
D∗ by Finger Move Canceling operations of parallel canceling spheres of S. By using
Finger Move Canceling, the proof of Proposition 1.2 is done as follows:

Proof of Proposition 1.2. By assumption, the immersed O2-pair (D × I,D′ × I)
on a surface-link F in R4 has D× I as an immersed 2-handle on F and D′ × I as an
embedded 2-handle on F . Let d′ be a small disk neighborhood of a point p′ ∈ D′ in
D′. By shrinking D′ × I as d′ × I, one finds a trivial S2-knot S in in R4 such that
S meets the immersed core disk D of D × I at just one point x different from the
double points of D and is disjoint from F and D′ × I. This 2-sphere S is used for a
canceling sphere for the immersed disk D. By Finger Move Canceling, the immersed
disk D is changed into an embedded disk D∗, meaning that the pair (D∗ × I,D′ × I)
is an O2-handle pair on F . This completes the proof of Proposition 1.2. □
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