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ABSTRACT. This paper defines local weighted Hardy spaces with variable exponent. Lo-
cal Hardy spaces permit atomic decomposition, which is one of the main themes in this
paper. A consequence is that the atomic decomposition is obtained for the functions in
the Lebesgue spaces with exponentially decaying exponent. As an application, we obtain
the boundedness of singular integral operators, the Littlewood—Paley characterization and
wavelet decomposition.
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1. INTRODUCTION

Motivated by Bui [3] and Tang [55], we define weighted Hardy spaces with variable exponents
and obtain some decomposition results for functions in Lp(')(w) as an application. A variable
exponent means a positive measurable function p(-) : R™ — (0, 00). Here and below the space
L°(R™) denotes the linear space of all Lebesgue measurable functions in R” and Ny = {0, 1,...}.

We begin with the definition of weighted Lebesgue spaces with variable exponents. Let w :
R™ — [0, 00) be a weight. That is, w is a locally integrable function that satisfies 0 < w(z) < oo
for almost all z € R™. As in [6, 11, 28, 35], for a variable exponent p(-) : R” — (0,00), the
weighted Lebesgue space LP()(w) with a variable exponent is defined by

LPO(w) = | J{f € L°(R™) = p ) (A1 f) < oo},

A>0
where
Py (1) = NP w]| .
Moreover, for f € LP()(w) the variable Lebesgue quasi-norm || - | v (w) 18 defined by
1 llzor oy = inf ({A> 05 py A1) <1} U {oo})
If w =1, we write LP()(1) = LPO)(R") and || - ey = I llzoco-
. w(E) .
We write w(F) = [ w(z)dz and mg(w) = TE[ for a weight w and a measurable set

E. We postulate on wEand p(+) the following conditions: As for the weight w, we assume

that w € A%°. The weight w is an A¢-weight, if 0 < w < oo almost everywhere, and

[W]ae = sup  mg(w)exp(—mg(logw)) < oo, where in the sequel Q stands for the set
Qe QI<1

of all compact cubes whose edges are parallel to the coordinate axes. The quantity [w] Aloe 18

referred to as the A%¢-constant. For the variable exponent p(-), consider two classes: The class

Po consists of all p(-) : R™ — (0, 00) such that

(1.1) 0 < p— = essinfyernp(x) < py = esssup,epnp(x) < 00,
1
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while the subclass P of Py collects all exponents p(-) satisfying p_ > 1. We consider the local
log-Holder continuity condition and the log-Holder-type decay condition at infinity. Recall that
p(-) satisfies the local log-Holder continuity condition (denoted by p(-) € LHy) if

(1.2) p(z) —p(y)|

Cx
P —
~ log(lz —y[~)

while the exponent p(-) satisfies the log-Holder-type decay condition at infinity (denoted by
p(-) € LHy,) if

1
for |x—y| < 3 z,y € R™,

*

c
1.3 T) — Poo| < —— for z € R"™
(1.3) p(z) = pool < Toa(e £ [2)
Here c,, ¢* and p, are positive constants independent of z and .

Based on the paper by Tang [55], who followed the idea of Feffereman and Stein [16], we
define local weighted Hardy spaces with variable exponents using grand maximal functions. To

this end, we recall the definition of grand maximal functions by Tang. Let L € Ny. The set
Pr(R™)* denotes the set of all f € LO(R™) for which ()L f € L*(R") and [ 2 f(z)dz = 0 for
R'ﬂ

all « € NP with |a| < L. By convention, we define P_;(R")* = L!(R"). Such a function f
satisfies the moment condition of order L. In this case, we write f L Pr(R™). If f L Pr(R™)
for all L € Ny, we write f L P(R™).

Let N € Ny, which will be specified shortly. Denote by B(r) the open ball centered at the
origin of radius r > 0. The set D(R™) consists of all infinitely differentiable functions defined
on R™ whose support is compact. Following [55, p.457], we write

DY (R™) = {p € DR")\ Po(R")" : 0% < vy lal < N +1},
Dn(R™) = {p € DR™) \ Po(R")" : [0%0] < xpasnsso), o] < N +1}.

Let f € D'(R™) and N be large enough. For ¢ € D(R") and t > 0, write ¢; =t "p(t71).
Define three local grand maximal operators by

/\/l(])vf(x) =sup{le* f(z)] : 0<t<l,p€ D?\,(R”)},

Mo f(x) = sup{lee * f(2)] : 0<t<1,¢pcDyRY},

My f(x) =sup{|p: * f(2)] : |z —z| <t < 1,0 € Dn(R™)}.
It is obvious that MQ f < ﬂ?vf < My f for any N € Ng.

We recall the notion of the class Ag’c of weights. Let 1 < p < co. A weight w belongs to
Aloc if
P

[w] g1oc = sup mQ(w)mQ(ufPlfl)p_1 < o0.
" Qeg It

The quantity [w] Aloe is referred to as the Alpoc-constant. Using the technique employed by
Rychkov [47], we obtain AR = [J Al°°. We set

q>1
gw =inf{p e [l,00) : w € A;OC}

for w € A%, Similar to Tang [55, p. 458], we set
N(_)w52+n qiw—l .
P min(1,p_)
Herein we assume

(1.4) N > Npyw-
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Here and below we use the following convention on the notation < and 2. Let A, B > 0. Then
A < B and B 2 A mean that there exists a constant C' > 0 such that A < CB, where C
depends only on the parameters of importance. The symbol A ~ B means that A < B and
B < A happen simultaneously, while A ~ B means that there exists a constant C' > 0 such
that A = CB.

The following theorem is the starting point of this paper.
Theorem 1.1. Let w € A%, Also let p(-) € Py " LHyg N LHo, and N € N satisfy (1.4). Then

— 0
MR P Er () < IMNFllLeor (wy < TMNFI oo )y S TMNF Lo )
for all f € D'(R™).

Note that Rychkov [47] proved Theorem 1.1 when p(:) is a constant exponent. Based on
Theorem 1.1, we define weighted Hardy spaces with variable exponents.

Definition 1.2. Let w € A°. Also let p(:) € Po N LHy N LH., and N € N satisfy (1.4). Then
the weighted local Hardy spaces h?() (w) = h?()-N (w) with variable exponents is the set of all
f € D'(R™) for which the quasi-norm

£ lhre (wy = IMN Fll oo (w)

is finite.

Note that the norm || - ||,») is independent of N in the sense that different choices of N
satisfying (1.4) yield equivalent norms.

The main purpose of this note is to investigate equivalent norms of 2?()(w). Among others,
we are interested in the characterization by means of atoms and their related norms.

Definition 1.3. Let w € A%, g € (0,00] and L € No U {—1}. Also let p(-) € Py N LHp N LHx,
and N € N satisfy (1.4).

(1) If ¢ > max(p+,qw) and L > [n (min?% — 1)], then a triplet (p(-),q, L) is called
admissible.

(2) Let @ be a cube with |Q| < 1. A function a € L%(w) is a (p(+), g, L),-atom supported
on Q if a € P (R™)*, a is supported on @ and satisfies llall Lagw) < w(Q)%

(3) Let Q be a cube with |@Q| = 1. A function a € L%(w) is a (p(+), g, L),-atom supported
on Q if a is supported on Q and satisfies ||al|fa(w) < w(Q)%.

(4) Assume w(R™) < oo, or equivalently, 1 € L'(w). Then we say that a function a is a
single (p(-), q)w-atom if [|al| pa(w) < w(R™)7.

If w =1, then subscript w is omitted in these notions.

For example, xg is a (p(-), 00, —1),-atom for any cube Q.

Unlike [55], we assume that the volume of the cubes for (p(-),q, L),,-atoms is less than or
equal to 1.

We remark that a single (p(-), ¢),-atom does not have to belong to Pr,(R")*. For example,
1 is a single (p(-), g)w-atom.
Definition 1.4. Let w € A%, p(-) € Po N LHy N LHy, v € (0,p_) N [0,1] and ¢ € (0, c0].
Let L € Z satisfy L > [n (mm‘(lﬁ — 1)} Then the weighted atomic local Hardy space
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hP()a:Liv (1) is defined as the set of all f € D'(R") satisfying that f = 3 Aja;, where ag
j=0

is a single (p(-),q)w-atom, each a;,j € N is a (p(-),q, L),-atom supported on a cube Q;,

{Ai}52, € Cand

Ap),wo (A 1521 {Q51521) = Z INil“xq, < 00.
=t Lr() (w)

The norm || f|/5p¢).0.2:0 () is defined as the infimum of [Ao| + Ap(y w0 ({A}5215{Q5}52,) over
all expressions of f above.

We will show that AP() (w) can be characterized via atoms by proving that, with an equivalece
of norms, the weighted atomic local Hardy space hP():4Li% (w) coincides with h?()(w) as long
as ¢ > max(qu,p+), v € (0,p-)N[0,1] and L > [n (L= —1)].

Theorem 1.5. Let p(-) € Py NLHy NLH, and N € N satisfy (1.4). Let v € (0,p_) N[0, 1].
Also let w € A and L € Z satisfy

(1.5) NZLE{n(%—l)].

Suppose that a parameter q satisfies
(1.6) max(qy,p+) < ¢ < 00.

Then hP()9:L:0 () 2 hPC) (w) with an equivalence of norms.

Let p(-) be a variable exponent with 1 < p_ < p; < oo. A locally integrable weight w is an
A;"(C,)—weight, if 0 < w < oo almost everywhere and

1
1.7 W] g0c = sup  —||x o X e < 00,
( ) [ ]Ap(*) Qco.ol<1 |Q| || QHLT’ (w)” Q“LP (o)

where ¢ = w P01 and p'(+) is the dual exponent given by p/(-) = pfgzl. If w e A;O(?y
then weighted local Hardy spaces with a variable exponent and weighted Lebesgue spaces with

variable exponent coincide as given in the following theorem.

Theorem 1.6. Let w € ALO(?). Also let p(-) € PNLHy N LHs and N € N satisfy (1.4). Then

RPC) (w) = LPO) (w) with an equivalence of norms.

It may be interesting to compare Theorem 1.6 with [24].
Note that Theorem 1.6 is proved by Rychkov [47] when p(-) is a constant exponent.

Thanks to Theorems 1.5 and 1.6, the following decomposition results on Lp(')(w) is given.
Here, the moment condition is not necessary.

Theorem 1.7. Let f € L°(R"), w € A;O(C,) and and L € NgU {—1}. Also let p(-) € PNLHy N
LHo. Assume that the parameters q and qq satisfy q,qo > py+ and o = w FOT € Ap()/4q-

(1) Suppose w € L*(R™). Then the following are equivalent:
M) f e 17O (w).
(II) There exist a single (p(-), q)w-atom ag and a collection {a;}32, C L°(R™), where
each aj,j € N is a (p(-),q, L)w-atom supported on a cube Q; with |Q;| < 1, and
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a collection {\;}32, of complex constants such that f = > \ja; in LPO) (w) and
3=0
that

ol + Ap(yw,t ({35205 {Q53520) = ol + [|D Nilxe, < 0.
J=1 LpO) (w)
(ILT) There ezist a single (p(-),qo)-atom ag and a collection {a;}32; C LO(R™), where
each aj,j € N is a (p(-),qo, L)-atom supported on a cube Q; with |Q;| < 1, and
o)
a collection {)\;}32 of complex constants such that f = > Aja; in LPO)(w) and
§=0

that

Aol + Ap(y,w1 (P12 {Q1520) = ol + | Y e, < 0.
J=1 LPO) (w)

In this case,

1 2o wy ~ 10f {Xo] + Apeywa ({A15215{Q53520) }
where each a; and \; move over all elements in L°(R™) and C to satisfy the conditions
of (IT) or (III).
(2) Suppose w ¢ L (R™). Then the following are equivalent:

M) f e IPO(w).
(I) There exist a collection {a;}32, C LO(R™), where each a;,j € N is a (p(-), ¢, L)w-
atom supported on a cube Q; with |Q;] < 1, and a collection {\;}32, of complex

constants such that f = 3" Aja; in LPO)(w) and that
j=1

i=1 L0 (w)
(IIT) There exist a collection {a;}32, C L°(R™), where each aj,j € N is a (p(-), qo, L)-
atom supported on a cube Q; with |Q;] < 1, and a collection {\;}32, of complex

constants such that f = 3 Nja; in LP)(w) and that
j=1

Ap(~),w,1({)‘j};i1; {QJ ;Dil) = Z |>\J|XQ] < 00.
j=1 LPC) (w)
In this case,
LAl 2 oy ~ E Ay w1 (2357205 {Q5157210),
where each aj and \; move over all elements in L°(R™) and C to satisfy the conditions
of (IT) or (III).

We verify that ¢ satisfying all the requirements in Theorem 1.7 exists (see Lemma 2.8).

The implication (I) = (II)/(III) is included in Theorems 1.5 and 1.6. We prove the impli-
cation (II)/(III) = (I).

Note that Theorem 1.7 overlaps with the previous studies on weighted Lebesgue and Hardy
spaces (w € Ap,p(-) is constant) [53, Chapter IIIV], Lebesgue spaces with variable exponents
(w = 1), [43, 48], Musielak-Orlicz spaces with general Young functions (®(z,t) = t*®w(x),
w € Ax) [29, Theorem 3.7] and mixed Lebesgue spaces [46, Theorem 3].
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Here, we briefly address the development of Hardy spaces with variable exponents along
with some related results. We also compare these works with the results obtained in this
paper. Meyer [42] established several equivalent wavelet characterization of H'(R™). Liu [41]
developed an equivalent wavelet characterization of the weak Hardy space H°°(R™). Wu [59,
Theorem 3.2] reported the wavelet characterization of the weighted Hardy space HP(R™) for
any p € (0,1]. Later Garcia-Cuerva and Martell [20] characterized H?(R™) for any p € (0,1] in
terms of wavelets without compact supports using the vector-valued Calderén—Zygmund theory.
See [36] for the wavelet characterization of dual spaces. Our results are new in the sense that
we do not assume p; < 1. For example, in [60], D. Yang and S. Yang assumed that ¢ is of
uniformly upper type 1, which corresponds to the assumption p; < 1. Note that the normed
space of sequences used in this paper differs from the ones in [55, 60]. In fact, as we mentioned,
in [55, 60] the authors assumed a condition corresponding to py < 1. In this case, arguing
similarly to [29, Theorem 3.12], we learn that the sequence norm Ap(.) w,o({A;}521, {Q;1}52,)
can be replaced by

A;Zp),w({/\j}?il’ {Q;152,) =inf A >0: Z/Q <|)\J|XQJ, (x)) w(z)dr <1
j=17Qj

Several approaches define Hardy spaces based on general Banach lattices or characterize them in
terms of wavelets. However, most require that the underlying Banach lattices be rearrangement
invariant or the Hardy-Littlewood maximal operator be bounded there. For example, see
[49, 50, 51, 54, 58] for example. We remark that our results do not fall under the scope of
[58] since F. Wang, D. Yang and S. Yang assumed the boundedness property of the Hardy—
Littlewood maximal operator. Nevertheless, the present paper is based on the idea of [55, 58].
Since the variable exponents and weights distort the function spaces strongly, we can not hope
for such a situation. Therefore, an alternative approach using the local Hardy—Littlewood
maximal operator, given by (2.1), is necessary.

The rest of this paper is organized as follows. Section 2 collects preliminary facts. Section
3 discusses the fundamental properties of function spaces. We prove Theorems 1.1 and 1.5 in
Sections 4 and 5, respectively. Section 6 is oriented to the applications of Theorems 1.1 and
1.5. We mainly discuss the boundedness property of singular integral operators. Section 6 has
some commonality with [25]. Section 7 is devoted to the Littlewood—Paley characterization
of h?()(w), which is a further application of the results in Section 6. Further examples and
the relations to other function spaces are provided in Section 9. Section 8 considers wavelet
characterization. In Section 10, we compare the definition of weighted Lebesgue spaces with
variable exponents. There are many attempts to extend the classical Muckenhoupt class to the
setting of variable exponents inspired by the works [8, 9, 13]. For example, see [5, 6, 10, 12, 14].
Here we consider the local counterpart of the work [14] and compare it with the results in [45].
We remark that [14] is a preprint. So, we gave details for the facts related [14]. However, our
results related to [14] are essentially minor modifications of [14].

2. PRELIMINARIES

Many tools are necessary to establish our results. First, we recall the notion of generalized
dyadic grids in Section 2.1. Section 2.2 collects norm inequalities. We establish some bound-
edness properties of the weighted maximal operator in Section 2.3. Section 2.4 refines the
openness property obtained by Hyténen and Pérez [27]. Section 2.5 is oriented to the bound-
edness of operators including their vector-valued boundedness. To establish the theory of the
atomic decomposition, we depend on the boundedness properties of some operators, which are
adapted to our class of weights. Thus, we will carefully collect the results on the boundedness
of operators. To develop the atomic decomposition theory, we consider the power of the normed
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spaces. This is necessary since p_ < 1. In Section 2.6 we transform our results obtained in the
previous sections to consider the case of w € A%°. Finally, keeping in mind that our character-
ization of h?()(w) includes the one by the Littlewood-Paley operators, in Section 2.8 we recall
some important inequalities obtained by Rychkov [47].

2.1. Generalized dyadic grids. Let
kaf{Q Flim+a/3,m+a/3+1) : m € 7}
for k € Z and a = 0, 1,2. Consider
Dra={Q1 X Q2% - xQn:Q;€D), =12, ,n}

for k € Z and a = (a1,aq,...,a,) € {0,1,2}". Herein, a (generalized) dyadic grid is in the
family Dy = |J Dg,a for a € {0,1,2}". It is noteworthy that for any cube @ there exists
kEZ
Re |J Dasuchthat @ C R and that |R| < 6™|Q|. Proving the boundedness property of
a€{0,1,2}"
the Hardy-Littlewood maximal operator or the local maximal operator M'°¢ defined by (2.1)
below, this property allows us to handle the operator MP= generated by D, instead of these
maximal operators. See (2.3) and (2.4), below. Recall that we can handle D, similarly for
other values of a € {0,1,2}" so that in particular, we consider the dyadic grid ® = Dy ;... 1).
Denote by ®y = Dy, (1,1,...,1) the set of all cubes in ® with £(Q) = 2~ k. Here, given a cube
Q, it is denoted by £(Q), which is the sidelength of Q: £(Q) = |Q|*/", where |Q| denotes the
volume of cube (. Two cubes @1, Q2 in © may intersect at a point but that the difference set

Q16 Q2= (Q1\Q2) U (Q2\ Q1) is not empty.
For f € L°(R™), we define the local (Hardnyittlewood) maximal operator M'°° by

(2.1) M (@)= sup / f)ldy (z €RY).

QeQ,QI<1 |Q|

Note that this definition is analogous to the Hardy—Littlewood maximal operator M defined
by

Y (+1C)) s e R
(2.2) M) = sup X /Q FWldy (xR,

Let MPa a <€ {0,1,2}", be the maximal operator generated by grid D, given by

(23) MP= f(z) = 2w @ern),
0ch, |Q\
Using the above property of the grid D,, a € {0, 1,2}", we prove
(2.4) Mf(x)<6" > MPf(x)
ae{0,1,2}"

for f € L°(R™). Once we prove the boundedness property of MP=, a € {0,1,2}" on LP") (w),
(2.4) yields the one of M. In [45, §4], we also establish that the boundedness property of MPa,
a € {0,1,2}" on LP0)(w) yields the one of M.
2.2. Weighted variable Lebesgue spaces. For any measurable subset (2 C R”, denote
P+ () = esssup,cop(x), p—(Q) = essinfycop(x).
Let p(-) satisfy 1 < p(-) < oo. If p(-) € LHy then p/(-) € LHy. Likewise, if p(-) € LHy, then
P'(+) € LHu. Furthermore, (poo) = (p')oo-

Recall the generalized Holder inequality.
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Lemma 2.1 (Generalized Holder inequality). Let p(-) : R™ — [1,00] be a variable exponent.
Then for all f € LPO)(R™) and g € LY O)(R™),

(2.5) 1f - gl < rpll fllzeo gl e
where

1 1 1 1
(2.6) rp=l+———=—+—<2.

p—  pr p- (P)- T

Now let us recall some properties for the variable Lebesgue space Lp(')(R”). The first one
concerns the norm growth.

Lemma 2.2. [14, Lemma 2.1], [43, Lemma 2.2] Let p(-) € P N LHy, N LH

(1) For all cubes Q with |Q| < 1, we have |Q|Y/P-(Q) < |Q|Y/P+(@). In particular, we have

1Q|L/P- (@ ~ |Q|L/P+(Q) ~ |Q‘1/p(Z> Ixollre -
(2) For all cubes Q with |Q] > 1, we have ||xg|lLrc) ~ |Q|!/==.

Next, consider the modular inequality.

Lemma 2.3. [10, Lemma 2.2], [44, Lemma 2.17] Let p(:) : R™ — [1,00) be a variable exponent
such that p, < oo. Then given any measurable set @ and any f € L°(R™), we have the
following:

Q) x
(1) If Ixafll oo < 1, then |[xaf|nstY 2)P@de < |xaf5S).

<V
() z Q)
@) If [Ixafllzoo > 1, then [[xaf[?; < [1f@)Pde < Ixaf 12t

For a variable exponent p(-) : R" — [1,00) and f € LY(R™), |[fllpocrwy < 1 if and only if
JU@P o<1

We apply Lemma 2.3 to compare w(Q) and ||xq |l r¢) (w)-

Remark 2.4. Let @ be a cube. In Lemma 2.3, let f = wﬁXQ to obtain the following
equivalence:

(2.7) IXQllLre) () 1= w(Q) < 1.

A direct consequence of (2.7) is the following:

1) If ||XQ||LP(‘)(U;) <1, then
Iel?: 2 < w(@) < lxel?:?

(

(28) Lp(.)(w) Lr() w)
(2) If ||XQ||LP(‘)(U;) > 1, then

)

p+(Q)

(2.9 ol @, < w(@) < Ixol25 P, -

Finally, recall the localization principle due to Hésto. We state it in a form we use in the
present paper.

Lemma 2.5. [23] Let p(-) € PNLHy NLHy and ko € Z. Then

1
Poo

£ oo ~ | D2 (xefllee)P

QEDk,
for all f € L°(R™).
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2.3. Maximal inequalities. For f € L°(R"), we recall the local (Hardy-Littlewood) maximal
operator M'¢ by

loc XQ(x) d R"
Mot = s X /Q F@)ldy (= €R).

We can replace M'°¢ by

MIOC,R XQ(:E) d R™).
fw=__sw XD [ iy @ew)

Here R > 0. Although M'"¢ is typically defined by (2.1), sometimes replace 1 by R as above.
This substitution avoids the self-composition of M!°¢ defined by (2.1). We remark that the
definition of the ALOC_ -norm is essentially independent of the cube size restriction. That is,
given an exponent p(-) : R™ — (1,00) with p_ > 1, a positive number R > 0 and a weight
loc,R - -
w, we say that w € Apo(?i if [w]ALO(%R = | slup 1QI M Ixel Lo () IX@ll L) oy < 00, Where
. Q|<R"
o = w~ PO as before and the supremum is taken over all cubes () € Q with volumes less than
or equal to R™. Then, w € ALO(?SR if and only if w € Ag’(‘_’). For more detail, see [45, Section 3.3].

Furthermore, we have
(2.10) 1M 1| o () S 1120 ()
for all f € LP()(w) whenever R > 0 and w € ALO(?)’l = ALO(‘?). For this reason, we subsume the

parameter R > 0 like this.

The next lemma is analogous of [10, Theorem 1.5]. In our earlier work [45], we established
that the class ALO(?) is suitable for this maximal operator.

Lemma 2.6. [45, Theorem 1.2] Let p(-) € PNLHyNLHu. Also let w be a weight. Then there
exists a constant D > 0 such that

(2.11) M 1l 1o ) < DI o ()
for all f € LPO) (w) if and only if w € A;"(‘f),

Define A!°¢ as the collection of all weights for which there exists a constant C' > 0 such that
M'"¢yw < Cw. The infimum of such C is called the A°°-constant and is denoted by [w] Aloc.

Remark that a similar remark for A;O(?) for R > 1 applies to A°°. We use the following local
reverse Holder property:

Lemma 2.7. Let w € AY°. If we set

1
€= 2T [u] y1oc >0,
then wite € Alec.
Proof. This is a local version of [27, Theorem 2.3]. We omit the further details. O

We collect some corollaries from (1.7) and Lemmas 2.6 and 2.7. As a byproduct, we learn
that ¢ satisfying all requirements in Theorem 1.7 exists. The next assertions are known for the
global Muckenhoupt class. However, the corresponding assertion for local class is missing. So,
we supply the proof.

Lemma 2.8. Let w be a weight and let p(-) € P NLHy N LH.

(1) The following are equivalent:
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loc
o wE /}p(,).
o w P01 € A;O,(({).

(2) Letw e Ag’(‘?). Then there exists € > 0 such that 1 + & < p_ and that w € A;)o(?)/(]:i»é:)'

Proof.

(1) This is an immediate consequence of (1.7).
(2) Let f € LPO)(w) \ {0}. We employ the Rubio de Francia algorithm. Then define

Mloc
=y B

where D > 0 is the constant in (2.11), (M'°¢)* denotes the k-fold composition if k > 1
and (M*)0f = |f|. Then F < M'°F < 2DF. Hence, F € A¥® and [F] e < 2D.

Due to Lemma 2.7, there exists a constant € € (0, p_ — 1) which depends on D and p(+)
such that Mo¢(F1+2)TH < 20M1°°F. Thus,

M| F172) T | oy < M (F2) 5 | Lo
< 2| MCF | 1ot ()
< AD|Fl re) (w)
< 8D| fllre) (w)-

Since f € LPC)(w) \ {0} is arbitrary, it follows from Lemma 2.6 that M'° is bounded
on LP()/(+2) (). Hence w € A O)/(14e)-

O

We use the following monotone property of the class ALO(?). The proof is postponed until
Appendix; see the remark after Corollary 10.3.

Proposition 2.9. Let p(-),q(-) € PNLHy NLHu. If q(-) > p(-), then AlOC) D AIOC

A clarifying remark may be in order.

Remark 2.10. Let p(-),q(-) € PN LHy N LH,. Combining the result by Diening and Hésto
[14] and the one by Cruz-Uribe, Fiorenza and Neugebauer [10], we learn that A,.) D A,
whenever ¢(-) > p(-). In this paper, we will follow the idea of [14] to prove Proposition 2.9.

We move on to the vector-valued inequality, which is an extension of [7] to the setting of the
Aloc_class.

Lemma 2.11. [45, Theorem 1.11] Let p(-) € PNLHyNLHy. Let 1 < g < 00 and w € A;"(?).
Then

1

00 a oo a

> (e ;) S
=1 j—
J LrO) (w) J Lr() (w)

for all {f;}32, € L°(R™).
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Proposition 2.12. [30, Proposition 2.11] Let 1 < q1,q2 < 0o. Assume that p(-) € PN LHo N
LH,, and w € Ag’(‘f), Then

oo oo H @ o0 oo H @
212) ||| DO | Do@rcs, )™ S DS gl
Jj2=1 \u1=1 ja=1 \ji=1
Lp(')(’w) LZJ(')(U;)

fOT all {fjl,jz};f,jzzl C LO(RH)'

2.4. Openness property—A variant of Lemma 2.7. Let R € ©. We set

= sup maq\r(w) exp (—mq\ r(logw))
QeD,|Q\R|>0

and define the class A2 .. is the set of all weights such that [w]3 o < 00. Next, we define

maximal operators ng and Mg’? as follows:

M}%fxf(x) = sup Xs\r(7)

IS\ R| fldy (zeR"),
sem,|s\r>0 |9\ Bl /5\R| (y)ldy  ( )

and
M2 f(x) = sup xs\r(2) exp(mg\r(—log|f])) (z €R™).

Here roughly speaking, “0” stands for the maximal operator based on the Lt (R")-average.
Following the idea in [27, Lemma 2.1], we investigate the maximal operators ng and Mg;? .
Note that by the stndard argument for the weak type estimate, we have

n 1
(2.13) {z € R"\ R : MR f(z) > A} < X eern\r: 2, p@)>0 f o @ r)-
By Jensen’s inequality, the layer cake formula and (2.13),
p
1M fller < IMRx fllzw < ;m”fHLP (1<p<oo)
for all measurable functions f.
Since
(2.14) M2 fI"] = (M2 )"
for all u > 0, we have
0,9 p P
M) 1 < [ —— 1
M2 s < (52) 1l
Letting p — oo gives
(2.15) M2 fller < el fllze
for all measurable functions f.
Lemma 2.13. Let R€ D, w € A?o Rrx» and

1

e
4r [w]Ai,RX

(2.16) ¢=1+

Then for all cubes Q € © satisfying |Q \ R| > 0,

(2.17) mo\r(w?)7 < 2mg\ p(w).
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Proof. Fix @ € ©. We can assume that w is bounded by approximating w with a function in
the form

Z ms\r(W)Xs\R;
SeD;(Q)

where D denotes the set of all cubes obtained by bisecting Q) j times. Let ¢ = ¢ — 1 and

i (Q)
= U D;(Q). When denoted by MP@) | the dyadic maximal operator given by

MP@ f(z) = sup xs(@)ms([f]) = sup  xs(x)ms(|f]).

SED(Q), 5 log, 13 ez 5eD(Q)ND

We use the layer cake formula to obtain
NP ygupul(e)w(ahds = [ 2 (@) R) N (317D xgupu] > AdA
Q\R 0
We suppose
A > mag\gr(w).

Consider the set of all maximal dyadic cubes {Uj};cn) in D(Q) ND in the set (Q\ R) N
{MP@ [xo\rw] > A} whose average of xg\ gw exceeds A. Then due to the maximality of each

Uj;, the grand parent Uj satisfies mlj(w) < A. Thus,

w((Q\ R) N {MP@[xqp\guw] > A}) w(U;)
4n )\ B Z

JjeJ(A)

< >l

jeIN)
=[(Q\ R) N {MP@[xq zuw] > A}|.

We also note that (Q \ R) N {MP@) [xo\rw] > A} C (Q\ R) for any A > 0. Thus,

(2.18) MP@y(z)*w(z)ds

<[ " @\ Ry (1P A
=~ ) e

bt [ NUQVR) N (AP @ gy pu] > Al
mQ\R(w)
4ne

1+ ~
<|Q\ Rl (mq\r(w)) "~ + MP Dxq\rw)(x)+da.
1+¢ Q\R
Since w € A® ~.Rx> We have
(2.19) ms(w) < on 1mS\R(X]R"\Rw) < [w]Afo . exp(mg\r(—logw))

for all S € D(Q) ND such that |S\ R| > 0.

A geometric observation shows

. on
D 0,9
(2.20) M (Q)[XQ\RUJ](JC) < o 1 [w]Ai,RX MRX w.
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Inserting (2.20) into (2.18), we obtain

MP @y (z)ow(x)dx

l4e  4Ame [ 2m e .
<IQ\RI(maue()' "+ 155 (52 olin ) [ MaPlguene) e

By the Lebesgue differentiation theorem and (2.14), we have

/ w(z) T edr
Q\R

l4e  Ame [ 2m e E
<10\ Rl (mae() "+ 155 (52 lin ) [ MRl @)

From (2.15)

4"ce 2™ e
1+ e € 1+ €
(221)  mgle () < (mg\r(w) +1+5<2n_1[wuiﬁx) m ()

Arithmetic shows

gn N\ N L\
=11 < |1 < e.
<2n—1) (+2n—1> —<+2n—1> =€

Since [w]y»  >1and 1+ ¢ =g, we have

oo, R
1
L " 4"+6[“’]A©
gre (2" (2 T AMwlae  ([wlae ) o0 R
< oo, R oo, R
1+€ (2”—1[w]A?o,RX> — (2n_1> 4n+6[w]AD +1
oo, RX
1 1
—ex -
= 512 P \an6e
1
< —.
-7

It follows that mq\g(w'*®) < (771Q\R(u)))1—~_E + ng\R(ng). Since w is assumed to be

bounded, 2¢ < 7 and 1+ ¢ = ¢, if we absorb the second term of the right-hand side of
(2.21) into the left-hand side, we obtain

1
mo\r(w?)7 < 2mg\r(w),
which proves (2.17).

2.5. The operator Kp. For B > 0, define a convolution operator Kp by
Kpf(x) E/ e Plrvl £ (y)dy

n

for f € L°(R") as long as the definition makes sense. We invoke an estimate from [30, Corollary
2.6).

Lemma 2.14. Let p(-) € PN LHy NLH. Let D be the constant satisfying (2.11). If B >
8n+ 6log D and w € A;"(?), then Kg is bounded on L) (w).

Recall that we used a pointwise estimate in the proof of Lemma 2.14. Thus, if we examine
its proof, then we can obtain a vector-valued inequality from Lemmas 2.11 and 2.14. Actually,
the following inequality can be proven using the local maximal operator, whose proof we omit.
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Corollary 2.15. Let p(-) € PNLHy N LHy. Let w € ALC’(?) and 1 < ¢ < co. Let D be the
constant satisfying (2.11). If B > 8n + 6log D, then

1
q

oo a %)
> IKpfl S 11
j=1 j=1

LrC) (w) LP(-)(w)

for all {f;}52, C L) (w).

We transform Corollary 2.15 into a form for later considerations by writing
(2.22) mjap(x) =1+ 2z)) el "B (z e R™)
for j=0,1,...and A, B > 0.

Corollary 2.16. Let p(-) € PNLHy N LHy and w € A}lgo(?). Let D be the constant satisfying
(2.11). If A>0, B>8n+6logD and 1 <r < oo, then

1 1
r

oo T

: fi—y) S
Y|P SE—Ady S
j=1 RrR™ m],A,B(y) j=1
Lr() (w) LrO) (w)
for all {f;}52, € LPO)(w).
Proof. Simply observe that
[fi(z— )| !
= —dy < Kp|fi|(z) + M°°f;(x
[y < Kl (@) + My )

forall z € R, j =1,2,... and A, B > 0 (cf. [47, Lemma 2.10]). Thus, we are in the position
to use Lemma 2.11 and Corollary 2.15. ]

2.6. Powered local weighted maximal operator. For 0 < u < oo and a weight w, define
the powered local weighted maximal operator Méu)’loc by

(u),loc ) = u XQ(x) U v 0/mn
Mgy = s (S5 [ rwrun)” e @)

We write Mlllj’c = MIE})’IOC.

We work in the Euclidean space with the weighted measure wdz.
Proposition 2.17. Let p(-) € PNLHyNLH. Let 0 < u < p_ and w € A°. Then
HMl(Uu),lon

< (-
ooy S o)

for f € LPO) (w).

Some lemmas and intricate arguments are needed to prove this lemma. First, we prove
Proposition 2.17 if the exponent is constant. Since 0 < u < p_, we can assume u = 1 by
a scaling argument. Since w € A w is a locally doubling weight. That is, w satisfies

w(bQ) S w(2Q) < w(Q) for all cubes @ with |@Q| < 1. In the case where p(-) is a constant
we can use the theory of general Radon measures in [56, Section 3]. In fact, we can replace

ML(U“)’IOC by the maximal operator given by

T (u — XQ('r) u n
W) = s (38 [ rlutay) (e R)
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Thus, the proof of Proposition 2.17 is complete if p(+) is a constant exponent.
Now we consider the case where p(-) is a variable exponent. We define
0] ~Ixalzormlxel
W] o = sup — : "
A3 Qeg Q] XQULrO) (w) IXQI L' () (5)

where o = w™ 7O is the dual weight. The class Af(.) collects all weights w for which [w]Ag(_) <

oo. Hence, we have only to deal with M2 instead of M!°¢ assuming that w € A%, instead of
w € A% by the use of a technique similar to that developed in [45]. Here, M2 stands for

D = su XQ(x) w 0(mn
MR = sp SO [ @)y (e )

First, we consider the case where f is unbounded to find a pointwise estimate of M2 f.

Lemma 2.18. Let p(-) € Py, w € AL and Q € ®. Let f € LPO)(w) be a non-negative
real-valued function with || || 1oy < 1. Assume f < f?. Then

(st L orwnan) ™ < (g [, 700 )

Proof. Fix x € Q. If

for all x € Q.

LR,
ol RACGRIOLEE

then the desired estimate is clear since

B

Otherwise, assume k > 1. Then f can be decomposed according to {y € R™ : f(y)
give

/ F(wyw(y)dy < k7 +— / F) v, oo]<f< )5 Yw(y)dy

(7 p(v)
(2.23) s / iy ) () dy.
Since w € AY, and
1
1<k= / 5 y< ——,
ik (@)
we have
(v) 1 1= 5
2.24 EL R ~ () o
(224 (@)

thanks to Remark 2.4 and the global counterpart to [45, Lemma 2.13], whose proof is similar
to the original proposition [45, Lemma 2.13]. If we insert (2 24) into (2.23), then

/f dy<kp(z)+7/f ( 5RO 5

p_ kp(z) (7
= kp ) / f

w(y)dy
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Thus, from the definition of k, we conclude

@ Jy o s (g L)f(y)?ww(y)dy)”t\

Recall that p; < co. Hence if we take the p(z)-th power of the above inequality, then we obtain

the desired result. ]
2.25 —=— -

(225) pe @)

(% fern)
s(z) ™ log(e + |z
for z € R™. Roughly speaking, the function s(-) measures how differs p(-) from poo. It turns

out that the log-Holder condition at infinity is transformed into the integrability of v*() for
small v > 0.

We define a variable exponent s(-) by
1 ‘ 1 1

Lemma 2.19. Let p(-) € Py, w € AL and Q € D. Let f € LPV)(w) be a real-valued function
with Hf||Lp<.>(w) <1. Assume 0 < f < 1. Then for all v € (0,1),

(@Lf(y)w(y)dyy(w) < (w(lQ)/Qf(y) p"(y)w(y)dyy + Mg [y
forallx € Q.

sC)
p_

J(z)P-

Proof. Fix x € (). We set

J1(¥) = Xip(y),00) (@) f(y),  f2(y) = fly) = fr(y)
for y € R™. Then f = f; + f2. Hence, we have

(2117(262) /Qf (y>w(y)dy>p(m) < ;Z (wz;) /Q fj(y)w(y)dyy(x).

As for fi, we have

v 1
(226) w0 L A< o | @y

< (@/@fl(y)p”(f)w(y)dy)m

< (w(lQ) /Q f(y)’ﬁy)w(y)dy):“”

by Hoélder’s inequality and the fact that fi(y) € [0, 1] and p(x) > p(y) for all y € @ such that
fi(y) #0.
As for fo, we define a variable exponent ¢(x,y) by
1 1 1
= — >0
a(z,y)  ple)  ply)

for all y € @ with p(z) < p(y). Then 2¢(z,y) > min(s(z), s

Y)), since

(
1 1 1 1 1
(g = s@) sy SO (s<x>’ <y>) '
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Thus, using the Hélder inequality and then the Young inequality, we obtain
p(z)

p_ 1 2p(z) p(z)
/Q fz(y)w(y)dy) <L /Q 5 ()5 w(y)dy

(2.27) (wz o)

w(Q)
< w(lQ)/Q (vw + f(y)i(y)> w(y)dy
< w(lQ)/Q (vi’(i) +75"<3) +f(y)p’“f)> w(y)dy.

If we use the Lebesgue differentiation theorem, then

s(x) a( )
(2.28) yP= < MP[y?

If we insert (2.28) into (2.27), then

em) (5 S [ ) (s [ 1™ widy) + MR Y,

Combining (2.26) and (2.29), we obtain the deswed result. O

We use the local log-Holder continuity at infinity to show that v*(") is integrable as long as
v < 1. We solidify this idea in the context of weights as follows:

0
Lemma 2.20. Let p(-) € PNLHyNLHy. If0 < v < 1 andw € A2, then M2 [y?- ] € LP-(w).

Proof. It suffices to show that

M2 [y7=](z)P~w(z)dz < co.
Rn
A geometric observation shows that M2 is weak L!(w)-bounded. As we mentioned in the
beginning of Proposition 2.17, M2 is bounded on LP-(w), assuming that p(-) is a constant
exponent. Thus, thanks to the log-Holder continuity, this is equivalent to

(2.30) / yCleeleteD () dz < oo

for some C' > 0. Note that (2.30) paraphrases [45, Corollary 2.14]. O

We conclude the proof of Proposition 2.17. Let f € LP() (w) with [ £1l L) (wy < 1. Combining
Lemmas 2.18 and 2.19, we have
)

M f(x)"™) S (MQHf()I ](@) M2y ()

for all £ € R”. Due to Lemma 2.20, the right-hand side is integrable with respect to the
weighted measure w(z)dx. Thus, we have the desired result.

()

2.7. Diening’s comparison principle. We invoke the following variant of the norm equiv-
alence due to Diening for weights that have at most polynomial growth. We remark that a
weight has at most polynomial growth, if w({y € R™ : |y| < |z|}) < (1 + |z|)V for some large
N.

Lemma 2.21 (cf. [14, Lemma 2.7]). Let p(-) € LHyNLHo NPy Also, let f € L (R™) satisfy
|f(2)| < (14 |z|)N for some large N. Suppose that a weight w has at most polynomial growth.
Then,

Q) I N llrerwy < A, then || fllLree (w) < Ca-
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(1) If [ fllzroe () < B, then |fll vy < CB-

Here, Cx and Cp are constants, which depend on A and B, respectively.

Proof. We let p(-) = min(peo,p(-)) and pf(-) = max(ps,p(:)). Denote by X the set of all
measurable functions satisfying | f(z)| < (1+ |z|)Y for some large N. We claim that there exist
constants K1, Ko, K3, K4 > 1 with the following properties:

(1) There exists a constant K1 > 1 such that || f||Ls0)(w) < K1l fllLe¢) () for f € LPO) (w).
(2) If f € LPO)(w) N X satisfies £l 2o (wy < 15 then || fll Lo ) < Ko.
(3) There exists a constant K3 > 1 such that || f|| Lrc) () < K3||f||LpT(_>(w) for f € Lpf(')(w).
(4) If f € LPO(w) N X satisfies 1 f1l o) (wy < 1, then ||fHLpT(.)(w) < Ky.

Once we prove (1)—(4), we obtain the equivalence as follows:

(i) Taking A as max(1, A), we can assume that A > 1. Suppose that f € LP()(w)N X with
[ fllLe¢)(wy < A. Then by (1) we have || fllzs¢) ) < K1A. Since K3A > 1, we have
(K1A)~'f € X. By using (4) for the exponent p(-), ||(K1A) ™" f|l pmaxtros 50 (1) < Ka-
This implies that || f||Lree () < K1K4A.

(ii) For the same reason as above, we can assume that B > 1. Suppose instead that
f e LP>NX with B > [|f]|1rec (w) = Hf|L,,]i,,(pwp“,))(w). Since B > 1, we have
||Bilf|Lnlax(poo,p(-))(w) < K3 by (2) Hence (KQB)71f|Llnax(poo,p(»)>(w) < 1. This
implies that || f|| Lsc) () < K2K3B by (3).

So, let us prove (1)—(4).
(1) We prove LPO) (w) < LPC)(w). Let 1/p(-) = 1/#(-) + 1/p(-). To this end, we claim
/ N @ap(z)dz < oo.
Once this is proved, we have LP()(w) < LPC)(w) = L™nP=r() (1) by the Holder

inequality and the fact w € L7C)(R").
Note that

1 { 1 1 0} < 1
—~=max(— — —=, 00 T .
() P P() log(e +-1)
Thus, 7(-) 2 log(e + | - |). Consequently, assuming that 7(-) < co everywhere (since it
is trivial that 1 € L (w)), for small A € (0,1), we have

/ N @ (z)dx < Z(e + j)clerw(B(j)) < oo.
n j:l
(2) Suppose that f € LP()(w) N X satisfies [ £1l 250> (wy < 1. Since | f(x)] < (1 + |z,
|f(x)‘p(1)*z3($) <(1+ |z|)N(p(w)*ﬁ(I)) < max(1, eNC*).
Here, we use the estimate
(1 + |z|) @@ =P = max (1, (1+ |x|)%rﬁ<z>) < max (1, 1+ |x|)—log<;im>> <e

by the log-Hélder-type decay condition. This proves that
/ |f () [P@w(z)de < max(l,eNc*)/ |f(2)|P@w(2)dz < max(1,eN¢).

Thus’ Hf”LP(')(w) < Ces.
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(3) Define an exponent 74(-) by
1 1 1

) p() ()
We claim that 1 € L"t()(w) if weight w has at most polynomial growth.
Note that

1 1 1 1
=maxq—— —,0p S ————.
ri() p()  Poo log(e +-1)
Thus, r+(-) 2 log(e + | - |).
Assuming that r;(-) < co everywhere (since it is trivial thati 1 € L>°(w)), for small
A€ (0,1), we have

/n A"t @ (2)dx < Z(E + 7)1 w(B())) < oo

j=1

Consequently, since w € Lt ()(R"), we have LPO) (w) = LPt() (w) = L™@x(Peo:r()) (1)
by the Holder inequality.
(4) Since |f(z)| < (1 + |V,
|f(2)|Pr@=P@) < (1 4 |2|)NP1@=P@) < max(1, Vo).

This proves that

/ ‘f(ac)|m(w)w(x)dx < max(l,eNc*)/ |f(x)|p(l)w(m)dx < max(l, eNc*)'

n

Hence, we have |[f|t¢) () < Ce..

O

2.8. Inequality in D(R™). In this subsection, we prepare some lemmas by Rychkov [47].
Especially, these lemmas play an important role to consider the Littlewood-Paley and wavelet
characterization. (See Section 7 and Section 8, respectively.)

First, we recall the following lemma on the moment condition of functions:

Lemma 2.22 (Grafakos [21, p.466] or [22, p.595]). Let pu,v € R, M, N > 0, and L € Ny satisfy
v > and N > M + L+ n. Suppose that ¢,y € C*(R™) satisfies
ou(n+L)

« <
9% 00 @) < Ao g,

5 Jforall |a| = L.

Furthermore, suppose that ¢, is a measurable function satisfying

21/7l
” —z,)Pdx =0 WG| <L—1, and |, <B ,
an ¢( )(:v)(:v x ) €z fOT’ a |B| = an |¢( )($)| = (1 +2V|$ _l‘yDN

where the former condition is supposed to be vacuous when L = 0. Then it holds

| G @
R™

with a constant Ca,, p,r,m N taken as

< Ca,prarn 28 VWL 4 2 g, — )M

Ay \ wa(N—M~L
3 ( )

ol | N—M—-L—-n’
|a|=L

Ca,.BrLunN=DB

where w, denotes the volume of the unit ball in R™.
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We also recall the decomposition formula of Dirac’s delta and invoke [47, Theorem 1.6]. Note
that for p € D(R") and t > 0, we write ¢, =t "p(t~1.).

Lemma 2.23. Let L € NU{—1,0} and ¢ € D(R")\ Py (R"). Then there exist ¢*, 1, * €
D(R™) such that

0 =0—276(3), ¢ EPLRY), Gxv+d 05 K, =0

j=1
in the topology of D'(R™).

Remark that if ¢ is even (resp. radial) then the actual construction in [47, Theorem 1.6]
shows that ¢*, ), * are even (resp. radial).

Furthermore, in [47, Lemma 2.9], Rychkov proved the following estimate for the functions
which are constructed in Lemma 2.23:

Lemma 2.24. Let A,B,r >0 and L € NN[A, ). Then in Lemma 2.23, for all j € Ng, t >0
and f € D'(R™),

|Ga—st x f(2)]"
< 2jn/ |$o—s¢ * fla — y)|’”dy I Z 2kn+(j*k)(L+1)T/ |93-xy * [l — y)|’"dy

mj,Ar,Br(y) n mj,Ar,Br(y)

k=j+1
and

163, % F@)]" S szn+<j—k><L+1>r/ 105 xS =)l

k= n mj Ar,Br (y)
In particular,
bk f(x—y)”
sup
yeR™ mj Ar,Br (y)

< 2jn/ |$a-is * flz — y)l’”dy n i 2kn+(j—k)(L+1)r/ T A 3/)|Tdy

mj,Ar,Br(y) n mj,AT,Br(y)

k=j+1
and

sup
yER? Mg Ar,Br (y)

|¢;*J‘t * f(l' - y)|T 5 i 2kn+(j—k‘)(L+1)r/ |¢;*kt * f(x - y)|rdy
g n mj,Ar,Br(y)

In fact, these estimates hold if the function ¢ in the right-hand side is replaced by a function
having similar properties.

Lemma 2.25 ([47, Theorem 2.5]). In addition to the assumptions in Lemmas 2.23 and 2.24,
let ( € S(R™). Then j € Ng, t >0 and f € D'(R"),

|Goe  f(2)]"
< an/ |pa—i¢ x f(x — y)‘rdy + Z 2kn+(j—k)(L+1)T/ ¢35 x, * [ — Z/)|Tdy_

mj,Ar,Br (y) k=j+1 n mj,Ar,Br (y)

3. FUNDAMENTAL PROPERTIES OF hP()(w) (INCLUDING THE PROOF OF THEOREM 1.6)

Here, we investigate the structure of h?()(w). We first verify that D’(R") is a suitable space
to consider hp(')(w). Note that Propositions 3.1 and 3.2 are proved by Tang [55, Propositions
3.1 and 3.2] when p(+) is a constant exponent in (0, 1].
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Proposition 3.1. Let w € A%, If N > Ny, then the inclusion h?()(w) — D'(R") is
continuous.

Proof. The proof is the same as that in [55, Proposition 3.1], where we take the LP(")(w)-norm
instead of LP(w)-norm. O

Proposition 3.2. Let w € A'%°. If N > Ny, then hPC) (w) ds complete.

Proof. This is a direct consequence of Proposition 3.1. The proof is similar to [47, Lemma
2.15]. Here, we omit the details. O

We prove Theorem 1.6.

Proof of Theorem 1.6. Let f € h?()(w). Take ¢» € D(R™)\ Py(R™)+. Write ¢y =t "1h(t1-) as
before. Then {1y * f}i>0 is a bounded set of LPO) (w) = (LP' () (¢))*. By the Banach-Alaoglu
theorem there exists a sequence {t; };";1 decreasing to 0 such that {¢;, * f }Joil converges to a

function g in the weak-* topology of LP()(w). Meanwhile, it can be shown that ltiig Vex f=f

in the topology of D'(R™). Since the weak-* topology of LP(")(w) is stronger than the topology
of D'(R™), it follows that f = g € LP()(w). O

4. PROOF OF THEOREM 1.1

From the definition of the three local grand maximal operators, it suffices to handle the most
right-hand inequality. That is,

IMNFll o6 () S IMIFI £ () -

Let L € N be sufficiently large. Fix 2 € R™ for now. Let (z,t) € R satisfy [z — 2| <t < 1. Fix
¢ € D(R™) \ P and take ¢*,9,9* € D(R™) as in Lemma 2.23.

Then

pox [(2) = lpex i =+ 2)] x dux f(@) + D o ¥ 35, (- =+ 2)] % B35, % ().
j=1

Let A> 2, B > M and assume L € NN (A, 00). By the assumption on N, we can
assume that

— > Guw-
,
By the moment condition on ¢* and ¥* and the equality ¢* = ¢ — 27 "¢(271),
My f(x) = sup e * f(2)]

(z,t)ER™,|z—z|<t<1

< 9—i(L—A)r  rloc / sup ‘¢2—.7’t_* f— y)|r dy| (z
jz:;) e te(0,1] (1 + 27[y|)Ar2lvIBr (@)
< Z 2 (L= Aot o K, | sup g % f|7| (2)
=0 te(0,1]

< M 0 Kp, [(MEF)] ()}

If we use Lemmas 2.6 and 2.14, we obtain the desired result.
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5. PROOF OF THEOREM 1.5, INCLUDING THE IMPLICATION (II)/(III) = (I) IN THEOREM
1.7

The proof of Theorem 1.5 has two parts. One controls the sum of atoms by the norm of
hPC) (w) (Sections 5.1 and 5.2). The other decomposes the distributions h?()(w) into the sum
of atoms (Section 5.3).

5.1. Some norm estimates. Here and below we write

(u) _Ixefllzew)
m ==~

="
for a cube @, 0 < u < oo and f € L°(R™). We establish the following key estimate for the
proof of Theorem 1.5 and the proof of the implication (II) = (I) in Theorem 1.7:

Theorem 5.1. Let p(-) € PN LHy N LHy and w € A, Assume that (u,v) € (0,00) x
((0,p—)N10,1]) satisfies uv > py. Suppose f; € L (R™) which is supported on a cube Q; with
|Q;| <1 for each j. Then

SIsl S Ap ({20 4Q51320)-
- LrO) (w)

It is noteworthy that the case where v = 1 < p_ proves the implication (II) = (I) in
Theorem 1.7.

Proof. Write P(-) = % and ¥ = w PO-T. Since p_ > v, P > 1. By duality and the
definition of P(-), the matters are reduced to the estimate

v

60 | [ S 5@l | S A 5)Y2AQ (Tl o))
j=1

1

v

for all g € L°(R™). Since the functions in the summand of the left-hand side are non-negative,

/| S h@lla@ies ) = (3 [ @ Plgtaias

v

=

el

£ (@) g (@) w ()~ w(z)de

Il
T
?\

By the Hoélder inequality, we have

/Rn 2@ lg()ld

Using the powered weighted local maximal operator M. (“/)’IOC, we have

=

S |-

IN

S w(@)m) L (f1)mG, (g™
j=1

D Ifi(@) g (@)|de Z W(IF51)xQ, (@MED 1 (guwh) (2)w () da
Rn %
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By the Holder inequality for Lebesgue spaces with variable exponents (see Lemma 2.1), we have

[ 6l

1

v
LP'C)(D)
1

LP’<->(w))

Recall that we assume wv > p;. That is, P < u. Hence (P')_ > u’. Since w € A, by
Proposition 2.17, we have

ES u v\ 00 e’} u’ —
<2t {Am.),w,l({mgj,w(fﬂ N2 Q) || Mo (g

(52) = 2%Ap(),w7v({m8]v,2u(fj)};ilv {Qj};)il) <HM1SJUI)’1OC(QUJ1)‘

1
o

IV (g™ oy = (M lgw™ [ T g ()™
S ngilnLP’(-)(w)
(5.3) =gl cr(s)-
Combining (5.2) and (5.3), gives (5.1). Thus, the proof is complete. O

As mentioned, the implication (I) = (II)/(III) is included in Theorems 1.5 and 1.6. Now
let us prove the implication (II)/(III) = (I).

We rephrase and prove the implication (III) = (I) of in Theorem 1.7 as follows:

Theorem 5.2. Let p(-) € PNLHy N LH,. Also let w € ALO(?) and qo > py. Assume that

o= w O € A;‘?‘(ﬂ)/qé If we have a collection {\;}52, of complex constants and a collection
{a;}52, C L%(R™) such that each aj, j € N is a (p(-), o, L)-atom supported on a cube Q; with
|Q;] <1 and that

o0
Apawi (I 1520{Q51520) = ||D INlxe, < 00,
J=1 LpO) (w)

then
f = Z )\jaj
j=1

converges in LPU)(w) and satisfies

(5.4) 1A 2o ) S Ap(ywa ({A 1521 {Q53521)-

Unlike Theorem 1.7, we do not have to distinguish two cases. In fact, if qo > ps and
w € LY(R™), then L% (w) C LPO) (w).

Proof. We can assume that each a; is a non-negative function and each \; is a non-negative
real number. We dualize the conclusion

(5-5) . f@)g(@)dz S Ape) w1 ({15720 4Q5 172019l Lo ) (0

where g € LO(R"™) is a non-negative function.
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Using Holder’s inequality twice, we have
/Rn > Ajaj(@)g(a)de </ Z)\ me (a;) mg’“)(g)xczj (z)da
j=1
1
</ ZA i3 (@))% xo, (2)da

N
S Ap().ant (1520 {QiFZ DN (M [g®]) % || o (-

Since go > p+(> 1), we have ¢ < p’_ = (p4+)’. Since we assume o € A;‘E Vb

(5.6) 1M [g®]) % || a5 0y S N9l Lo -

If we insert (5.6) into the above expression, we obtain (5.5). O

5.2. Proof of h?()aLiv (1) < hP()(w). The following estimate is a passage of [55, (3.2)] to
the setting of variable exponents. Recall that

quw
= _ -1 .
Notyw =2+ [” (min(l,p_> ﬂ

Lemma 5.3. Let w € A% N LYR") and p(-) € P N LHy N LHy, We assume that q¢ >
max(qy, p+). Let a be a single (p(+), q)w-atom. Then HMN a||Lp< w) S 1

Proof. Since ¢ > qu, w € AIOC. Thus, /\/lO , 1s bounded on L7(w) ([55, Proposition 2.2]).

Define an exponent r(-) by 1/p( y=1/q+ 1/r( ) while recalling that ¢ > p. Using the Holder
inequality (see Lemma 2.1), we have

IMR, () @l ooy S TMR, L allzac xee Lo )
1
S llallzaqu) [Ixen | 2ro )y < wR™) 7 [ xRA || Lro) () S 1-
This is the desired result. O

Tang pointed out an important feature of M?vp(,> Lafor (p(),q, L)y-atoms a.

Lemma 5.4. [55, (3.3)] Let w € A and p(-) € PNLHoNLHu. Suppose L € ZN[—1, Np(.).w]
and q > qy. Let a be a (p(+),q, L)w-atom supported on a cube Q = Q(xg,r) with |Q| < 1. Then

n+L+1

(5.7) M, ae) S (MPoyq(a))
forz € R™\ 2Q).

Here we recall the proof of Lemma 5.4 since we must rephrase in terms of the local maximal
operator.

Proof. If x € R™ \ Q(zg,4n), then M?Vp(_) wa(sc) = 0. So, we assume that z € Q(zg,4n) \ 2Q.

Let » € DY,. By the support condition of a, if suppa Nsupp pi(z — -) # ¢, then r < ¢ and
|z —x0| < 2t. Let P be the Taylor expansion of ¢ at the point (z — x¢)/t of order L < Np(.y .
Since a is a (p(+), ¢, L)w-atom, we have

arp@l=[e [ ot (o (55) -2 (55 ).
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Thus, by the Taylor remainder theorem,
(58) axprla)l s [ Jaw)
Q

By the triangle inequality and Holder’s inequality,

la % 01(2)] < | — 2ol "L (@) /Q la(y)\dy

L+1

o —Y dy

t

< Jo — 2ol Q) ] gy ( /Q w(y)qldy)

<l — 2o " P Q) Q) ( /Q w(yrwdy)

q

S (0 xg(0) ™ |l wl@)F ( / wly) 1ay)

Since w € Alloc, we have

oc n+L+1
lax pi(2)] S (MPxq(x)
If we take the supremum over ¢ € (0, 1), then the desired inequality is obtained. O

Keeping Lemma 5.4 in mind, let us prove the one inclusion of Theorem 1.5. That is, we will
prove hP()aLiv () s hPO) (w).
We start with the setup. Let u > 0 satisfy
max(qy,p4) < uv < q.
Since w € ALO(?) and ¢ > qy, w € A}IOC thanks to Proposition 2.9.

Let f € h?()¢Lv (). We suppose that w(R™) < oo. Otherwise we can modify the proof

below. There is a decomposition f = > Aja; + > A;b;j, where ag is a simple (p(-), q)w-
3=0 j=1

atom, each a;, j € Nis a (p(-),q, L),-atom supported on Q; = Q(z;,7;) with r; < 1/2, each

bj, j € Nis a (p(-),q, L)w-atom supported on R; = Q(z;,1/2) and coefficients {);}52, and
{AL}32, satisfy

Xol + Ap(yw,o ({15215 {Q53521) + Ap(yw,o (A} 5215 { R }521) < oo,

By the triangle inequality, the sublinearlity of M(J)V,,M,w and Lemma 5.4, we have

0
MNp<->,wf

o0 oo
0 0 0
= |)‘0|MNp<->,wa0 + Z |)‘j|MNp<-),waj + Z |)\;‘MNp(->nu bj

j=1 j=1
e L 0o o0

S oM, a0 + D NI X, )7+ D Njlxeg, M Ca; + Y INIMY b
j=1 j=1 j=1

The first term is controlled by Lemma 5.3 as

(5.9) M,

w0l Loy ST

To handle the second term we use

&=

oo oo

n4+L41 n+L4+1
DN X, )T < D I X Gy )Y
j=1 j=1
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We recall that v < min(1,p_) and that (1.5) holds. Arithmetic shows that

L+1 w
vuzg(n+l+[n(q—fl)})>qw21,
n n v

and that

L+1 — w
L5 P st [ (2 1)) 5 s s
n n v

So we can use the vector-valued inequality of M!°¢ for weighted Lebesgue spaces with variable
exponents (see Lemma 2.11) to give

n4+L41

S Ap(~),w,v({/\j}?il; {QJ}?:l)

(5.10) >IN Xy 1))
J=1 LP(')(w)

For the third and fourth terms, while recalling that M?Vp(_),wbj is supported on 20nR;, we
use Theorem 5.1 to deduce

(5.11) 3 Nilxeq, Ma; < Ay ({Amse) (M0 }5215 {20,152,
J=1 LpC) (w)

and

(5.12) | DCINIMSK b < Ay (M (M1°b;)}52 13 {200 R;}52,).

We estimate mgﬁ) (M"¢qa;). Recall that ¢ > q,,. Hence, M is bounded on L(w). Since
we assume that 1 < uv < ¢, we choose r € (0,00) such that H = E + ;. Then, using the
Holder inequality and the condition of the (p(-), g, L),-atom, we have

1
m(QZ?U]{ (Mlocaj) = m ||X2Q7 MlocajHLuv(w)
1
- w(Q])i ||M10Caj||Lq(w) HX2Q1“ L7 (w)
1 N .
S w7 s 10, 1) < g v @) @) =1,

A geometric observation shows that x2q, S M IOCXQJ.. By virtue of Lemma 2.11 and Theorem
5.1 along with the above estimate, we obtain

> ilxeq, M'a; < Ao ({Amsy, (M0 1525 {2Q5152,)
=t LPO) (w)
Ap('),wm({)‘j}ﬁl%{2Qj}]gi1)
S Ap() e ({1521 {Q51521)-
In total,

(5.13) > Nilxag, M, S Ay ({1725 {Q515724)-

J=1 LpO) (w)
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In a similar fashion, we estimate the right-hand side of (5.12). The result is

(5.14) D INIMR L0 S Ap o (N30 R 1520)-
j=1 LP(')('w)

Combining (5.9), (5.10), (5.13) and (5.14), we obtain the desired result.
Let us reexamine the above proof to polish the conditions on atoms.

Remark 5.5. Let v € (0,p—-)N[0,1] and so = [n (L — 1)L_. A close inspection of the proof
shows that the condition on the atom a; may be relaxed. It suffices to assume each a; satisfies
the pointwise estimate

ntsgtl

(5.15) la| < lajlxaq, + (M*°xq,) ™

and the norm estimate [|a;x3q, | £s(w) < w(Qj)% for ¢ < oo. In fact, using the same argument
as Lemma 6.7 below, we can establish estimate (5.7) under a milder condition (5.15). Thus, it
is not necessary to assume that each a; is compactly supported. Instead, a weaker assumption
(5.15) is sufficient.

5.3. Proof of h?():¢Lv(yw) <> hP()(w). Let us consider the decomposition following [55, pp.
461-462]. Set f € D'(R™) and A > 0. We set
M ={zeR”: Myf(z)> A}

Here and below, consider a distribution f € D'(R™) such that w(€,) < oo for all A > 0. From

the Whitney decomposition {Qg }rex of 2y, a decomposition Q) = |J @y such that
kEK

diam(Qy) < 27" Cdist(Qr, R™ \ Qy) < 4diam(Qy) (k € K)

and that the overlapping property is satisfied as
Z X(1+27”710)Qk 5 1.
keEK

Fix k € K. Set

(5.16) Qr = Qax,ly), Qf=(1+2""1)Qs.

Let £ € C*°(R") be a bump function such that xg(142-n-11) < & < X@(142-n-10). Define § =

§(_l—f’f) and nr, =& + Y. &. Choose a polynomial P, € Pr(R™) so that (f, Q&) = (P, Q&)
leK

for all Q € Pr(R™). Set by = (f — Pi)n foreach k and g= f — > by. Thus, f =g+ > bg.
keK keK
We invoke the following estimate from [55], which uses the maximal operators M%, and M.

Lemma 5.6. [55, Lemmas 4.3 and 4.5] Let L € [0, N)NZ. Then there exists D > 0 such that,
for all k € N,

n4L41

MUbe S XQu MN f + Mxo,0) (IQK) (M xq,)

Since we have the vector-valued boundedness of M'°¢ (see Lemma 2.11), taking the norm on
both sides gives a norm estimate for the bad parts.

Corollary 5.7. Let w € A% and p(-) € Py N LHy N LHy. Let v € (0,p_) and ¢ > q,. Let
L,N € 7Z satisfy

(5.17) N>L> [n (@—1)].

[
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Then

(5.18) (Z(M?ka-)”) S Ml -

kex LrO) (w)

In particular, if v <1, Y by converges in h?")(w). Hence it converges also in D'(R™).
kEK

Proof. Using Lemma 5.6, we estimate
1

(Z(M(])ka)v> ”

keK LPO) (w)

5 (Z (XQ;;MNf+)\X(O’D)(‘Qk|)(M10CXQk)n+7€:+1) >

kEK Lr0) (w)

We remark that p_ > v. Using the constant sequence {A}rck, the triangle inequality, the

vector-valued inequality (Lemma 2.11) and the fact that {Qg }rex is a Whitney decomposition
of Qy ={z € R" : Myf(x) > A}, we have

(Z(M?ka)”>
keK Lr(O) (w)

1

N (Z (XQZMNf)v> U + Ap(y, w0 ({ A rer; {Qr b rex)

keK
S ||MNf||Lp(->(w) )
proving (5.18).

Lpr()(w)

Now assuming that v < 1, we can easily prove that > by converges in h?()(w) since
keK

> M

keK

S (Z(M%bk)”> SIMNFllee) )

keK

Lr() (w) LrG) (w)

Concerning condition (5.17), a helpful remark is in order.

Remark 5.8. Let ¢ > 1 and py > 0. Due to the right-continuity of the function v € (0, 00) —
[n(£—1)] €R, for an integer L, there exists v € (0,po) such that L > [n (% — 1)]+ if and

only if L > [n (pio — I)L_.

Having guaranteed the convergence of Y by in D'(R™), we can employ another estimate by
kEK

Tang, which uses M, and M!°¢ only.
Lemma 5.9. [55, Lemma 4.8] Let L € [0, N) NZ. Then
n+L+1

Mg S xema, MY S + A Z (M'*xq,) "~
kEK

A direct consequence of Lemma 5.9 is:
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Lemma 5.10. Let w € A% and p(-) € PoNLHo NLHy. If L € [0, N), then g € LP+% %« (w).

Proof. Using Lemmas 2.11 and 5.9 as well as the fact that {Qx }rex is the Whitney decompo-
sition of 2y, we estimate

S [xema M f + A Z M'ox )H{:H
kEK

"g Hmln{M?VfV >\}||LP++Q'(U (w) *

HM(I)\/'g”Ler-%—qW (w) ~

LP+Taw (w)

Note that
min{M% £, A} € et ( )N L°(R™) € LP+T9w (w),
In fact, with the implicit constant depending on A,

min(\, MO f(2))P+ e da < / M f(@)P@Pdz < oc.
RTL

Rn

Since min(A, MY f) € LP+T (w), M% g € LP+T9 (w). Hence g € hP+T 9w (w) = LP+T9w (w)
thanks to Theorem 1.6 and the fact that ¢, > 1 and p_ > 0. |

Next, let us look for a dense subspace of hp(')(w)7 which consists of regular distributions.
Specifically, we are interested in distributions in hp(')(w) which are realized as a function in
L*(w) for some u > 1. A certain dense subspace which is included in L°(R™) is needed to
consider the wavelet characterization in Section 8 below.

Using the same argument as [55, Lemma 4.9], where Tang assumed f € L!(w), then we see
that g is essentially bounded if f € LP+19% (w). We summarize this observation as follows:

Lemma 5.11. [55, Lemma 4.9] Let p(-) € PoNLHy NLHy. If N > 2 and f € LP+ T (w),
then g € L=(R™) and satisfies ||g||re S A.

Lemma 5.12. Let w € A% and p(-) € PyNLHoNLHy,. Then the space h?() (w)NLP++aw (w)N
L>®(R™) is dense in h?C) (w).

L+1_ p_ "
p L+l p<n+1+{n(@_1)]>>qw_
n n min(1,p_)
by,

Let f € h?O)(w) and g = f — By the subadditivity of MY,

Proof. Let L € Ny satisfy L > [
>

1f = gllnror wy = IMELF = glll o) o

S M

keK

LT’(')(w)
Recall that {Q}rek is the Whitney decomposition. Using Lemmas 2.11 and 5.6, the triangle
inequality and the Holder inequality, we obtain

3 o Maf+ > A0y (IQk) (M xq,)

keK keEK

||f g”hl’( )(w)

5 ||XQ>\MNf+XQ>\/\||LD(-)(w)
SJ ”XQ)\MNfHLp(-)(w) .

If we let A 1 oo, then we obtain g — f in A?)(w). Since g € LP++ (w) N L®(R™) N h*0) (w)
thanks to Lemmas 5.10 and 5.11, we obtain the desired result. O
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As Tang noted, if w € L'(R"), there is a standard method to create single (p(-), 00),,-atoms.

Lemma 5.13. [55, Lemma 5.4] Let p(-) € PoNLHyNLHy. Assume that w(R™) < oo and that

g > max(qu,p+). Then there exists a constant Dy > 0 with the following property: Suppose

that A > 0 satisfies A < 1€n]1§ M f(z) < 2X\. Then ag = DoA"1g is a single (p(-), 00),-atom.
2CRP

With Lemmas 5.6-5.12 in mind, we prove hP()(w) < hP():20:Lv () (s RPO)4 LY (1)), We
assume w(R"™) < oo and that 270 < inﬁg My f(z) < 270FL for some jy € Z; otherwise we can
zeR™

readily modify the argument below. We use the above observation for A = 27, where j ranges
over [jo,00) NZ. We will add a subindex j to what we have obtained to indicate that it comes
from Qy;. Thus, we obtain cubes {Q; r}reK;, smooth functions {n;x}rex, and polynomials
{Pjr}trex;- Then we have a decomposition f = g; + b;, where b;, = (f — Pjx)njx and

b = kz;( bj k. We write Q= (1+ 2*"’12)Qi. We use the following observation:
€K

Lemma 5.14. Under the assumption above, we have

(5.19) Ap(y 0 (AN selio oozt {Qh Yieliowoyrziere;) S IMNFI Loe) (w)-

Proof. Due to the bounded overlapping property,

-Ap( ,w,v({Ai}jE[jo,oo)mZ,keKj ; {Qi}je[jo,oo)ﬂz,kelfj )

)
= Ap() w0 ({27 jetjoconz ke, {Qh Y ieko ooz ke k)
1

v

(5.20) <22 2xe,,
J=Jjo
Lr() (w)

Let x € R™. Then we have

> 2xq,, () = > 2V < > 270 < My f(x)".

J=jo JEZN[jo,00)N(—00,logy M f(x)) JEZN(—o00,logy My f(x))

Thus, (5.19) follows from (5.20). O

Let us return to the proof of AP()(w) < hP():20:Lwv (). We follow the idea in [52], which
allows us to assume f € hP()(w) N LP++9w (w) N L(R™). Also, assume that f € hPC)(w) N
LP++9w (w) N L= (R™) keeping Lemma 5.12 in mind.

Let Dy > 0 be a constant from Lemma 5.13. Using the same argument as [55, Lemma 5.4],
S} .
we have a decomposition f = g;, + Y. > Ajxa;k, where Do2779g;  is a single (p(-), 00)q-
j=jo kEK;
atom, each a; j is a (p(-), 00, L),,-atom supported on a cube @, = (1+27"712)Q7, and X, = 27.
We set

K;

(ke K;: |Qll<1}, Kj=K;\K;.
We write

X ={(.k1) : j € ljo,00) NZ ke KF QL (I+[0,1]") # 0},
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We further decompose

f=gj,+ Z Z Aj k@i + Z Z Aj k@ ke

J=jo keK;r J=Jjo keK;
o0
=Giot D NkXi+oar Gkt Y > NjkGjk
U,k 1)eX J=jo keK;

We remark that each x;4[0,1jna;,% is a (p(-), 00, L),,-atom supported on a cube [+ [0, 1]" as long
as k € K and [ € Z" satisfies QN (I + [0,1]") # 0.

~

Let us prove the norm estimate. If (j,k,1) € X, then I + [0,1]" C 3@?C Since X361 <
M'oc [XQj]ﬁ for some € € (0,v), we deduce from the vector-valued inequality (Lemma 2.11),
k

v

v ocC 1 v
> NiwXito,) N Y M xg7F)
(4.k.DEX LrO) () (4.k,1DEX Lo ()
S -Ap(-),ww({/\i}je[jo,oo)nz,kef(j? {Q?@}jé[jo,oo)ﬂz,kel(f)'

Thus by Lemma 5.14, we have

1

v

Z ()‘j,le-&-[O,l]")v 5 Ap(‘),w,v({)‘i}je[jo,oo)ﬂz,kel(j 3 {Qi}je[jo,oo)ﬂz,kek'j)

(4,k,HeX
LIJ(')(w)

(5.21) SAIMNFll e (w)-

Meanwhile, from Lemma 5.14, we obtain
(5'22) Ap(')»w’v({Ai}je[jo,oo)mz,kel(; ; {Qi}je[jo,oo)ﬁz,kEK;)

S Aoy w0 (M Y jetio ooz he ;s {Q4 Y jetio oz ke ;)
S AIMN Il e )
Combining (5.21) and (5.22), we obtain the desired norm estimate || f||;,¢).00.2.0 () S ||l nec ¢

w)*
6. APPLICATIONS TO SINGULAR INTEGRAL OPERATORS

Now that the structure of the weighted local Hardy space hp(')(w) is clarified, we present
some applications. In Section 6.1, we establish that generalized local singular integral opera-
tors considered in [45] are bounded from hP()(w) to LP()(w) as long as p_ > -4+ Section
6.2 is devoted to a special case of Section 6.1. We are interested in removing the condition
p— > ;47 by considering a narrower but important class of operators. Among the generalized
local singular integral operators, we consider the convolution operators generated by compactly

supported smooth functions.

We make a brief remark on the method of the proof used in Section 6. There are several
ways to prove the boundedness of singular integral operators from Hardy spaces to Hardy
spaces. Fefferman and Stein investigated the boundedness of singular integral operators by
investigating the distribution function of the image by singular integral operator [16, Lemma
11 and Theorem 12]. We can not employ the method in [16] since we are considering function
spaces which is not rearrangement invariant. Our method is to use the atomic decomposition
as Garcia-Cuerva and Rubio de Francia [19] and Tang [55] did. Garcia-Cuerva and Rubio de
Francia also considered the boundedness property of singular integral operators [19, Theorems
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7.8 and 7.9]. They used the atomic decomposition. We can say that our method is akin to
theirs. See the proof of Theorem 6.4. We also remark that Tang took the same strategy, where
he also analyzed the image of atoms [55, Theorem 7.1]. What is different from [19, 55] is that we
must take care of the position of the cubes on which atoms are supported by using Lemma 2.11.
This approach is taken in [43]. However, since we need to consider the local grand maximal
operators, we can not employ the estimate directly. What we do is to adjust what we did in
[43, §5.1].

6.1. Generalized local singular integral operators. An L2-bounded linear operator T is
called a generalized local Calderén—Zygmund operator (with the kernel K), if T satisfies the
following conditions:

(1) There exists K € LL (R™ x R"\ {(z,x) : € R"}) such that, for all f € L2(R"),

loc

(6.1) Tf(x)= K(x,y)f(y)dy for almost all 2 ¢ supp(f).
]Rn
(2) There exist positive constants 79, D1 = D1(T) and Dy = Do(T) such that the two
conditions below hold for all z,y, z € R™:
(7) Local size condition:

(6.2) K (z,y)| < Dilz = y[™" X[ ,70)" (z — ¥)
if x #£y.
(#4) Hormander’s condition:
(63) K(o2) = K2 + K (0) = K (o) < D= H

if0<2x—y| <l|z—uz|

This is analogous to the generalized singular integral operators dealt with in [15], which require
(6.4) [K(z,y)| < Dilz —y|™"

instead of (6.2) if  # y. [30] shows that all generalized local singular integral operators
initially defined on L?(R™) can be extended to a bounded linear operator on LP()(w) for any
p() € PNLHyNLHy and w € A;O(‘f). Recall that such generalized local singular integral

operators are bounded on LP() (w).

Proposition 6.1. Suppose that p(-) € PN LHy N LHy. Let T be a generalized local singular
integral operator and w € ALO(?). Then T extends to a bounded linear operator on Lp(')(w) with
the norm estimate

1T £re) ()= Lr () S NT 222 + D1(T) + D2(T).

Proposition 6.1 was proved using the local sharp maximal operator considered in [40]. We
extend Proposition 6.1 to weighted local Hardy spaces with variable exponents and investigate
how generalized local singular integral operators act on atoms. If we reexamine the proof of
[43, (5.2)], then we see that the following pointwise estimate holds.

Lemma 6.2. Suppose that p(-) € PoNLHoNLH,. Let T be a generalized local singular integral
operator. Then any (p(-), 00, 1), -atom a supported on Q satisfies

n+1

Ta(2)| £ [Ta(z)|xsq(x) + Da(T)M"**xq(2)

for all x € R™.
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Proof. We must consider two cases: x € 3Q, x € R\Q, where R is the cube of volume (2+27)"
concentric to (). For the first case, there is nothing to prove. We use the Hérmander’s condition
for the second case. ]

A direct consequence of Lemma 6.2 is that generalized local singular integral operators are
bounded from h?()(w) to LP0)(w) as long as p_ > 11, extending Proposition 6.1 in terms of

h*¢)(w) considered in this paper.

Theorem 6.3. Suppose that p(-) € PoNLHyNLH, satisfies p— > - Let T be a generalized

local singular integral operator, and let w € A%C. Then T is bounded from RO (w) to LPO) (w)
with the norm estimate

IT[1he¢) ()= L2 () S TN 22522 + D1(T) + D2(T).

Proof. We assume that w € L*(R"): If w ¢ L'(R™), then we can modify the proof below. It
suffices to show that

ITfl o)y S T |22 22 + D1(T) + Do(T) [ flnr) ()

for all f € hPC) (w) N LP+F9 (w) N L*°(R™) thanks to Lemma 5.12. Let ¢ satisfy py + g, + 1 <
q<ooand L> 1. Let f € h?)(w) N LP++9 (w) N L°(R™). Due to Theorem 1.5, there exist
{a;}52, € LO(R™), {bj}32, C LO(R™), {Aj1320 C [0,00) and {A;}32; C [0, 00) such that ag is a
single (p(-), ¢)w-atom, that each a;, j € Nis a (p(-), g, L),-atom supported on a cube Q; with
|Q;| < 1, that each b;, j € Nis a (p(-), ¢, L),-atom supported on a cube R; with |R;| = 1, that
f= > Ajaj + > Aib; holds in the topology of hPC) (w) and that

§=0 j=1

Mol 4+ Ap(wo ({1720 {Q53520) + Ap()w,0 ({35205 {R53521) S IF e () -

[e.e] o0
Again using Theorem 1.5, we have f = >~ Xja; + Y, A;b; holds in the topology of hP+* % (w),

=0 j=1
especially in the topology of LP+T% (1) by Theorem 1.6.

We know that T maps LP+ 1% (w) continuously to itself by Proposition 6.1. Thus, T'f =

>~ AjTa;+ 7 N;Tb; holds in the topology of LP+*%(w). Due to Lemma 6.2 and the triangle
=0 i=1
inequality, we have

i n+1
1T f ooy S [ (NI Tas1x30, + Da(T)(Mxq,) )
j=1 LpO) (w)
+ ZAHTW + [XollITaol| £oe) ()
J=1 LPC) (w)
[ee] o0
(6.5) S Do AiITas|xse, + YN
j=l1 LP(O) (w) j=1 LrC) (w)
+ Do(T) Z)\j(]‘/flocxcgj)nT+’1 + ol Taoll oe) (w)-
J=1 LPO) (w)
We choose u,v > 0 and L € Z so that
v <min(l,p_), L> [n (%ﬂ - 1)} ;. max(gu,p+) < uv < gq.
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For the first term we use Theorem 5.1 to give

3" N|Tajlxsa; < Ay (M), (Ta;)}521:{3Q,152,).
J=1 LrC) (w)

Recall that uv > g,, and that w € |J AP°. Since T is bounded on L“’(w) (see Proposition
4>quw

6.1),

Aptoya0o((Agmi) o (Ta)}521: {3Q51321)

S (T L2 L2 + Di(T) + Da(T)) Ap(yw,o ({25 15213 {3Q5 1521)-
Using x3q, S M IOCXQJ. and the vector-valued inequality (Lemma 2.11), we have

(6.6) Aol 4 Ap(y w0 ({A37215{3@5 1521) S ol + Ap(y w0 (A 17205{Q5 15720) S 1 1w (-
Thus, the estimate for the first term of (6.5) is valid.

The second term of (6.5) can be handled similarly to the first term. The result is
(67) Z )\;|Tb]| 5 ‘AP('),w’v({)‘;’}ﬁﬁ {Rj}ﬁl) rg ”thP(‘)(w)'
J=1 LrO) (w)

The third term of (6.5) is easy to deal with. As before, by the condition 0 < v <1 and the
vector-valued inequality (Lemma 2.11)

- nt1
(6.8) > A (Mg, S Apy e (A 15213 {@51521)
j=1 LrO) (w)
< Ay ({15215 {Q53521) S I llare) (w)-
Combining (6.6), (6.7) and (6.8) with ||T'ag||r() () S 1, we obtain the desired result. O

6.2. Singular integral operators of the convolution type. Theorem 6.3 estimates the
integral kernel K only up to order 1. Here we consider the case where the kernel is smoother.
To avoid the bothersome argument of justifying the definition of Tf = kx f for f € h?0)(w), we
assume that k € C2°(R™). Nevertheless, this assumption can be removed by a routine limiting
argument, which we omit. Here we establish the following theorem.

Theorem 6.4. Let p(-) € PoNLHyNLH., and w € A, Let {B,,}°_, be a positive sequence
and o > 0. Let k € S(R™) satisfy

|| VT k()| < B X[ =0.70]" () (z € R"™,meNy).
Define a convolution operator T by
Tf=kxf (feL*R")).

Then T is an hP")(w)-bounded operator and the norm depends only on | Fk||L~ and a finite
number of collections By, B1, ..., Bn with N € N depending only on p(-).

As we did in [57, §2.5.8] and [43, §5.3], the boundedness property of singular integral opera-
tors is useful for the Littlewood—Paley characterization. It matters that the estimate does not
depend on ||k||z:. This is absolutely necessary in Proposition 7.3.

The proof of Theorem 6.4 uses the following observations:
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Lemma 6.5. Let p(-) € Py N LHy N LHy and w € A'¢. Also let L € N and T be the bounded
linear operator on L?(R™) as in Theorem 6.4. Then any (p(-),00, L) -atom a supported on Q
satisfies Ta € Pi(R™) and

n+L+41

Ta(2)| < |Ta(@)|xsq(@ ZB M xq(z)™ %" (¢ €R").

Proof. Tt can be easily verified that Ta € P (R™) using the moment condition of a. Due to
[43, Propositions 5.3 and 5.4], we have

n+L+1
Ta(z)| < [Ta(z)|xsq (= ZB Mxq(z)™ =

for some L € N depending only on p(-). Since a is supported on a cube with |Q] < 1 and
supp(k) C [—70,70]™, we see that T'f is supported on a cube with a volume less than or equal
to (24 2v0)". Thus, we can replace the maximal operator by M!°°. (Il

Lemma 6.6. Let p(-) € Po N LHy N LHs and w € A%, Also let L € N and T be the bounded
linear operator on L?(R™) as in Theorem 6.4. Assume that a is a (p(-), 00, L) -atom supported
on a cube Q with |Q| < 1. Then

n4+L41
n

Talxrmso S (MXq)

Proof. Let x € R™\ 5Q. Then

Taw) = [ (re-p- 3 TG e agay

a€No™,|a|<L

By the mean value theorem, there exist § € (0,1), which depends on x,y, zo, L such that

0%k(x — o o
k(z —y) — Z #(mo—y)
a€Np”,|a|<L
0%k(x — zo + 0(zo — o
_ Z (z — o : (zo y))(xo—y) .
al
a€No™,|a|=L+1
Hence
0%z —x
St ORI S AU PR
a€No™,|a|<L '
SHQM sup MOk (2))

€N, |a|=L+1
for some z € R™. Thus, we obtain
Ta(z)| S HQ)" |z — (@)

Since Ta is supported on Q(x,2 + 279), we have the desired result. ([l

Fix L € N, a cube Q and f € L] _(R"). We define Py, g f to be the unique polynomial of
order L such that

/Q P (f(x) - Ppof(x))dr =0
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for all 8 € Ng with |8] < L. If Q = a + [0,7]™ for some a € R™ and r > 0, then

Prof = Prpnlfla+r) ( — a) -

r

Thus, we have

(6.9) 1PL.ofll=@) S 1QI7 2 fllr2(q)-

Similar to Lemma 5.4, we have the following pointwise estimate:

Lemma 6.7. Let p(-) € Po N LHy N LHo and w € A%, Also let L € N and T be the bounded
linear operator on L?(R™) as in Theorem 6.4. Let a be a (p(-),00,2L+2n+2),,-atom supported
on Q. Under the assumption of Theorem 6.4,

n+L+41

MY, Lk al(@) S MY sk * a = Porgantasqlk * a])](x) + M xq(a)
for all x € R™\ 5Q.

Proof. Denote by xq the center of Q. Let t € (0,1) be fixed. Let ¢ € D?\/p(_) (R™).

We have
k*xa= XSQ(k *xa — P2L+2n+2,5Q[k * a]) + XSQP2L+2n+2,5Q[k * a] + XR"\SQk * .
Therefore, it suffices to show that

MY,

(), w

n+L+4+1
n

[X50Par+2nt2,50k * a] + xgm\s0k * a)(z) S M"xq(z)
Note that
X5QP2L+2n+2,5Q[k * a] + XRn\5Qk *a € 'P2LL+27H_2 (Rn)

By using Lemma 2.22 twice (for the case t < #(Q) and ¢t > ¢(Q)) and Lemmas 6.6 and (6.9),
we have

lot * (XsQPar+2n+2,5Q[k * a] + Xrn\50k * a) ()]

< min (1, K@Y (Q)" max(t, ¢(Q)) ™

~ ) n 1+ maX(t,f(Q))_L_”_1|x _ $0|7L+L+1

= in (1, 4Q) (Q)" max(t, (Q)) "

N Tt 1+ min(1,¢t=14(Q))tL+14(Q) L1z — pq|ntL+l

i (1 A\ Q)" max(t, Q)"

- Tt min(1, ¢ 10(Q))" T LHL(1 + £(Q) "L L]z — zo|nTLTL)

L+n+2 n _n
— min (1,49 (@)™ max(t, £(Q))
t 1 + E(Q)fnfolky _ x0|n+L+1

< 1

=T 0Q) L a — oI
Therefore,

1
] Prrson k msok < .
0221 |00 % (Xs@Par+2n+2,5Q [k * a] + xre\s@k * a) ()] S 1+ 0(Q) L1z — go|ntE+T
Since
SUPP(M(J)V,,(.)_,,A, (X5QPaL12n12,5QF * a] + xrm\50k * a]) C Q(x0,2 + 270)

and

XQ(¢072+2’YO)($) loc ntLil
1+4Q) LYo — g ntLtt S M xq(@)

we obtain the desired result. O

)
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Proof of Theorem 6.4. We assume w € L'(R™); otherwise we can readily modify the proof
below. It suffices to show that
L

IT fllnrcr @y S | IFEIz + D Bi | 1 lnre ()
=0

for all f € h?()(w) N LP+T% (w) N L>®(R™) thanks to Lemma 5.12.

Let f € hPC) (w) N LP++aw (w) N L°(R™) and fix L 3> n+ 1. Due to Theorem 1.5, there exist
{a;}520 € LO(R™), {b;}52, € LO(R™), {A;}52¢ C [0,00) and {\}}52, C [0, 00) such that aq is a
single (p(-), ¢)w-atom, that each a;, j € Nis a (p(-), 00, L),-atom supported on a cube Q; with
|Q;| < 1, that each b;,j € Nis a (p(-), 00, L)-atom supported on a cube R; with |R;| = 1,
that f = > Aja; + > A}b; holds in the topology of hPC) (w) N LP++aw (w), and that

7=0 j=1

(6~10) |)‘0| + Ap(-),w,v({)‘j};‘il; {Q] ;X;l) + Ap(~),w,v({)‘;‘};'>0:1§ {Rj}?il) 5 Hf”hp(')(w)-

According to the famous Calderén—Zygmund theory (|21, 22, 49, 52]),

L
T2 22 + Di(T) + Do(T) S | FhllL + Y By
=0
and that 7" maps LP+T9 (w) continuously to itself and satisfies
L

||T||LP++r1w (w)— LP+ 9w (1) 5 ||.Fk||Loo + ZB]
j=0

thanks to Lemma 6.1. Thus, Tf = > X\;Ta; + > N;Tb; holds in the topology of LP+*% (w).
j=0 j=1

We put
(oo}
> Ajxiog,MY,,[Taj] ZA’MN (T3]
j=0 Lp0) (w) LPO) (w)
and
(oo}
ZAjXRn\mQjM?vp(_),w[Taj]
j=0 hP() (w)
Set (1
_ % ww > max(ps gu).
Then,
1Ty = || D2 AT + Y- AT,
j= j= RP() (w)
3 )SP¥ ) 35
j=0 PO (w) Jj=1 hP(O) (w)
= Z/\MNU [Tay] + ZXMNUwaj]
Lr() (w) Jj=1 Lr() (w)

511—&-124-11.
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We employ Lemma 2.11 and Theorem 5.1 for I; to give

oo v

L < Z()\jxlijM?vp(,),w [T'a;])*
=0 LrC) (w)
S A (Dm0, (00, MR, L [Tai]) 520 {Q51520)-

Similar to Lemma 5.3, since |a;| < xq, and w € AS, we have

< ||aj||Luv(w) <
~Ixa; e ) ~

(uv)
J»

meg o (x10g,MY, | [Tag])

Hence,
L < |)‘0| + Ap(-)ﬁw,v({Aj};iﬁ {QJ}]O.;I)
Meanwhile, by Theorem 5.1 and Lemma 6.5, I is estimated as

Iy S Ap(y,w0 (Xm0 (MO 1015205 {R;}520)

p()w
< Ao (NS (MYS[T0;)) Y2201 {R; }52,0)

Rj,w
< gy (XM, (M (T ) xsr, )} { R }520)
oc oc ntLtl o 0o
+ Ao (NS (MM x g, )5 1)} { Ry 152
S -Ap(-),wm({/\;'};il; {RJ}?.;I)
Consequently, we have

(611) I +1> /S ‘/\0| + Ap(~),w,v({>‘j}]qil; {Q]};x;l) + AP(‘),w,v({/\;'}?il; {RJ};).;l)
We employ Lemmas 2.11, 5.4 and 6.7 for II to give

o0
oc nt+L+1
(6.12) II< Z)‘jX]R"\lOQ,- (Ml XQJ-) "

J=0 LpO) (w)

+ Z )\jXRn\mQjM?vp(,m [X5Q, (k * a — Paryony25q;[k * aj])]

j=0 Lr(O) (w)

= oc nt Lt
N Z)‘jXR"\lij (Ml XQj) "
§=0
S Ap(-),w,v({)‘j};‘im{Qg‘ ;’io)-
If we combine (6.10)—(6.12), we obtain the desired result. 0

Ll’(')(w)

7. LITTLEWOOD—PALEY CHARACTERIZATION

Section 7 considers the Littlewood-Paley characterization of k(") (w) as an application of the
results in Section 6. The result of this section will be a natural extension to the weighted case
of the result in [43]. What differs from [43] is that the Plancherel-Polya-Nikolskii inequality
is not available in this weighted setting. To overcome this difficulty, we use Corollary 2.16.
Section 7.1 modifies the idea in [43], where we refine what we obtained in Section 6. Under this
modification, we combine the idea obtained in [43] with Corollary 2.16 in Section 7.2. Section
7.3 is devoted to the Littlewood—Paley characterization of hp(‘)(w) as a preparatory step in
Section 8.
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7.1. Vector-valued extension of Theorem 6.4. Theorem 7.1 is a natural extension of
Theorem 6.4 in which | - | in the definition of M(}Vp(.) ,J is replaced by ?*(Np). We intro-

duce the £?(Np)-valued function space hP0) (w; £2(Np)). Suppose that we are given a sequence
{fi}52o C D'(R™).

Let ¢ € D(R™) be a function such that x;_1 1j» < ¥ < xj_2,9)». We set Yk = 2k (2k.) for
k € N. With this in mind, we define

[N

||{fj};i0|‘hp<‘>(w,€2) = || sup Z |¢k * fj|2
keNp j=0
LP(')(w)
Observe that this is a natural vector-valued extension of the quasi-norm equivalence
(f € WPV (w)).
The ¢2(Np)-valued function space hP()(w, £2(Ny)) is the set of all {f; }320 € D'(R™) for which
{3 }5%0llhr() (w,¢2) 1 finite.

1 f 1|70 ) ~ || sUp [907 % £
keNp

Then the next theorem is analogous to Theorem 6.4. We omit the proof due to similarity.

Theorem 7.1 (cf. [43, Theorem 5.6]). Let p(-) € Py N LHy N LHy and w € AC. If T =
{T}ren, is a collection of L*(R™;¢*(Np))-L?(R™) bounded operators such that there exists a
collection {ki;}i jen, C D(R™) with the following properties:

(1) There exists a constant o > 0 such that

|2V ™ ki (2) }ijeno o2 v0) =2 (M0) S X—roim0ln (®)  (z € RT).
for every m € Ny.
(2) If {fi}5%0 is a sequence of compactly supported L?(R™)-functions, then

TI{fi}520)(@) = kij = fi(x), i€No
=0

for x € R™.
(3) kij =0 if [i| + |j]| is large enough.

Then
(71> H{E[{fj ;.;0] z(')iOth(-)(w,gQ) 5 H{fj};iOHhP(‘)(w,[?)

for all { f;}52, € h?O) (w, 2(Np)).

7.2. A vector-valued inequality. We will use the following vector-valued inequality to obtain
the Littlewood-Paley characterization of h?()(w).

Since the Fourier transform of non-zero compactly supported functions is not compactly sup-
ported, we must taylor some auxiliary estimate without using the Plancherel-Polya—Nikolskii
inequality. See [49] for the Plancherel-Polya—Nikolskii inequality for example.

Lemma 7.2. Let p(-) € Py N LHy N LHy and w € A%, Assume that L > 1. Let ¢,¢* €
CX(R™) satisfy ¢* € Pyy (R™), that

(7.2) 191, [67] < X—1,m
and that

(7.3) 0 =9-27"0(5).
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Then, we have

1
%) 2 2

oo
sup [Py * @55 * fI? Sl Fllzrorwy + ||| D 1655 # f12
€No i1 j=1

J LP(')(w) J Lr() (w)

for all f € D'(R™) and ® € CX(R™) with supp(®) C [—1,1]". In particular,

[N

{655 % F35%0ll oo w2y S N0 % Fllioerquy + > Iy fI
j=1

LP(‘)(w)

We remark that the couple (¢, ¢*) exists according to [31, Lemma 6.5].

Proof. We employ Lemma 2.23. Choose ¢, 9* € C°(R™) so that

(7.4) 91 [¢7] < Xp-1,01

that

(7.5) )" € Par,(R™),

and that

(7.6) ¢*¢+Z¢3ﬂ' ¥y =0
j=1

in the topology of D'(R™). Fix k and j for now. We decompose

o0
Dor 3 * f = Pgr %9 %P5, *qﬁ*f—i—Z(I)Q_k*ng;,j ks k Py * f

=1
It follows from Lemma 2.22 that
(7.7) [@yk % b5 5| S 27 x g g
and that
(78)  |Bys # @, x| S 2P mGRD 2GR LI i) 1 g
N i O L |

Not that min(k — j,k — 1,1 —j,7—1) < —|l —j|]. Let L > 2A > A > B > 1. Let r be a
constant, which is slightly less than %(< 1). Thanks to Lemma 2.24, (7.7) and Holder’s
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inequality for I, we have

[ Po—r k) %P3 x P x f(x)]
< 9—2Lj _
s [ Josfla =l

1

52—%3‘/ (/ |6 flz—z—y)| dy>'dz

[3,3]" n o mo ar,Br(Y)

1
4 -2k / iyn_m / xSz =)l N,
[-3,3]" =1 " mO,AT,BT(y)

coma [ ([ leesemiour ),

[—3,3]" n mo,Ar,Br(y)

) N - 1
+ 272Lj/ g <2m/ |95 * f(z — 2 — ) dy) &
[=3,3]" =1 R mO,Ar,Br(y)

Since
mo, ar,Br(Y) ~ Mo ar,Br(Y + 2)
for all y € R™ and z € [-3,3]" and

2lATTnO,Ar,Br (y) Z ™My, Ar,Br (y)

for all y € R™, we see that

(7.9) |@o-r x 1) x5 * d* f(x)]

S 5-21j (/ (b*f(x_y)rdy>:« n 9—2Lj i 9—2IA <2ln/ |¢;ﬂ * f(JU - y)|rdy>i

™Mo, Ar,Br (y) =1 ™Mo, Ar,Br (y)

<272k lex flz—y)I” >i o N (ln g5+ f(x —y)|" )’2" :
s ([ ) e L

=1

by the Holder inequality. Likewise,

|Po—r % p3_; x5y * Py * f(x)]
5 2nmin(j,k,l)+2L|lfj|/ |¢;—l % f(ll? - Z)|dZ
[—22-min(.k,1) 92—min(j,k.D)]n

by using (7.8). Since

M arpe(y + 2) = (1 + 2y + z|)A7elv+=1Br

< (1_’_2l‘z|)Ar(1+2l|y|)Ar6|y|Br+|z|Br

g 2Ar max(O,l—nlin(l,j,k‘,))mLAT)Br (y)
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for all z € [—22~min(Gk.D 92-min(jkD]” thanks to Lemmas 2.22 and 2.24, we obtain

|Do—r * @55 % Y51 * 5y * f(2)]

< 9n min(j,k,l)+2L|1—j|
~J

1
X / iy’m(ll')m/ “b;—ﬂ * fle—z— y)lrdy ds
[—22—min(j,k,1) 22—min(j,k,1)]n = n

ml,Ar,Br(y)
< 9n min(j,k,l)+2L|l—j|+A max(0,l—min(l,5,k))
~J

1
Xt/ > 2204 2yn/n|¢31'*f@*—yﬂrdy d.
[_227xnin(j,k:,l)7227111in(j,]c1[>]n ;

=1 ml,Ar,Br(y)

Due to the fact that L > A > 1, we have
(B % 03 * U5 % G5t * £()]

1
<Y gl-ilt2au-1) <2l/n/ |95 * flz—y) dy) ”

= ml,Ar,Br(y)

1
<3 g-it-ih2AC-t) (21’n/ |95 * f(z —y)| dy) "

=1 ml,Ar,Br(y)

Since 2*A’°(l*l/)mz,Ar,Br > My Ar,Br,
|y % Py, * 31 % Py x f(2)]

1
< ZQ*L”*““‘“*” (2l'n/ |05 * fz =y dy) " .

T mu, ar,Br(Y)

Hence, we have

Z |Do—r sk 5 ; % b5y % Py_i * f(x)]

=1

1
= o LAt [(orm [ Do ¥ fl ="\
5222 L|l—j|+AQ1-1") (21 / 2-1 dy)

=1 /=1 n My ar,Br(Y)

) U i
S Y g-tlimkeanr) (o 05 = flx—y)["  \T"
S 2 Lil—jl+A(-1") (2l /n 21 dy) ,

I'=1l=—00 my, ar,Br(Y)

Since

l/
Z o= LI—j|+AQ=1) _, o—LIl'~j]|

l=—0o0

thanks to the fact that L > A > 0, we have

(710) Z ‘(I)ka *(b;—j *7/}57! *¢;7l *f((l?)| 5 227L\l'*j\ <2l'n/ |¢;7V * f(-T - y)‘ dy) " )
=1

— =1 no My ArBr(Y)
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Therefore, from (7.9) and (7.10), we have
(T.11) Dy 563, # £(2)]
1

<o ([ lexf@=yl )i oy °°(m 65 S =y )i :
< J(/" mo, ar,Br(Y) dv) +277 Z 2 /]Rn my, ar,Br(Y) dy

=1

1
- it (o 95— * fle—y)"  \"
+ 2—L|l -7 <2l n/ 2 d ) )
Z mN,Ar,Br(y) Y

I'=1

We observe

14 2
Z Z o—LIt'j| <2l/n/ g5 * f(z —y)| dy) i
mz',Ar,Br(y)

j=1 \l'=1
2
< S g HE il 3 g bl (Ql/n/ |05 * f(z —y)| dy>
5=1 lir'=—o0 r=1 o meanse(Y)
2
o0 o0 -
r ’ |¢*71’ *f(x_y)|T "
5 2—L|l -7 (21 n/ 2 dy)
jz:; l’z::l n my Ar,Br (y)
2
= Z ZQ*L”'*ﬂ <2l'n/ |¢2—’" * [z —y)l dy> )
I'=1j=1 " ml/7AT7BT(y)
Note that
ZQ*L\l'*j\ < Z o—LII'=351 1.
Jj=1 VES
Therefore,
S 03 0 x Fe -l \ |
’ - ’ *7 ’ * xr — y r r
(7.12) 9~ LIV =l (21"/ 2 dy>
j; I’Z:l n ml’7Ar,B'r(y)
2
5 Z <2l/n/ |¢24/ * f(x - y)' dy> .
n ml’,Ar,Br(y)

Likewise we can prove

(7.13) | Dok x ¢ x f(z)]

o f@=y)"  \T (= (g [ 1G5 SE—y)) ) |
5 (/n mO,AT,BT(y) dy) * (Z (2 /n ml,Ar,Br(y) dy >

=1

for all k € Ny with the implicit constant independent of k. If we take the supremum over
k € Ny and the £2-norm for j, we obtain

sup |®o-k % ¢ * f(z)| + Zsup|<1>2k*¢27 f(@)?

keNy 1€0

(LSt (Bl L Siare)

=1

5l

N——
W=

from (7.11), (7.12) and (7.13). To complete, invoke Corollary 2.16. O
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7.3. Littlewood—Paley characterization of hp(')(w). An important consequence of The-
orem 7.1 is the Littlewood Paley characterization of h?()(w). We obtain it under a strong
assumption of L.

Proposition 7.3. Let p(-) € PoNLHoNLH,, and w € A%, Assume L > 1. Let ¢, ¢* € D(R"™)
satisfy ¢* € PE(R™), (7.2) and (7.3). Then a distribution f € D'(R™) belongs to h?C)(w) if
and only if

=

¢ * fllLre) (w) + Z|¢§ﬂ' « fI? <0
=t LPC) (w)
In this case, we have
00 2
(7.14) 1F 1wy ~ 16 % Fllzoor oy + || | D 1655 # fI?
=t LPO) (w)

Proof. Assuming that f € hP()(w), we first show that

00 2
% Fll ooy + || | D 165-5 % £I7 S e quw)-
j=t LP()('LU)

The definition of the grand maximal function M?Vp(_) [ easily gives that

16 % fll Lo ) S MK

p()w

Fllzeo @y S N Flapo) -

Therefore, we must show that

=

oo
* 2
Z |p5-5 * [l S ||f||hp<->(w)~
j=1
By the monotone convergence theorem, the matters are reduced to showing that

1

N 2

D165 fP? S 1 1lmro )
j=1
LrC) (w)

with the implicit constant independent of N. By the Khinchine inequality, we have only to
show that

N
> b5+ S S 1l
5=l LP() (w)
for any sequences {a;}}_, € {—1,1}". However, this is a direct consequence of Theorem 6.4.

Let us move on to the proof of

o0

1 e () S N6 % Fllzoo ) + || | D 165-5 % I
=t Lr(O) (w)

Choose 9, ¢* € C°(R"™) so that (7.4)—(7.6) hold. Consider the operator

{9:}520 € PP (w, 2(No)) = ¥ go + D W5, % g; € WP (w).

j=1
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This operator is h?() (w, £2(Ng))-h?() (w) bounded thanks to Theorem 7.1. As a result,

U fot Y U5 xgs S {95350l g2 -
j=1 hP() (w)
The right-hand side must be written out fully. Use (7.6) and Lemma 7.2. If we let go = ¢ * f,
gj = ¢5-; = f (j 2 1), then

- 3
1 oy S 933520l ot gy S 10 % Flpscruy + || | D 1650 = FI2 :
=1 LPO) (w)
since -
F=wsdxf+Y 3% dasf.
j=1
Thus, the proof is complete. U

Let us relax the assumption on L in Proposition 7.3.

Theorem 7.4. Let f € D'(R™). In Proposition 7.3, the same conclusion holds if L = 0.

Proof. We start with the set-up. Assume LT > so > 1. Let (,(* € C*(R™) satisfy ¢* €
Pi_’r (Rn)v
IS 1] < X[=1,1-

=)
Let ¢, ¢* € C°(R") satisfy ¢* € Py (R™), (7.2) and (7.3).

and

It suffices to show that

Nl

o0
6% Fll ooy + ||| D 635 * FI?
j=1

1

00 2
(7.15) ~ N Flzro + ||| 2165« £ :
=1 LP()(w)
since we proved in Proposition 7.3 that f € h?¢)(w) holds if and only if

) 2
1€ 5 Fllpoerwy + ||| D165 = fIP < 00
=1 LP(~)(w)

and that the norm equivalence (7.14) holds.

We content ourselves with proving

1

oo 2 (oo} 2

DG+ fP S Fllzrorwy + ||| D 1655 * fI? :
j=1 j=1
LrG) (w) LrC) (w)

since the remaining estimates needed to establish (7.15) can be proved similarly.
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Let r > 0 be a constant which is slightly less than ’{f Fix z € R". We assume that A < LT
and Br > 8n + 6log D. Let j be fixed. Then we have

n mi Ar,Br (y>

0o * T
< QA(j*l)T (QZTL/ |¢2*l * f('T — y)| d )
~ Z n mhAr,Br(:U) Y

l=j

G @) S [ S0 28 umbrgin / 1951 = fle =)l )
I=j

S=

thanks to Lemma 2.25. Consequently,

N

1
2

[eS) 0o " B , 72
Sl e 5 (3 (2 [ LB,
j=1 j=1 R ml,Ar,Br(y)

It remains to use Corollary 2.16. 0

8. WAVELET CHARACTERIZATION

As a further application of Theorem 7.4, we consider the wavelet expansion.

Choose compactly supported C"-functions for large enough r € N
(8.1) pand ¢! (1=1,2,...,2" — 1)

so that the following conditions are satisfied:

(1) For any J € Z, the system
{osm ) keZ" j>J1=12,...,2" -1}

is an orthonormal basis of L?(R"). Here, given a function F' defined on R", we write

in

Fjr=27F(2 - —k)

for j € Z and k € Z™.
(2) Fix a large integer L € N for now. We have

(8.2) Pe PER™) (1=1,2,...,2" —1).

In addition, they are real-valued and compactly supported with
(8.3) supp(p) = supp(y') = [0,2N — 1"

for some N € N. See [38] for example.

We also define x; 1, = 2%)(@%,6 and X} = 2j7nXQ;k for j € Z and k = (k1,ka,...,k,) € Z"™,
where @, and Q7 are the dyadic cube and its expansion which are given by

n

(84) Qj,k = H [Q_jkma 2_j(km + 1)]

m=1

n

(8.5) Jk_H Tk, 27 (ki + 2N —1)]
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respectively. Then using the L2-inner product (-, -), for f € Llloc, we define two square functions
Vf, Wsf by

1

Vi=sVef= <Z |<f7‘;0J,k>XJ,k|2> ;

kezn

1
2" _1 oo 2

wr=wr= 333 (bl

I=1 j=J kezn

Here, J is a fixed integer. In 1994, Lemarié-Rieusset commented that the class Muckenhoupt
has a lot to do with the wavelet characterization [37]. We remark that Kopaliani considered
the wavelet characterization of LP(®)(R) in 2008 (see [34]).

Based on these works, we will prove the following theorem:

Theorem 8.1. Let p(-) € Po N LHo N LH., and w € A%, Assume that

(8.6) L > max (‘1’ [“ <mlnE]1p) a 1>D

in (8.2).
(1) Let f € h?C)(w). Then
[ lleer @y ~ IV F 2o oy + W F Lo () -
(2) If f € L2 (R™) satisfies Vf + W f € LPO(w), then f € hPC)(w).

The proof of Theorem 8.1 consists of several steps. We start with a setup. Let ¢ € C(R™)\
Po(R™)+ and ¢* € C°(R™) satisfy

1 .
supp(6) € [-L,1]", ¢ =6 — 50 ()

Choose ¥, 1* according to Lemma 2.23. In the light of the construction in [47], we can arrange
¢, ¢*, ¥ and 9¥* so that they are even functions satisfying

GrY+ Y Py ks, =06
Jj=1

in D'(R") and that ¢*,v* € P, (R™)L where L is in (8.6). We must justify the definition of
the couplings (f, w§k> and (f, psx). To this end, we will prove the following estimate:

Lemma 8.2. For all f € LP++9 (w) N hP0) (w),
(8.7) £ 1lne oy 2 NV Fllzee @y + IW £l e (w)-

Before the proof, we offer a word about Lemma 8.2. Fu and Yang obtained a similar estimate
in [18, Theorem 1.9]. However, we cannot use [18, Theorem 1.9] directly due to the presence
of w € A%°. As such, we must establish an estimate from scratch.

Proof. It suffices to prove that

N|=

00 % N . 9
®8)  Vitwf<sp L ICZAl S, 0% f(- = 2)]

2ERN mJ7A,B(Z)

j'=J+1 zER™ mj/vAvB(z)Z
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Once this estimate is shown, we obtain the conclusion as follows. Fix r > 0 slightly less than
min(lp=) “Then (n/r,n+ L + 1) # 0, so we can take A € (n/r,n + L + 1) N N. For the first

qw
term, by Lemma 2.24 and Holder’s inequality, we have

sup [b2-s * f( —2)| < (i zkn+(J—k)(n+L+1)r/ [$3- * f(@ — ywdy) 7-

zeRn My A, B(2) = n Mg arBr(Y)

S (i (0 [ Sl )

k=J

1
2

For the second term, since A > n/r, again by Lemma 2.24 and Holder’s inequality, we have

T

* 2 o0 * T
sup |¢2’j' < /(-2 < Z anvL(j/*k)(nJrLJrl)r/ |95 * f(z — )| dy
sern My, a,B(2)? ~ P n My ar,Br(Y)
) % r 2
./ L% — r
< Z 92(j'—k)(n+L+1—eo) <2kn/ |p5—x * f(z —y)] dy) .
k=3’ n mj',AT,BT(y)

Here, we choose 0 < €9 < n+ L+ 1 — A. Using the estimate mj/ 4, pr > 2Ar(j/_k)mk7,4n3,~, we
have

= |65+ f(—2)
sup

zERM mj',A,B<Z)2

j=J+1
0o k N , 2
5! 7 ok — T
S S S 92 R Li—o) <2kn2—AT(J k) / |p5—r * f(x —y)| dy)
k=Jj'=J n Mk, Ar,Br (y)
SRS 5 xS —y)T . \F
] ok €T — I3
<SS Y 2R Lai-e-a) <2kn/ - y dy)
k=7 \j'=—oo n Mg ArBr(Y)
2
(o [ Bk fl@ =y T
Rn mk,AT,Br(y)

k=J

Hence,

v (35 (o [ g ) )

k=J
Finally, we can resort to the vector-valued boundedness of the operators (Corollary 2.16).

So, we move on to estimate (8.8). However, since we can handle V f similar to W f, we
content ourselves with the proof of

— - — oo * % S 2
(8-9) Wf 5 Sup w + Z Sup ‘¢2*] f( > )|
zER" mJ,A7B(Z) J=T+1 2ER™ mj',A,B(Z)

instead of (8.8).
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Fix r > 0 slightly less than %ﬁp‘). Then (n/r,n+ L + 1) # 0, so we can take A €
(n/r,n+ L+1). Let j € N be fixed. Since v, 9* are radial,

o0
(810)  [(fs i xsnl < (Do #vhoms x fol idxaal + D H5s #0500 1) x5k
j=J+1
o0
= |<¢2*J * fy g * ¢§,k>Xj,k‘ + Z |<¢;—j' *f, z/);,j/ *wé',k>xi"k|‘
J=J+1
By the moment condition,
(811) Q%IwQ—J *'(/Jé‘)]g‘ S 2Jn—(j—<])(n+L+1)X24+_7’—JQ;k,
in * min(j,5 )n—n m i'—4,0)—|j—34"
2% |’(/}2—j/ *¢;,k 52 in(j,7 )n—nmax(j’'—4,0)—|j—j ‘(L+1)XlﬁQ;’kU24+j7j/Q;,k.

By inserting (8.11) into (8.10), we obtain

(0 )]
< 9= (=N (n+L+1) / |G2—7 % F(W)Idy | X, x
24+j7JQ;,k ’

o)
4 Y guintia om0l 16+ Ty | xay
j’:J+1 16Q;‘,ku24+]73/Q;’k

Let x € Q; 1. Using the function mj 4,p, we estimate

/ |¢2—J * f(y)|dy 5 2—Jn sup ‘¢2—J * f(g; — Z)| .
2443 -I Q. z€R™ mj,a,B(2)

Likewise, for € Q; k,

J 65 Sy 2 Aty =50 gy (B T8 2
16Q7% U241+ —3' Q3 2€Rn mj’,A,B(Z)

Consequently,

(Z (f, 1/J§',k>Xj,k|2>

kezn

< 9—(i—=J)(n+L+1) sup |po—s * f(- — 2)| + Z 9= 13’ =jl(L+14n—A4) sup ‘¢271' * f(-—2)|

zER™ mJ,A,B(Z) =T 2€R™ mj/,A,B(Z)
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Recall that A satisfies L + 1 4+ n > A. Taking the ¢?>-norm over j = J,J +1,J +2,... and
£=1,2,...,2" — 1, we obtain

2" —1 oo

SN [l

=1 j=J keZ"
1
< iz—Q(j—J)(n+L+l) sup o * f(- — 2)|

zeRn MyaA,B(2)

j=J
1
2\ 2
[ee]
ey 22 i) g 19 xS0 2
=7 \j=J ZG]R" my AB( )
TRy (R £ S EY (;
~cern My ap(2) j,:Jze]R" mjr A,B(2)?
Thus, the proof is complete. O

Lemma 8.2 has an important consequence. First, since L°(R™)NAPC) (w) is dense in h?() (w)
(see Lemma 5.12), we can extend couplings (f, dzék) and (f, @), which are initially defined
for f € L2 (R™) N hPO)(w), to bounded linear functionals from L°(R™) N hPC) (w). We still
write (f, ¢§’k> and (f, ) for these extended functionals. By the Fatou lemma, we have (8.7)
for all f € h?0)(w),

Corollary 8.3. The conclusion of Lemma 8.2 remains valid for all f € hP?C)(w).

With Corollary 8.3 in mind, we complete the proof of Theorem 8.1. Let us prove

1
o 3
IVE+ Wl ~ 165 Flisoruwy + ||| Do 103-5 + I
=t Lr() (w)
In view of Corollary 8.3, it remains to establish
- 3
(8.12) IVE+W ooy 2 6% Fllzoo ) + ||| D 1035 * 12
=t LrC) (w)

for all f € LP+T% (w). As before, since the remaining estimates needed for (8.12) are easier to
prove, we content ourselves with the proof of

o0

(8.13) IVE+W ooy 2 ||| D 1655 % I
=t LT’(’>(w)

instead of (8.12).

We prove (8.13). Let j € NN [J,00) be fixed. Since f € LP+T% (w), we can use the wavelet
decomposition obtained in [30]. and estimate each term of the decomposition:

2"—1 oo

B3k f =Y (fosm)®ssxeant D D D (Fh e x vl

kezn =1 j'=J keZ"
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We have
In (-
2% 95 * gl S 2IUT DO 0
and
i l 95'n—(j—j )(n+L+1)X16Q* Ui’ a, (]/ <j),
27 |¢2—J’ *wj’,k| 5 gn—(j'—4)(L+1) -/ .
2 X16Q;/1ku24+a QY (' = 7).
As a result,
Jn (i
D K amds-i xpupl S D 277 7O 05 xaees,,
kezn kezm
and

Z > kb5 k] S Z S o il V) Xasgr, Loty -

j'=J kezn §'=J k€Zn
Choose r € (0,1) so that

ntL+1-"50 P25 g, =mf{ue[l00) : we ALY
T r
Then
* - j— n 5
2 (Z |<f7w,k>¢2j*w,k|> S DI (Z 2 |<fvw,k>|><w%>
j=J \kezn j=J kezn
2
ocC 1
S <Z (f, 000 M [(x )" V)
zn
and
2
ST S Ik e v
j=J \j'=J kezn
2
N Z Z Z 2%z ~li=s It L) ) w’kHXlGQ* L2+ =iQr,
j=J \j'=J kezr
2
Y n —n/r oc 1
S| D0 Do 2F IR (gl (M xg, )T
j=J \j'=J kezn
By Proposition 2.12
2y 2
S S S 10tes s
j=J \j'=J kezn
LP(~)(w)
1
2Y) 2
S Z Z Z 2%7“‘—3‘ \(n+L+17n/r)|<f’ ¢§/,k>|(M1°CXQ,-/,k)?
j=J \j'=J kezr
LP(‘)(u))

A
Mg

Z Z oLt —|j—5'|(n+L+1-n/r) |<f,1/;é-,’k>|ij/,k

j=J \j'=J kezn
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By Holder’s inequality,

S ST sk es s #wll

j=J \j'=J kezn
LrO) (w)
1

2

- 2
Z (2%—%Ij—j’|(n+L+1—n/r)|<f w}/ Wlxo )
bl s §lk

N
.Mg
.MS

S X (e ,

Lr() (w)

[N

as required.

9. EXAMPLES AND RELATIONS TO OTHER FUNCTION SPACES

In this section we give some examples of the weighted local Hardy spaces with variable
exponents and weights. One of the significant example is the Dirac Delta. We consider the
condition to belong to AP()(w) in Section 9.1. Next we provide the examples of weights. We
handle the power weights in Section 9.2 and the exponential weights in Section 9.3, respectively.
Finally, Section 9.4 and 9.5 is devoted to consider the relation to other function spaces.

9.1. Dirac Delta. Let w € A%, Also let p(-) € Py N LHy N LH4. Let & be the Dirac Delta.
Then M?Vp(l)vwé(x) ~ |z|~™ near the origin and M?Vp , w0 18 bounded away from the origin and

supported on a bounded set. Therefore, if p(-) and w satistfy
(9.1) / 2| 7P@) ey (z)dz < oo,
B(1)

then & € h?0)(w).

Example 9.1. The following couples satisfy (9.1) and falls within the scope of this paper.

1, p(z) = max(2~! min(1, |z|)), z € R™.
|71,+1

(2) w(z) = p‘rﬁw, p(z) =2,z €R™
() = |z|" T exp(|x]), p(z) = 2, + € R™.

=
~—
S
—
&
Il

A
w

N
g

9.2. Case of power weights. Let 1 € R and define w,(z) = (1 + |z|)*. Also let p(-) €
PoNLHy NLH.

Proposition 9.2. S(R") C h?()(w,,).

Proof. This is a consequence of the atomic decomposition. We can decompose any f € S(R™)
into the sum of (p(-), g, —1).,-atoms:
f = Z )‘mama

mezr

where A, = O((1 + [m|)™") for any N € N and each ay, is a (p(), ¢, —1)w,-atom supported
on Q(m,1/2). O
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Proposition 9.3. Any element f € h*() (wy), which is initially defined as an element in D' (R™)
can be extended uniquely to the continuous functional over S(R™), that is, h*)(w,) C S'(R™).

Proof. In fact, if we argue as in [55, Proposition 3.1] and write ¢ = ¢(—-) for ¢ € S(R"), we
obtain

(s o(- =)l = [f * ()]
1

~ HXB(m,l)”Lp(*)(wu)

1@IDN, ey 1 10 ()

() H
for any ¢ € Dy, w, (R"). Notice that |xp(1)llLre)(w,) 2 (1 + |z|)¥ for some K > 0.

By the use of the partition of unity, any ¢ € S(R™) has the following decomposition:
=D anpm(—m),
mezZ"

where each ¢, € Dy(R"™) depends linearly on ¢ and |a,,| < (1 + |m|)~™Y for any N € N.
Therefore, we can define
<f7 90> = Z am<fa Spm(' - m)>
mezn
for f € h?O(w,) and ¢ € S(R™), where the convergence takes place absolutely. Thus,

PO (w,) C S'(R™). O
Proposition 9.4. Let k € R. Then f v (14 |-|?)3 f is an isomorphism from h?()(w,) to
hp(')(wﬂ_ﬂ).

Proof. Simply observe M?Vp(.%w”[(l +1-H2f] < w,ﬁ./\/l(l)\,p(‘),wﬂf. O

9.3. Case of exponential weights. We work in R. Let u € R and define w® (x) = exp(uz)
for z € R. Also let p(-) € Py N LHy N LH.

Proposition 9.5. Let k € R. The mapping f — w* f is an isomorphism from h?C) (w)) to
RPCO) (w(#=r)),

Proof. Simply observe MY () (W f) ~ wHME o win - 0

Similar phenomena can be observed if |u| < 1. We omit further details.

9.4. Periodic case. Although the exponent p(-) must be constant in this subsection, it seems
useful to discuss periodic function spaces. Let 0 < p < co. Let LP(T™) be the set of all p-locally
integrable functions f with period 1 for which

P

I fllze(Tny = (/[0 . |f(:v)|”d:c> < 0.

)

Similarly, the periodic local Hardy space h?(T"™) is the set of all periodic distributions f €
D'(T™) — S'(R™) for which
sup sup |, * f| € LP(T").

0<t<1 €Dy
The norm is given by
[ fllnr(rny = || sup sup [p: * f]
0<t<1 DN

Lr(T™)
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If a variable exponent p(-) is periodic and satisfies the global log-Hélder condition, then p(-)
must be constant. Thus, we assume that p(-) is a constant here.

Lemma 9.6. For any 0 < p < oo, LP(T") — LP(w_p—_1) and

[ fllzecrny ~ 1 fllzeqw 1)
In particular, hP(T") < hP(w_p—_1).

Proof. Note that
n+1

won—1(2) = (L4 [2) 77 ~ Mxg, o(z)

for x € R™. Hence simply use > (14 |m|)™""! < oc. O
mezZn"

9.5. Weighted uniformly local Lebesgue spaces with variable exponents. Let p() €
P NLHyNLH, and w € AIOC . Then the weighted uniformly local Lebesgue space Lul oc(w)

with a variable exponent is deﬁned to be all f € LL_ for which the norm | f]| o) =

(W)
sup 1XQo,m fllLr) (wy is finite. This is a natural extension of the uniformly local Lebesgue

loc

space L? which considers a substitute of L>. If we replace the supremum by the ¢"-norm,

uloc?

then the weighted amalgam space (¢", Lﬁgo)c( )) with a variable exponent is obtained as an ex-
tension of the amalgam space (¢", L?) considered in [2, 4, 17, 26, 33]. Although our results are
applicable to amalgam spaces, to simplify the argument, we consider uniformly local Lebesgue

spaces with variable exponents.

For w € ALO(?), we write wy, (z) = w(x)(1+ |z —m|)~P+(*™) Then by the triangle inequality,
we can check that

(9-2) 1Al 220 () ~ sup. I £1l 2O (-

Therefore, if we define the weighted uniformly locally integrable local Hardy spaces h” ) (w)

uloc

with variable exponent p(-) and weight w to be the set of all distributions f € D’(R™) for which
”thf:l(O)C(w) = ”MJOVP(,),wf”Lﬁ;:C(w)
(")

Pl (w). For example, as in

is finite, then we can apply the results obtained in this paper to h
this paper, we can obtain the Litttlewood—Paley characterization.

10. APPENDIX—PROOF OF PROPOSITION 2.9

Let w be a weight. It is known that w € A;)(‘f) if and only if M'° is bounded on LP()(w).
In this section, we characterize the class A;)O(‘f) motivated by reference [14]. As a corollary of
this characterization, which is stated in Proposition 2.9, we show that Aloc) is monotone in

p(+). That is, if p(-),q(-) € P NLHy N LH satisty p(-) < ¢(-), then AIOC) C AloC Similar to
Section 2.1, the matters are reduced to the maximal operator generated by dyadlc grids and
let ® = Dy,1,...,1)- We can handle D, for other values of a € {0,1,2}". Define M?® f as the
maximal function of f € L°(R™) with respect to ®. That is,

/ FW)ldy (z € RY).

M? f(z) =
f@) = sup = IQI

For Ry > 0, let M%DRO f be the maximal function of f € L°(R"), where the supremum is
taken over all cubes @ € © with ¢(Q) < Ry, while M?RO f stands for the maximal function
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of f € L°(R™) with respect to ®, where the supremum is taken over all cubes Q € ® with
0(Q) > Ry. Thus,

Sl =y X /Q 1£()ldy

M @)= sup XAy,
Qem.u@Q>Rr, Q@ Jg
Let p(-) be a variable exponent. We define the index pg by
1 dx
pe Bl /g p(z)
for all measurable sets E with |E| > 0. We also define the norm || - || o) (g) by

(10.1)

1 fllLror ) = IxEfllro

for all measurable functions f. Although it is an abuse of the notation, we write LP()(w) and
LPO)(E) for a weight w and a measurable set F.

Definition 10.1. Let p(-) € LHy N LH4 N P. Define A;’?(.) as the class of weights w satisfying

[w] 4o

= -Pp -1,
2= 5161% Q| Q”w”Ll(Q)Hw IIL,, O/ Q) < 00

Recall [45] shows that M?® is bounded on LP)(w) if and only if w € A?(.). Here, we show
that 121;3(‘) enjoys the same property.

Theorem 10.2. The mazimal operator M® is bounded on LPC)(w) if and only if w € fl?(,).

. . . “‘@ _ D
This is equivalent to Ap(,) = Ap(_).

The following property has been frequently used in this paper.
Corollary 10.3. If q(-) > p(-), then Aq@(_) D A?(,).

We remark that Proposition 2.9 follows from the corresponding assertion to the generalized
dyadic grid ®. Corollary 10.3 remains true for other grids. Due to Lemma 10.6 below as well

as Theorem 10.2, Aqg(.) = Aqg(,) D A?(,) = A?(.), which proves Corollary 10.3. Thus, along
with the technique of constructing a weight in Af(‘) from ALO(?), this relation of weights proves

Proposition 2.9. Another corollary of Corollary 10.3 and (2.4) is the monotonicity of the class
of Ay considered in [10].

Corollary 10.4. If q(-) > p(-), then Agy D Ap(y.

10.1. Sufficiency in Theorem 10.2. We also need the local versions of Af))(_): For a measur-
able subset E of R”, we define

DE)={QeD : QCE}
Definition 10.5. Let E be a subset of R™.

(1) Define A?()(E) as the class of weights w satisfying
[wlaz, ) = Qen(m) QITPwllzr (@ llw™ | oo ) < 00

(2) Define AP (E) for E € ® and 1 < p < oo analogously.
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The following lemma is easy to prove:

Lemma 10.6. [14, Lemma 3.1] Let p(-), ¢(-) € PNLHyNLHo. Assume p(-) < ¢(-) everywhere.
Then there exists a constant Cy > 0, which depends on py, qx, c.(p(+)), c«(q(+)), ¢*(p(+)) and
c*(q(+)), such that

[wlze < Colw]ie

q(-) p(-)

Proof. Fix Q € ©. Let «(-) satisfy

o) d¢) PO
Since «a(-) € LHy N LH,, we have
Ix@llzoo ~ Q7@ = |Q[1 o 1@zt o P _ |gpaa=pa 1,

Here, the third equivalence follows from [14, Lemma 2.1] (see also Lemma 2.2). Thus, from the
Holder inequality for Lebesgue spaces with variable exponents, we have

[wlia, < Colul s .

P

Thus, the proof is complete. O

We have a local counterpart.

Corollary 10.7. Let p(-),q(-) € PNLHyNLHy and let R € ©. Assume p(-) <
Then there exists a constant Cy > 0, which depends on py(R), q+(R), c.(p
c*(p()|R) and c*(q(-)|R) such that [w]Az}_)(R) < Co[w]gm(_)(R) for Wl ReD.

q(+) everywhere.

()IR), ex(q()[R),

Although the following estimate is crude, it is important.

Lemma 10.8. [14, Lemma 3.3] Let p(-) € PNLHyNLH. Ifw € A;D(,), then

w(@ 2z min (1. 12) " (s

for all cubes Q,S €D with QNS # 0.

Proof. When Q, S € © with Q NS # (), there are four cases;

(1)

(2) - - B
(3) |Q| < |S| and there is a unique cube S D S such that |S| =2"|S| and Q C S,
(4) |S] < |Q| and there is a unique cube @ D @ such that |Q] = 2"|Q] and S C Q.

First, we assume (1) and (3). We know that w € flg thanks to Lemma 10.6. Since

S 19
M XQ ~ |S|XS7

we have

w(Q) = / xq(2)Ptw(z)dz 2 /Rn MZ)XQ(Z)”w(z)dz

2 [ xstermn (1 12) " weas
= min (1, ||QS||>p+ w(S) > min <1, ||QS||>p+ w(S).
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If (2) and (4) hold, then this is clear since w is a non-negative function. When we consider the

case (4), note that using the above argument, we can show that w(Q) 2 w(Q). Thus, the proof
is complete. ([l

Since we assume that w is (globally) in A&), w has at most polynomial growth. Here and

below, we let Q,TC € ® be the unique cube in ©j containing 0 for k € Z. It is noteworthy that
{th}kez is an increasing family of cubes.

Corollary 10.9. Let w € jl?(.) and QQ € ©. Assume that Q # Qik for any k € N. Then
w(Q) S (14 |z|)P+™ for all z € Q.

Proof. Fix QQ € ®. Let kg € Z be the largest integer such that Q C QLO. If kg > —1, then

w(@) < w(@Qf,) < w(@L) TS (L +aP+m.

If kg < —2, then Q C Q,TCO by assumption. Note that ¢ and QLD 4o do not intersect; otherwise
Q C QLO 4o Oor Q2 QLO 4o- The first possibility never occurs in view of the maximality of
ko. Meanwhile, since Q@ C Q) and Q,Q] €D, [Qf | > 47|Q| and |Q} .| = £1Q}.| > QI

Hence, the latter case is also impossible. Thus, |z| ~ é(QLO) for all x € Q(C R™\ QL0+2)'
Consequently, thanks to Lemma 10.8

t P+
w(@) < w(Ql,) < (%?') w(@h) < (1 + 2l
0

as required. 0

We have various quantities equivalent to [|xqllLr() () if the cube @ € D is small.

Lemma 10.10. Let w € fl?(.) and Q € D with k > —1. Then

1 1 1 1

(10.2) IXQll Lot () ~ w(@) "+ ~ w(Q)"= P ~w(Q)7® ~ w(Q)*?
forallx € Q.

Proof. We concentrate on the proof of w(Q)?+©@ ~ w
1

since other quantities are between w(Q)?+©@ and w(Q)?- .

—~

1
Q)?-@; other equivalences are clear,
1

First, assume that Q N Qtl = (. In this case, we choose the largest integer kg € Z such that
Q C QLO. We have ky < —2. Then @Q and on+2 do not intersect. Otherwise we have either
Q C QL(H_Q or Qro+2 € Q C QLO. As in the proof for Corollary 10.9, neither of these cases
occurs.

Since w € flf(,) and |z| ~ K(on) ~ K(QLOH) 2z 1forall z €@,
(10.3)

(M) WL)S(MIJ w(@},) S w(@Q) <w(@f) < (1+ e+ w(@Ly)

for all z € @ thanks to Lemma 10.8, where r = — log, ¢(Q). If we use the global/local log-Hélder
1 1
conditions, then w(Q)"+@ ~ w(Q)?-? and hence (10.2).

Let us deal with the case QﬂQtl # (. Then we have Q C QiZ. In fact, if @ = QL(]C > —1),
this claim is clear since {Q;}J is decreasing. Otherwise, let @ € D\ {QL}(k > 0). If k is even,
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then Q C er) thanks to the construction of the dyadic grids. In particular Q) C QJLQ. Similarly,
if k£ is odd, then @ C Qil C Qiz. Hence

w(Q ) > w(Q) > (&) w(Q1 )

thanks to Lemma 10.8. Thus,

ot -p+| st -t
hided'1} >1
Q)

w(@FT =] 2 (gt lFw =l (

|+,+‘ |+,+|
w(@) @ @ < (@l ) F@ @] <1,
1 1

Thus, w(Q)"+@ ~ w(Q)?-@. O

Using a similar argument to [14, Proposition 3.8], we have the following equivalence:
Lemma 10.11. Ifp(-) € PNLHyNLHy and w € Af}(_), then, for all Q € D,

-p -1 .o ~ A%/
QP2 w(Q) Hw ||Lz;(<.)> ©) Q]

~ (oo}
Proof. Let w € Af(‘) and suppose that Q € |J Dk. By the definition of ||w||;\@< » we have
=

k=0
w(Q) 4
/. < io .
|Q|pQ ||U} ||LZ;’((')) @ = ||wHA§(_)

1
Due to Lemma 10.10, w(@Q)?e ~ HXQ”LP(‘)(w) = ||wﬁ||Lp<.)(Q). By virtue of the Holder
inequality, we have

_1 __1 1 __1_
Q= /Q w(y) T w(y) 77 dy < 2w | Lo @l o g

L1
S lw(@) e w™»0 HLM»)(Q)-

L P'(y) ,
/Q<w(|%)(e> w(y)” T dy 2 1.

1 1
Again, using Lemma 10.10, we have w(Q)*? ~ w(Q)?® for all y € Q. Since |Q| < 1, we

This means that

obtain »
w Q 1;(1% _rw
[, Gape) ™ v Hav 21
Therefore,
w(Q) —1 > 1
Pl O PTTE PR ¥
Q| L0 (Q)

From the definition of the quantity [w] iz we conclude
2

Hence
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This implies that by Lemma 10.10

|Q[Fe
w(Q)

Thus, if |@| < 1, then we have the desired property.

o(@pe ~

This means that o € A°“®. Furthermore, if R satisfies |R| = 1, then by Remark 2.4, and

1 _ 1 1 1
py (R)—1 p_(R)—1 py (R)—1 p_(R)—1 )
)

min([[xz[" 5" LlxelT L ) < o(R) <max(fIxell”T L SlixallT 2
LrO)=1 (o) LrO)=1 (o) LrO)-1 (g) LrO)=1 (o)
we have
IXRl »e  ~o(R)P=TT
L »0) (o)
By the localization property (Lemma 2.5), we have
o™ we  =lxell wo ~o(@P=""
L p() (Q) L p0) (o)

1 1

11 11

for all cubes @ with |@| > 1. Since we know that |Q|?> P ~ w(Q)?> P ~ 1, we see that
I

o(Q)?= 7o ~ 1. Thus, the proof is complete.

O

Under these preparations, we establish the boundedness of the local maximal operator.

Lemma 10.12. [14, Lemma 5.1] Let w € flp(,). Then there exists 7o = ro([w]fi@( ),p(-)) € (0,1)

such that —log, o is an integer and that
D
||XQM§r0 [XQf]”LP(‘)(w) < ||X3QfHLP(‘)(w)

for all f € LPO)(w) and Q € D; with {(Q) <ro < . Here j =1 —log, ro.

Proof. For now, let ro € (0,1) be small enough. We will specify it shortly. Then, there exists
j € N such that 277 < ry < 27771, Fix Q € D;. Note that £(Q) < ro by the definition of j.
Let Cy be the constant from Lemma 10.6. Write ¢; = Colw] is - Then there exist c; > 0 and

€ (0,1), which is independent of S € © such that [0]4,(s) < c1 implies [0]4,__(s) < c2 for all
o € Ay(S) and ¢ € [p—,p+ + 1] by the openness property established by Hytonen and Pérez
[27] (see also Lemma 2.13).

Next using the log-Holder continuity, we can choose rg < 1~/ so that p, (35)—¢ < p_(35)
for all S € D _14g,r, and j = —logy 1o + 1 € N. By virtue of Lemma 10.6,

[w]Aer(SQ)(BQ) = CO[W}AI’?(_)@Q) < CO[W]AI?(_) =c1.

By the property of co, we have

[w]Af,(sm(?’Q) = CO[w}A&(SQ)—a@Q) < aCo.

Let f € LPY)(w) with [[xsqfll s ) < 1. Set g = xof and

(10.4) a() =
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Fix € @ and choose a cube R € U Dy with z € R. Note that /(R) <277 < ry. Then for all
k=j
B >0,

1 a(z) =& 1 L
<|R|/ng(y)ldy) <|R|/|g )7 (R)dy> (W/R/Blg(y)“mdy>

_a()
by Hélder’s inequality. By the inequality ¢ <1+ ¢ we have

( ; /| Wi )q(z)<< : / (1 ﬁ%‘ ( )|q(u)>d )f@z)

— g9y)ldy < (== L 57 | () )

il BIR Jr
e

q_ (R) qly d _ .

< |R/B () y>

We choose 8 = max(1,w(3Q)?-59 ). We suppose that 0 ¢ 5Q. Decompose equally 3Q into 3™
cubes Q1,Qs, . ..,Q3~». By Corollary 10.9, we have

w(Qr) S (L+[y)+"
forally € Qp and k =1,2,...,3™. Note that for all y € Qi and z € 3Q, |y| ~ |z|. Thus,

3n

(10.5) wBQ) =Y w(Qr) S (L+ [yl ~ (14 =)+

k=1

for all z € 3Q. Meanwhile, if 5Q > 0, then w(3Q) < w([-10,10]") <1 < (1 + |2[)P+™ for all
z € 3Q. Since Q € ®; for j € N, R C 3Q. Hence, estimate (10.5) still holds for all y € R.

Thus, since ¢(-) € LHo,

q(y) 1 a(y) 1

A=~ = max(1, w(3Q) 7= )0 1 < (1 4 |y|)P+m)r@)—a-(B) < 1

for all y € R, where the implicit constant depends on p(-). Since ¢(x) > ¢_(R) and 8 > 1, we
obtain

(10.6) (jﬂ /R g(y)dy)qm
1 1 ey
+ (i [lawroay)

1
= min(1, w(3Q) »-G9) ( / g(y)|2®) dy> / g(y)]2Wdy.
(1,w(3Q) 7 /o) A

Thanks to the Young inequality, the definition of the quantity A 3Q)(3Q) and the fact that
X3 fllr) () < 1, we have

1
/RIQ(y)I‘J(y)dyS/ng(y)l”(y)w(y)der/Rw(y) PG g

3 N p—(3Q)—1 p7(31Q)*1
/Ig )P@w(y)dy + (/ w(y) ”“Q)‘ldx)
R

N N
S JF(['U’]A 0y 3Q)| |P- 3Q)w(R)*l) PG
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Recall that ¢(R) < % Since q(i((r 1%) — 1 > 0, thanks to the log-Holder continuity of ¢(-) and

Lemma 10.10, we have

M,l
1 a_ (R L
_— a(y) < ) p_(3Q) I\ BT N
(quW@” ®> N<Lumufm@@ml w(R)™) ) 1

From (10.6), we obtain

1 q(z) ) _ i
(i [lowiay) " S minws0) =)+ o [l

Recall that R is a cube with ¢(R) < rg < 1/2. Therefore from the definition of M.
deduce

<7‘0 ’ we

_ 1
(10.7) MZ,,9(2)" ) S M2, [1g]V](2) + min(1, w(3Q)”7=)
Recall that ¢(-) is given by (10.4). Inserting the definition of ¢(-) into (10.7), we obtain

1

Mgmg(iﬂ)p(m) < (M?roﬂg\q(')](x))pf(gcg) + max(1,w(3Q))

Since w € A,_(30)(3Q), integrating the above inequality for the measure w(z)dz over Q) gives

/ M<r0 2)P@y(z)de < / [(Mé’ro[IQI“ (z))P-BQ + max(L, w(3Q)) w(z)dz
< [ 1 @EOr 0 u@ar ¢ 11,
Q
HGDCG, we have ||XQM§rog||LP(‘)(u1) = ”XQMSQTO [XQf]”LP(')(w) < 17 as desired. 0

By the localization argument (see Lemma 2.5), we can prove M?,.D is bounded on LP()(w).

Lemma 10.13. [14, Lemma 5.3] Let w € fl?(_). Then there exists 1o = ro([w];‘g( ),p(-)) €(0,1)
>
such that

M2, fll Lo )y S I ILre) )
for all f € LPO)(w).

Let w € flf))(.). Define

Exf= ) xomelf) (keZ)
QEDy,

for f € LL _(R™). We harvest a corollary of Lemmas 10.12 and 10.13.

Corollary 10.14. Let w € A© . If k> 1, then Ey is bounded on LPO)(w).

Proof. Simply observe that |Ej f| < M?,of for f € L _(R™). |

We obtain another corollary of Lemmas 10.12 and 10.13.

Corollary 10.15. Let w € Az?(-) and ro € (0,1) be the same as in Lemma 10.12. Then

(10.8) M2, xR 2o () S NI 2ee )

for all f € LPO)(w) and R € © with £(R) = ro with the implicit constant dependent on 7.
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Proof. Let k =1 —logy1g. Fix R € © with ¢(R) = rg.

Let x € Q;L. Then, a geometric observation shows that there exists the smallest cube QI
i

such that [£(Q:)| > 70,Q, RC Ql and QL nQ=0for Qe | J (9;\{Q"}). Thus,

Jj=—00
XQL (x)
Q|

Yoy (M2, [xaf](@) = /Q X))y

From this pointwise estimate, we have

T L xalswiay

||XQLM2©TO XRI Lro) (w) < ‘

|R| i LrO) (w)
HXQT HLP(')(w) XR
R e 8 AR
XRIILPO) (w) @l L2 (w)
5 HM%DTOfHLP(')(w)
5 Hf”LP(')(w)'

Thus, we obtain
(10.9) [xa M2, gy f)|

by Lemma 10.13.

LrO) (w) < HMgrofHLp(')(w) 5 ”f”Lp(-)(w)

Let x € R™\ QL. Then, a geometric observation shows that there exists the largest number
¢ < k such that x € QE. Then, by the maximality of ¢, we have |z| ~ |Q};\ Since Q; - QZ, we
obtain

Yam gt (@M, gy £1(@)
Xopo) (%) /
=——— [ XorW|f(y)ldy ~
QI Joy

Then, by Holder’s inequality and Lemma 10.10, we have

Xoival ()

||

| \rwldy
Q

k

1@y S gy sl g oy

@
1

vy
< ||XQL||LP'(*)(0—)||f||LP(‘)(w) 5 U(QL) Pk ||f||LP(-)(u))7

where ¢ = w™ PO stands for the dual weight. We obtain

1

“n ot
Xrm\Ql (g:)M?TO [XQLf](:C) N Xrm\Q[, (z)|z] U(QL) L f e (w)-

Thus,
(1010) g MEbxap A1, ) S I 1T X Nero L llro
So we will estimate || - | ™" Xgu\ ot | Lr() (w) using the modular. Let Cy be the constant from
k

Lemma 10.6. Write ¢; = 002[“’},49( . Then there exist co > 0 and € € (0, 1) independent of the
set E such that [0]4»(p) < c1 implies [0] 40 _(p) < ¢z forallo € A2 (E) and q € [p_, p4 +1] for
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all sets E again by the openness property established by Hytonen and Pérez [27]. Let ¥’ <« —1
be an integer so that py (R™\ Q) — 26 < Poo. Then w € Aprie(R™\ Q1) with

. <C . < Co’lw)zo =
[w]AZ?oc"’%E(R \QZ/) - O[w]Afi»(]R”\QL/)(R \QLI) o 0 [w]Al?() @

from Lemma 10.6. As a result,
[w]Afw%s(R”\Qz,) = e

or equivalently, w € Af 2 (R™\ Q!,). Thus, we have
3

/ w(z)dx </ w(z)dz / w(z)dx
= S - 7z + - 7
Re\Q! |z|7p (@) Qraal (1 + |z|)mr=) R\QT, | |p ()

</ w(z)dx +/ w(z)dx
~ ot M+ [P fraqt, (g n(pe—ie)

S/Q w(sc)dx—F/ [MQX[,Ll]n(a:)]poo_%Ew(x)dx

¥ R™\Q],

5/ w(x)dx—l—/ w(z)dr < 1.
QL/ [_171]"

Consequently, ||| - |_nXRn\Q£HLp(-)(w) < 1. By combining estimates (10.9) and (10.10), we
conclude that (10.8) holds.

O

From this corollary, we can obtain the boundedness property of M>®r0 for the function sup-
ported on the cube with comparative ease. Next, consider this operator for the function sup-
ported on the outside of the cube. However, this case is very complicated. We must prepare
some lemmas.

Lemma 10.16. Let w € /Nl;’?(_). Then

sup [RA\ QLI [[wll 1 ot 1™
RED,|R\Q],[>0 i

for some k' < —1.

1 < o0
LP=-1(R\Q},)

For the proof, we invoke the following fact: from [14, Corollary 3.7] (see also Remark 10.21
1
below), Xl Lr¢)(w) ~ w(Q)?e for all cubes @ as long as w € A and p(-) € PoNLHe N LHx.

Proof. Since w € fl?(,), the weight w satisfies the condition

sup [RI777 wl oy mllw ™| po < oo
Re® L7 (R)

Since
-p
|R| PR ~ |R\QL|‘FR ~ |R\QL| R\Q],
for any cube R € ® such that R C QL fails, we have

. -
sup — [R\QLI "W [l gy g pllo !l v < oo,
ReD,|R\Q],|>0 L PO (R\Q],)

Let 7 € (0,1) be small enough. By the Holder inequality for variable exponent Lebesgue spaces,
1 2[w ™| |

w 1 1 T 1 .
I LP=—TF7 (R\Q],) ~ Lf’<‘>*1(R\QL)HXR\Q;d LPeFr=50)
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~

By [14, Corollary 3.7 and Lemma 2.1] (see also Lemma 2.2 and Remark 10.21 below)
. Poo+T—p
IR\ Qi

’ HXR\QL, ||Lm

)
"\ Thus,

swp R\ QLI wll gyl

1
o —1+T7 T
RED,|R\Q},[>0 v (R\Q)

< 00,

< sup R\ QLL T wll ot o] e
RED,|R\Q],|>0 (B\Q;.0) L PO (R\Q])

or equivalently,

T _ _PootT 1 _ 1
sup |R\ Q| P Tl wrse =T || s ot ) I 7277 || 1 gty < 00
RED,|R\Q],[>0 * *

This means that w™ 7=-T77 € Ay C A;,_1 . By virtue of Lemma 2.13 with ¢ =
Poo —

6 1 Poo+7—1
(@ fwlo )7,

_ _PootT _ 1 1  14e e
sup |R\QT,| Poo tT—1  THe ||qPoc—197 HLpoe+f—1(R\QT,)<||w Poo—1F7 HLl(R\QT,)) ™ < oo,
ReD,|R\Q],|>0 g g
Since -
Poo — T
1+ — < ,

as long as 7 is small enough, we obtain

sup IR\QLI*”“lelm\Q;,)\IW”II

L 171 T <0
RED,|R\Q!, >0 roo Tt (\G)

by Holder’s inequality. O

Assuming f = E} f, we obtain some growth information of f.
Lemma 10.17. Let ro be the same as in Lemma 10.12. Suppose that f € LPO)(w) satisfies
f = Exf for some k € Z such that 27% < ry. Let w € Af))(_). Then

Pyn
(10.11) f(@)] = [Bef ()] S M2, f(2) S L+ 12) = [ fllzoe )
In particular, we have
Hf”LPOO(w) S Hf”LP(')(w)'

Proof. Fix x € R™ and a cube @ € © satisfying € Q and ¢(Q) > ro. Then by [14, Corollary
3.7] and Lemma 10.11 (see also Remark 10.21 below),

1 2 ~
a1 101 < el Xl

2
< —=lx () (o f () (w
|Q|H Qll e @) 1 F 1 re) ()

1

20(Q)"e
< J(Q)||f||m<->(w)

[W]Ag =
S Q) £l L6 )

where o = w70~ stands for the dual weight. Thus,

(10.12) L iy < (e pln ||
| @ 1w (Sgr) Whsow
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If 0 ¢ 2Q), then there exists the largest number ¢ < —1 such that Q C QZ. By the geometric
observation, we have |z| ~ E(Q};). By Lemma 10.8, since

w > w(Q) mi 1,|Q|>p+,
(@)= (Qﬂmn( Qll

we have

1 1 QN 1 1

Lo L (1 ¥ ) L ) . )

w(@Q) w(Qy) QI w(Qy) w(Qp)

Meanwhile, if 0 € 2Q, then 64Q D [—rg,7]™. By the doubling condition, we have
1 < 1 < 1 <1

w(Q) ~ w(64Q) ~ w([—ro,70]™)

Inserting this estimate into (10.12), we obtain

(10.13)

pymn

(10.14) MZ,, fla) S (L4 [2) 7= [1fllLoe u)-
Then we have
ppn
[f (@) = |Bpf(2)] S M2, f(2) S 1+ 2)) 7= 11l o) (w)-

Moreover, C||f\|;;(_)(w)f satisfies the assumption of Lemma 2.21 for some constant C' > 0. By
Lemma 2.21 (i), we have

(10.15) I fll oo (w) S NI o6 (o)
O

Lemma 10.18. Let rq be the same as in Lemma 10.12. Let w € Af(_). Then M?TD s bounded
on LPO) (w).

Proof. Let c1,co, and k' < —1 be the same constants in the proof of Corollary 10.15. Then,
the integer k' satisfies p+(R”\QL,) —e < pp(R™\ QL,) —¢/3 < pso. Thus we have w €
Ay so(R™\ QL) with

[lag_,.@me)) < Coltlae

< C [w] A =C
R QT >~ Lo AP 1
Poote » (R”\Ql’)( \ k’)

()

from Lemma 10.6. By the property of € > 0, we have [w] ,» ®\Ql,) < C2-
Poo K’

Let k > 1 have the same parity as k’. Since M?T,Of = M?TO o B f, we can assume f =
Eyf = Xgm\ Q! Ey f thanks to Corollary 10.15. Let us establish
k/

||XQ£/M§TOJE”LP(')(U)) +Xnqt, ME, fllLeo wy S N oe) )

First, let = € Q,TC,. Since é(QL,) > 2> rg, all cubes @ € D satisfying z € @ and £(Q) > rg

—log, 1o

must either include the cube QL, or beacubein |J ®;. Thus, we can write such cubes @
i=k
as Q; for £ < k' — 1. By virtue of these observations, we have
D < 1
Mz, f(x) S sup |/ (y)|dy.

ceze<i-1 QY| Johal,
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Then, using the Holder inequality, Lemma 10.16, Lemma 10.17 and the fact Q};, - Q}t, we have

(10.16) ”XQL,MZ@TOJC“L”(')(“’)
S osu Mot of X ' ©
éeZ,ZSII)c/,1 Qz\Qk/(|f|) HXQL/HLP (w)

~ s, Manal, 1D < lxqy, \qp, e
2

< — - ! / poo

< 52 oMl xonap v w Ixepey
1

< su —

~ T T oo T T . oo
EGZ,ZSIZ”—l |QZ| ”XQe\le | L (w)HXQe\Qk/ HLp (g)”f”LP (w)

Sl zeo) w)-

Next, we define

Xr\qi, (%)
Ng(x) = sup ot [ W)y
Re®,RNQI,=0 or Qf,CR |R\ Qk/| R\Q,,
By Lemma 10.16, w satisfies the condition
sup R\ QT/‘_pw ||w||L1(R\Q£l)||w_1||Lp/oo/Po<> (R\Q!)) < 0.

Re®,RNQT,=0 or Qf,CR
Therefore, we have
M9l Lros (w) S N9l Lroo ()
thanks to [32, Theorem 1.1] and [39, Theorem B]. Here, we can verify that M2, f(z) < 9f(z)
for z € R™\ Q},. Since M is bounded on LP>(w), we deduce

(10.17) HXRH\QL/ M, fllLros (w) S ||XRn\Qzlmf||Lroc ) S N fllLroe (wy S NI L) ()

from Lemma 10.17. Meanwhile, thanks to (10.14), CHfHEz}(-)(w)XR"\QT M2, [ satisfies the
K=

assumption of Lemma 2.21 for some constant C' > 0. By (10.17) and Lemma 2.21 (2), we
obtain

HXRH\QZ/M?rof”LP(')(w) S ||X]Rn\(;);,‘7\4-57”0.]‘1“[1”aQ (w)-
By combining (10.17) and (10.18), we obtain

(1018) ||XRn\QLM?’rof”Ll"(')(w) 5 ||f||LP(‘)(w)'
Thus, the desired result is given from (10.16) and (10.18). O

By combining Lemmas 10.12 and 10.18, we conclude that M?® is bounded on LP() (w), which

implies that ;1?(.) C A;’f(_).

10.2. Necessity of Theorem 10.2. Now let us prove fl?(_) D Af(.).

Consider the converse. We suppose that we have a weight w such that M® is bounded on
LPO) (w).

A weight w is doubling if w(Q) S w(Q) for any Q) € D, where 6:2 € © is the dyadic grand

parent of Q, That is, Q is a cube R € ® with |Q| = 4 "|R| and Q € R. We will use the
following observation:
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Lemma 10.19. Let a doubling weight w, p(-) € P and C > 0 satisfy
(10.19) iu%/\”X()\,oo] (M ) 1oy < CIF 200 ()
>

or equivalently M® is weak bounded on LP()(w). Then

L
1@l 25y 2 min (1, B2 bxeloro

for all Q, R € ® satisfying QN R # 0.

Proof. We can assume £(Q) < {(R); otherwise the conclusion is trivial by the doubling property
of w. If we denote by R € ©, which is the dyadic grand parent of R, then

QnRl _ 1@l . 0
R An|R[7R T An|R|

M®xq > | XR-

=1}

Therefore,

R C {x eER™ : M®xq(z) > 4n?]|%|XR(m)}.

Hence from (10.19), we have

57C|R|
< XQ I LrO) (w)s

5TIR]

Il 0 < gy 37 0)
LZD()(w)

which proves Lemma 10.19. a

We prove the weighted analogy to Lemma 2.2.

Lemma 10.20. Let p(-) € LHy N LH and w be a variable exponent and a weight such that
M? is weak bounded on LP")(w). Then for all Q € Dy with k > 0,

(1020) ||XQ||LP(')(w) ~ w(Q)% ~ ’LU(Q)I’%(Q) ~ w(Q) r+(Q)

Before the proof, a couple of remarks may be in order.

Remark 10.21.

(1) Notice that M? is not assumed bounded on LP()(w). However, it is absolutely neces-
sary to assume that M? is weak bounded on LP()(w) (see Lemma 10.25 below).

(2) As in [14, Lemma 3.4], the same conclusion holds for the case of w € A%®. In fact,
assuming w € Al°®®  we have (10.3) with p, replaced by u, which corresponds to [14,
(3.5)].

(3) As in [14, Corollary 3.7], if w € A2, (10.20) remains valid for any @ € D. In fact,
assuming w € A°%® we have (10.3) with py replaced by u, which corresponds to the
key inequality in the proof of [14, Corollary 3.7].

Proof. Let k > 0. Fix @ € ©j. Recall that Q;L € ® is the unique cube in Dy containing 0.
Then, we can find the smallest cube Q}f (¢ < k) such that Q C QZ. Due to Lemma 10.19,

Q)
Ixqillzrerw) 2 IXQllzee w) 2 @HXQ;HLM-)(@U)-

By the log-Hélder condition, we obtain

11
(”XQ”LP(-)(U,))”)—(Q) P+(Q)’ ~ 1.
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Due to Lemma 2.3, we have

min(|xq [ oy 1X@ ) ~ max(xal(52 s IxalralFy)) ~ w(@).

Thus, we obtain (10.20). O

Now, let us investigate how fast w grows.

Lemma 10.22. Let p(-) € LHy N LH,, be a variable exponent such that M™ is weak bounded
on LPO)(w). Then w has at most polynomial growth. More precisely,

(10.21) w({y €eR" : [y[ < |z[}) S A+ |z)P*"
for all x € R™.

Proof. By Remark 2.4 and Lemma 10.19,

o
Q3
As a result, w(QL) < 27FP+n for all k < 0 or equivalently, (10.21) holds. O

2—kn

1 1
min{w(Q)) @, w(@Q) =} < lIxgt lLrorw) S IXqillLre)w) S

We obtain a crude conclusion assuming that M? is weak bounded on LP() (w).

Lemma 10.23 (c.f. [14, Lemma 6.3]). Let p(-) € LHo N LHo be a variable exponent such that
M?® is weak bounded on LPC)(w). Then w € AD1°°. That is, there exists ¢ > 1 such that

1 1 -1
— -4 <
oI Tl / (IQI /Q“’(x) x) ST

Proof. Let Q € © with |Q| <1 and E C @ be a measurable set. Using

1 1
Xl o) () < max{w(E)=@ w(B)=@}, Q c {M°xg >|Q|'El},

we will show that

w(E) o (B
(10.22) w©) ~ \|Q| .
Once this is achieved, we will have ¢ € [1,00) such that w € Aqg. Then, due to Lemma 10.20,

max{w(Q) @ ) w(Q)p’(Q) F~lxellro (w)
< Ixaroxe=i@i-11E3 2o (w)

Ql

|
S EHXEHL@(-)(UJ)
|Q‘ 1(Q) pfl(Q)
< i ma{w(E) 7 w(5)7T ).
As a result
w(E) . <E|>p(Q) (|E>P+(Q) <|E|>P+(Q) N (|E|>p+
Zmin< | — o= == > — )
w(Q) Q| Q| Q| Q|
Thus, the proof of (10.22) is complete. |

Corollary 10.24 ([14, Corollary 6.6]). Let p(-),q(-) € LHo N LHo be variable exponents such
that M® is weak bounded on LP")(w). Then

(10.23) IXQll Lat) (w) ~ w(Q) @
for all cubes Q € D.
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This corollary seems to be the same as Lemma 10.20. However, we remark that the weak
boundedness is assumed on LP() (w) and the equivalence for a different exponent g(-) is obtained.

Proof. Simply combine Lemmas 2.21 and 10.22. In fact, as in [14, Lemma 3.4 and Corollary
3.7] (see also Remark 10.21), we have

1
(1024) ||XQ||L‘1(')(w) ~ U)(Q) @,
where we use Lemma 10.23 if |Q| < 1 but we use Lemma 2.5 and (10.24) for cubes having
volume 1 if |Q] > 1 O

As the following lemma shows, the dual space inherits the boundedness of the operator M®
from the original space.

Lemma 10.25. Let p(-) € LHy N LH,, be a variable exponent such that M® is bounded on

LPO)(w). Then M?® is weak bounded on L¥'()(c), where o = W FO=T stands for the dual
weight.

Proof. Let A > 0 be fixed. Also, let f € LP'O)(¢). By the duality LPO)(w)-L? () (o) and the
Stein type dual inequality, we have

A0 M2 )l 10 ~ sup [ W O ) lg(w)
gELP(')(w),”gHLp(.)(w):l R™

< sup [ 5@y
QGLP(‘)(w),”g”Lp(,)(w):l R”
Finally, use the Lp(')(u/)—boundedness of M® and the Holder inequality. O

If we reexamine the proof of Lemma 10.25, then we see that Lemma 10.25 holds for a wider
class of function spaces. We summarize our observation below.

Remark 10.26. A Banach lattice over R™ is a Banach space (X(R"™),|| - ||x) contained in
LO(R™) such that, for all g € X(R") and f € L°(R™), the implication “|f| < |g| = f € X(R")
and || f||x < |lglla” holds. The dual lattice X’(R™) of X (R™) is given by the set of all g € L°(R")
for which
1l = sup{llfgllon : g € X}

is finite. According to [1], X" is a Banach lattice over R”. Lemma 10.25 is available for Banach
lattices. Namely, if X is a Banach lattice over R” MP(@) is bounded on X. Then MP(@
is weak bounded on X’(R™). As the example of X(R™) = L!(R™) shows, it can happen that
MP(@) is not bounded on X (R™).

We conclude the proof of necessity. Thus, we suppose that there exists a constant C' > 0
such that

1M Fll o wy < CNF Lo (-
Fix a cube @ € ©. Then we have
o(Q
M2longl(a) = TP o)

As a result,

a(Q
(10.25) el < Clhallso
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Note that w has at most polynomial growth thanks to Lemma 10.22. Additionally it should be
observed that M® is weak bounded on Lp,(‘)(a) thanks to Lemma 10.25. Thus, we conclude
from Lemma 10.22 that ¢ has at most polynomial growth. Thus, Corollary 10.24 can be applied
to both w and o. Due to Corollary 10.24, we have

a a
IXQllLre) (wy ~ w(@)72,  lIxQllLre) (o) ~ o (Q)7< .
Inserting these estimates into (10.25), we obtain

o(Q)
Q|

w(Q)7 < Co(Q)7a,

or equivalently,
QI |wllpr@o(@)P 7 < C,
where constant C' is independent of Q. If we use Corollary 10.24 once again, we conclude

QI wllr@lloll »0  =<C,
L' (Q)
as required.
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