We show that if a holomorphic n dimensional compact torus action on a compact connected complex manifold of complex dimension n has a fixed point then the manifold is equivariantly biholomorphic to a smooth toric variety.

1. Introduction

We begin by recalling some notions from the theory of toric varieties.

We work in the vector space $\text{Lie}(S^1)^n \cong \mathbb{R}^n$ with the lattice $\text{Hom}(S^1, (S^1)^n) \cong \mathbb{Z}^n$. Here, we identify $\text{Lie}(S^1)$ with \mathbb{R} such that the exponential map $\exp: \mathbb{R} \to S^1$ is $t \mapsto e^{2\pi i t}$.

A unimodular fan is a finite set Δ of convex polyhedral cones with the following properties.

1. A face of a cone in Δ is also a cone in Δ.
2. The intersection of two cones in Δ is a common face.
3. Every cone in Δ is unimodular, i.e., it has the form $\text{pos}(\lambda_1, \ldots, \lambda_k)$ where $\lambda_1, \ldots, \lambda_k$ is part of a \mathbb{Z}-basis of the lattice. Here, pos denotes the positive span: the set of linear combinations with non-negative coefficients.1

A fan Δ is complete if the union of the cones in Δ is all of $\text{Lie}(S^1)^n$.

The theory of toric varieties associates to a unimodular fan Δ a complex manifold M_{Δ} with a holomorphic $(\mathbb{C}^*)^n$-action with the following properties.

1. The fixed points in M_{Δ} are in bijection with the n-dimensional cones in Δ.
2. Let p be a fixed point in M_{Δ}. Then the isotropy weights at p are a \mathbb{Z}-basis to the lattice $\text{Hom}((\mathbb{C}^*)^n, S^1) \subset (\text{Lie}(S^1)^n)^*$. Moreover, let $\lambda_1, \ldots, \lambda_n$ be the dual basis; then the cone in Δ that corresponds to p is $\text{pos}(\lambda_1, \ldots, \lambda_n)$.
3. The manifold M_{Δ} is compact if and only if the fan Δ is complete.
For the details of the construction and the proof of these properties, we refer the reader to the book [2] by Cox, Little, and Schenck.

In fact, M_{Δ} is an algebraic variety. Moreover, every smooth complex algebraic variety that is equipped with an algebraic $(\mathbb{C}^*)^n$-action with an open dense free orbit is isomorphic to some M_{Δ}. (The proof of this fact appeared in the book [6] by Kempf, Knudsen, Mumford, and Saint-Donat and in the article [9] by Miyake and Oda and relies on a lemma of Sumihiro [10]; see Corollary 3.1.8 in [2].) Our main theorem is a complex analytic variant of this result:

Theorem 1. Let M be a connected complex manifold of complex dimension n, equipped with a faithful action of the torus $(S^1)^n$ by biholomorphisms. If M is compact and the action has fixed points, then there exists a unimodular fan Δ and an $(S^1)^n$-equivariant biholomorphism of M_{Δ} with M.

Remark 2.

(1) Our theorem gives a negative answer to a question that was raised by Buchstaber and Panov in [11, Problem 5.23].

Let M be a closed $2n$ dimensional manifold with an $(S^1)^n$-action that is locally standard: every orbit has a neighbourhood that is equivariantly diffeomorphic, up to an automorphism of $(S^1)^n$, to an invariant open subset of \mathbb{C}^n with the standard $(S^1)^n$-action. Also assume that the quotient $M/(S^1)^n$ is diffeomorphic, as a manifold with corners, to a simple convex polytope P in \mathbb{R}^n. Such manifolds, introduced in [3] and studied in the toric topology community, are called quasi-toric manifolds.

The question of Buchstaber and Panov is whether there exists a non-toric quasi-toric manifold that admits an $(S^1)^n$-invariant complex structure.

(2) Our theorem strengthens an earlier result of Ishida and Masuda, that if a closed complex manifold of complex dimension n admits an $(S^1)^n$-action, and if its odd-degree cohomology groups vanish, then the Todd genus of the manifold is equal to one. See [5, Theorem 1.1 and Remark 1.2].

(3) It is necessary to assume that the action has fixed points: the complex torus $\mathbb{C}^*/(z \sim 2z)$ has a holomorphic S^1-action, induced from multiplication on \mathbb{C}^*, but it is not a toric variety.

(4) It is necessary to assume that the manifold is compact: the open unit disc in \mathbb{C} with the natural circle action has a fixed point, but it is not a toric variety: the circle action does not extend to a \mathbb{C}^*-action.

2 A map from $M/(S^1)^n$ to P is a diffeomorphism of manifolds with corners if and only if it is a homeomorphism and, for every real valued function on P, the function extends to a smooth function on \mathbb{R}^n if and only if its pullback to M is smooth. For every $k \in \{0, \ldots, n\}$, a diffeomorphism carries the k dimensional orbits in M to the relative interiors of the k dimensional faces of P.

3 Davis-Januszkiewicz [3] used the term toric manifold, but this term was already used in the literature to mean a smooth toric variety, so Buchstaber-Panov [11] introduced instead the term quasitoric manifold.
2. The complexified action

Let the torus \((S^1)^n\) act on a complex manifold \(M\) by biholomorphisms. If the manifold \(M\) is compact, then the \((S^1)^n\)-action extends to a \((\mathbb{C}^*)^n\)-action that is holomorphic not only in the sense that each element of \((\mathbb{C}^*)^n\) acts by a biholomorphism but also in the sense that the action map \((\mathbb{C}^*)^n \times M \to M\) is holomorphic. See, e.g., \([4, \text{ Theorem 4.4}]\). For the convenience of the reader, we briefly recall here some of the details of this standard construction.

Let \(\xi_1, \ldots, \xi_n\) be the fundamental vector fields of the \((S^1)^n\)-action with respect to the coordinate one-dimensional subtori. Let \(J: TM \to TM\) be the multiplication by \(\sqrt{-1}\). We claim that the vector fields \(-J\xi_1, \ldots, -J\xi_n\) are holomorphic (in the sense that their flows preserve the complex structure) and commute with each other and with the vector fields \(\xi_i\).

Because the \((S^1)^n\)-action preserves \(J\) and \(\xi_j\), it preserves \(-J\xi_j\), for each \(j\). So the vector fields \(-J\xi_j\) commute with the vector fields \(\xi_i\) that generate this action. Because \(J\) is a complex structure, its Nijenhaus tensor, \(N(Z, W) := 2(JZJW) - J[Z, JW] - J[JZ, W] - [Z, W]\), vanishes. Setting \(Z = \xi_i\) and \(W = \xi_j\), we get that \([J\xi_i, J\xi_j]\) = \(J[\xi_i, J\xi_j] + J[J\xi_i, \xi_j] + [\xi_i, \xi_j]\), and each of the three terms on the right hand side is zero. So the vector fields \(-J\xi_j\) commute with each other. A vector field \(Y\) is holomorphic if and only if \([Y, JW] = J[Y, W]\) for each vector \(W\); see \([4, \text{ Proposition 2.10 in Chapter IX}]\). Set \(Y := -J\xi_i\) and \(W\) arbitrary; because \(JY(= \xi_i)\) is holomorphic, \([JY, JW] = J[JY, W]\); by the vanishing of the Nijenhaus tensor,

\[
\]

so \(Y\) is holomorphic.

If \(M\) is compact, the vector fields \(-J\xi_1, \ldots, -J\xi_n\) are complete, and we get an \(\mathbb{R}^{2n}\)-action, \(\mathbb{R}^{2n} \times M \to M\), via

\[
\left(\sum_{i=1}^{2n} a_i \xi_i, x \right) \mapsto c_x(1),
\]

where \(c_x(r)\) is the integral curve of the vector field \(\sum_{i=1}^n -a_i J\xi_i + a_{n+i}\xi_i\) with \(c_x(0) = x\). This action descends to a \((\mathbb{C}^*)^n\)-action by biholomorphisms that extends the given \((S^1)^n\)-action. Finally, the action map \((\mathbb{C}^*)^n \times M \to M\) is holomorphic, because its differential, which at the point \((z, m)\) is the map \(\mathbb{C}^n \times T_m M \to T_{z,m} M\) that takes \((2\pi r_1 + i\theta_1, \ldots, r_n + i\theta_n, v)\) to \(\sum_{j} -r_j J\xi_j|_{z,m} + \theta_j \xi_j|_{z,m} + z_*v\), is complex linear.

Remark 3. In the next section we will see that if there exists a fixed point then the extended \((\mathbb{C}^*)^n\)-action is faithful. In general, the extended \((\mathbb{C}^*)^n\)-action might not be faithful.

Example 4. Let \((S^1)^n\) act on \(\mathbb{C}^n\) with weights \(\alpha_1, \ldots, \alpha_n\):

\[
g \cdot (z_1, \ldots, z_n) = (g^{\alpha_1}z_1, \ldots, g^{\alpha_n}z_n),
\]
where \(g^{\alpha_i} = g_1^{\alpha_i} \ldots g_n^{\alpha_i} \) for \(g = (g_1, \ldots, g_n) \in (S^1)^n \) and the isotropy weight \(\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in}) \in \mathbb{Z}^n \). Then the complexified action is given by the same formula applied to \(g = (g_1, \ldots, g_n) \in (\mathbb{C}^*)^n \).

3. Structures near fixed points

Let \(M \) be a complex manifold of complex dimension \(n \). Let the torus \((S^1)^n \) act on \(M \) faithfully by biholomorphisms. Let \(p \) be a point in \(M \) that is fixed by the \((S^1)^n \)-action. Let \(\alpha_1, \ldots, \alpha_n \) be the isotropy weights at \(p \).

We begin with a local result:

Lemma 5. There exists an \((S^1)^n \)-invariant neighbourhood \(U_p \) of \(p \) in \(M \), an \((S^1)^n \)-invariant neighbourhood \(\tilde{U}_p \) of the origin in \(T_p M \), and an \((S^1)^n \)-equivariant biholomorphism \(\varphi_p : U_p \to \tilde{U}_p \) whose differential at \(p \) is the identity map on \(T_p M \).

Here, \(C_{\alpha_i} \) denotes the one dimensional complex vector space \(C \) with the \((S^1)^n \)-action that is obtained by composing the homomorphism \((S^1)^n \to S^1 \) that is encoded by the weight \(\alpha_i \) with the standard action of \(S^1 \) on \(C \) by scalar multiplication.

Proof. Let \(\varphi : U \to \tilde{U} \subseteq C^n \) be a local holomorphic chart near \(p \) with \(\varphi(p) = 0 \). Identifying \(C^n \) with \(T_p M \) via the differential \((d\varphi)_p : T_p M \to T_0 C^n \cong C^n \), we get a biholomorphism

\[
\varphi' : U \to \tilde{U} \subseteq T_p M
\]

whose differential at \(p \) is the identity map on \(T_p M \). We want to obtain such a biholomorphism that is also equivariant.

Set

\[
U' := \bigcap_{g \in (S^1)^n} g U.
\]

Clearly, \(U' \) is invariant and contains \(p \). We now show that \(U' \) is open. The complement of \(U' \) is the image of the closed subset \((S^1)^n \times (M \setminus U)\) of \((S^1)^n \times M\) under the action map \((S^1)^n \times M \to M\). Because \((S^1)^n\) is compact, the action map is proper. Being proper means that the preimage of every compact set is compact; when the target space \(M \) is a manifold\(^4\), it implies that the map is closed. Thus, the complement \(M \setminus U' \) is closed, and so \(U' \) is open.

To obtain an equivariant chart, we average \(\varphi' \): let

\[
\tilde{\varphi} := \int_{g \in (S^1)^n} (g \circ \varphi' \circ g^{-1}) \, dg : U' \to T_p M,
\]

\(^4\) In fact, it is enough to assume that the target space is Hausdorff and compactly generated. Compactly generated means that a subset is closed if and only if its intersection with every compact set \(K \) is closed in \(K \); this property holds if the space is locally compact or if the space is metrizable.
where \(dg \) is Haar measure on \((S^1)^n\). The map \(\varphi \) is holomorphic and \((S^1)^n\)-equivariant. Moreover, its differential at \(p \) is the identity map on \(T_pM \). By the implicit function theorem, \(\varphi \) restricts to a biholomorphism from some smaller open neighbourhood \(U'' \) of \(p \) in \(M \) to an open neighbourhood of the origin in \(T_pM \). The restriction of \(\varphi \) to the invariant neighbourhood \(U_p := \bigcap_{g \in (S^1)^n} g \cdot U'' \) of \(p \) in \(M \) satisfies the requirements of the lemma. \(\square \)

Corollary 6. There exists an \((S^1)^n\)-equivariant local holomorphic chart \[\varphi_p : U_p \to \mathbb{D}^n \]

from an invariant open neighbourhood \(U_p \) of \(p \) to a polydisc \(\mathbb{D}^n \) in \(C_{a_1} \oplus \ldots \oplus C_{a_n} \).

Proof. By the definition of the isotropy weights, there exists a complex linear \((S^1)^n\)-equivariant isomorphism between the tangent space \(T_pM \) and the representation \(C_{a_1} \oplus \ldots \oplus C_{a_n} \). Corollary 6 then follows from Lemma 5 by restricting the chart to the preimage of a polydisc. \(\square \)

We would like to extend the chart of Corollary 6 to a chart whose image is all of \(C^n \). We can do this when the \((S^1)^n\) extends to a \((C^n)^n\)-action; for example, if the manifold is compact; by “sweeping” by the \((C^n)^n\)-action.

Lemma 7. Suppose that the \((S^1)^n\)-action extends to a \((C^n)^n\)-action. Then there exists an invariant open neighbourhood \(V_p \) of \(p \) in \(M \) and an \((S^1)^n\)-equivariant biholomorphism of \(V_p \) with \(C_{a_1} \oplus \ldots \oplus C_{a_n} \).

Proof. Let \(\varphi_p : U_p \to \mathbb{D}^n \) be an \((S^1)^n\)-equivariant holomorphic local chart, as in Corollary 6. Because \(\varphi_p \) is \((S^1)^n\)-equivariant and holomorphic, it intertwines the restriction to \(U_p \) of the vector fields that generate the complexified \((C^n)^n\)-action on \(M \) with the restriction to \(\mathbb{D}^n \) of the vector fields that generate the complexified \((C^n)^n\)-action on \(C^n = C_{a_1} \oplus \ldots \oplus C_{a_n} \). This, and the fact that \(\varphi_p \) is a diffeomorphism between \(U_p \) and \(\mathbb{D}^n \), implies that \(\varphi_p \) also intertwines the partial flows on \(U_p \) and on \(\mathbb{D}^n \) that are generated by these vector fields; in particular it intertwines the domains of definition of these partial flows.

For each \(t \in \mathbb{R} \), let \(g_t \) be the element of \((C^n)^n\) that acts on \(C^n \) as scalar multiplication by \(e^{-t} \), and let \(\eta \in \text{Lie}(C^n)^n \) be the generator of the one-parameter subgroup \(t \mapsto g_t \). Because \(e^{-t} \mathbb{D}^n \subset \mathbb{D}^n \) for all \(t \geq 0 \), and because \(\varphi_p \) intertwines the domains of definition of the partial flows on \(U_p \) and on \(\mathbb{D}^n \) that correspond to \(\eta \), we get that \(g_t U_p \subset U_p \) for all \(t \geq 0 \). So, for every \(t \geq 0 \), the domain of definition of the \((S^1)^n\)-equivariant biholomorphism \[\varphi_p^{(t)} := (g_t)^{-1} \circ \varphi_p \circ g_t : g_{-t} U_p \to e^{-t} \mathbb{D}^n \]
contains \(U_p \). Here, \(g_t : g_{-t} U_p \to U_p \) and \(g_t : e^{-t} \mathbb{D}^n \to \mathbb{D}^n \) are given by the complexified actions on \(M \) and on \(C^n \). By the choice of \(g_t \), the latter map is multiplication by \(e^{-t} \).

Moreover, because \(\varphi_p \) intertwines the partial flows that correspond to \(\eta \) and these partial flows are defined for all \(t \geq 0 \), the restriction to \(U_p \) of \(\varphi_p^{(t)} \) coincides with \(\varphi_p \) for all \(t \geq 0 \). Substituting \(t - s \) instead of \(t \), we get that the maps \(\varphi_p^{(t)} \) and \(\varphi_p^{(s)} \) agree whenever they are
both defined. Thus, all these maps fit together into a map

$$\bigcup_{t \geq 0} \phi_p^{(t)} : V_p \to \mathbb{C}_{\alpha_1} \oplus \ldots \oplus \mathbb{C}_{\alpha_n},$$

where $V_p = \bigcup_{t \geq 0} g_{-t}U_p$. This map is onto, because its image is the union of the sets e^{tD^n} over all $t \geq 0$. The map is one to one, because it is one to one on each $g_{-t}U_p$, and for every two points in the domain there exists a $t \geq 0$ such that the points are both in $g_{-t}U_p$. Because V_p is covered by $(S^1)^n$-invariant open sets $g_{-t}U_p$ on which the map is an $(S^1)^n$-equivariant biholomorphism, we deduce that the map is itself an $(S^1)^n$-equivariant biholomorphism, as required.

$$4. \text{Obtaining a fan}$$

Let M be a complex manifold of complex dimension n, let the torus $(S^1)^n$ act on M faithfully by biholomorphisms, and assume that this action extends to a holomorphic $(\mathbb{C}^*)^n$-action. Moreover, assume that the action has at least one fixed point.

In Lemma 7 we assigned to every fixed point p in M an open subset V_p that is biholomorphic to \mathbb{C}^n. By assumption, there exists at least one fixed point. So the union of the sets V_p over these fixed points,

$$\bigcup_{p \in M(S^1)^n} V_p,$$

is nonempty. We fix a connected component of this union and denote it X.

Remark 8. We would like to know that if M connected then the union of the sets V_p is all of M. We do not know how to prove this directly; we do not even know if it is always true. We will eventually show that if M is compact and connected then X is compact; so in this case X must coincides with M, and the union of the sets V_p is indeed all of M.

The connected components of the fixed point sets of the circle subgroups of $(S^1)^n$ are closed complex submanifolds of X. If such a submanifold has complex codimension one, then, in analogy with the toric topology literature, we call it a *characteristic submanifold* of X (cf. [8, p. 240]).

Because X is a union of finitely many V_p's and each V_p has only finitely many characteristic submanifolds, there are only finitely many characteristic submanifolds in X. Denote them

$$X_1, \ldots, X_m.$$

Let T_i be the subgroup of T that fixes X_i. If a compact group acts faithfully on a connected manifold then at every fixed point the linear isotropy representation is faithful. Therefore, the linear isotropy representation of T_i at any point q of X_i is faithful. Because T_i acts holomorphically and fixes X_i, we get a faithful representation of T_i on the one dimensional complex space T_qX/T_qX_i. This gives an injection $T_i \to S^1$, where S^1 acts on T_qX/T_qX_i by scalar multiplication. By continuity, this injection is independent of the
choice of point \(q \) in \(X_i \). Because, by assumption, \(T_i \) contains a circle subgroup of \(T \), this injection is an isomorphism. Let
\[
\lambda_i: S^1 \to T_i \subset (S^1)^n
\]
be the inverse of this isomorphism, composed with the inclusion map into \((S^1)^n\).

We define an abstract simplicial complex:
\[
\Sigma := \left\{ I \subseteq \{1, \ldots, m\} \mid X_I := \bigcap_{i \in I} X_i \neq \emptyset \right\}.
\]
To each simplex \(I \in \Sigma \) we assign the cone
\[
C_I := \text{pos}(\lambda_i | i \in I) := \left\{ \sum_{i \in I} a_i \lambda_i \mid a_i \geq 0 \right\}
\]
in \(\text{Lie}(S^1)^n \).

Example 9. Take \(\mathbb{C}^n \) with coordinates \(z_1, \ldots, z_n \). Let \((S^1)^n \) act on it with weights \(\alpha_1, \ldots, \alpha_n \in \text{Hom}((S^1)^n, S^1) \subset (\text{Lie}(S^1)^n)^\ast \). Suppose that the action is faithful; then \(\alpha_1, \ldots, \alpha_n \) are a \(\mathbb{Z} \)-basis of \(\text{Hom}((S^1)^n, S^1) \). The characteristic submanifolds are the coordinate hyperplanes \(\{z_i = 0\} \) for \(i = 1, \ldots, n \). The homomorphisms \(\lambda_1, \ldots, \lambda_n \) are the basis to \(\text{Hom}(S^1, (S^1)^n) \subset \text{Lie}(S^1)^n \) that is dual to \(\alpha_1, \ldots, \alpha_n \).

Recall that a cone in \(\text{Lie}(S^1)^n \) is **unimodular** if it is generated by part of a \(\mathbb{Z} \)-basis of \(\text{Hom}(S^1, (S^1)^n) \).

Returning to our general case –

Lemma 10. The cones \(C_I \), for \(I \in \Sigma \), are unimodular.

Proof. Let \(I \in \Sigma \). By the definition of \(\Sigma \), this means that the intersection \(\bigcap_{i \in I} X_i \) is nonempty. Let \(q \) be a point in this intersection. Let \(p \) be a fixed point such that \(q \in V_p \). Because \(V_p \) is isomorphic to some \(\mathbb{C}_{\alpha_1} \oplus \ldots \oplus \mathbb{C}_{\alpha_n} \) on which the action is faithful, the lemma follows from Example 9.

Every \(V_p \) contains an open dense free \((\mathbb{C}^\ast)^n \) orbit. For any two \(V_p \)s that are in the connected component \(X \), these orbits coincide. Thus, there exists a unique free \((\mathbb{C}^\ast)^n \) orbit in \(X \), it is open and dense, and it is contained in every \(V_p \) that is contained in \(X \).

Fix a point \(q \) in the free \((\mathbb{C}^\ast)^n \) orbit in \(X \). For any \(\xi \in \text{Lie}(S^1)^n \), consider the curve
\[
c^\xi_q: \mathbb{R} \to X
\]
that is given by
\[
c^\xi_q(r) := \exp(-rJ\xi) \cdot q \quad \text{for } r \in \mathbb{R}
\]
where \(\exp: \text{Lie}(\mathbb{C}^\ast)^n \to (\mathbb{C}^\ast)^n \) is the exponential map and where \(J \) denotes multiplication by \(i \) in \(\text{Lie}(\mathbb{C}^\ast)^n \).
Denote by C^0_I the relative interior of the cone C_I. Denote
$$X^0_I = \bigcap_{i \in I} X_i \smallsetminus \bigcap_{j \notin I} X_j.$$

Lemma 11. Let $\xi \in \text{Lie}(S^1)^n$ and $I \in \Sigma$. Then $\xi \in C^0_I$ if and only if the curve $c^\xi_q(r)$ converges as $r \to -\infty$ to a point q' in X^0_I. Moreover, in this case the limit point q' belongs to V_p for every p such that $V_p \cap X_I \neq \emptyset$.

Proof. Suppose that $\xi \in C^0_I$. By the definition of Σ, X_I is nonempty. Let p be such that V_p meets X_I. Without loss of generality assume that $I = \{1, \ldots, k\}$ and that the characteristic submanifolds that meet V_p are X_1, \ldots, X_n. Let $\alpha_1, \ldots, \alpha_n$ denote the isotropy weights at p. The assumption that $\xi \in C^0_I$ exactly means that (ξ, α_i) is positive for $i = 1, \ldots, k$ and zero for $i = k + 1, \ldots, n$. Fix an isomorphism $(z_1, \ldots, z_n) : V_p \to \mathbb{C}^n = \mathbb{C}_{\alpha_1} \oplus \cdots \oplus \mathbb{C}_{\alpha_n}$ such that $z_i(q) = 1$ for all i. In these coordinates, the curve $c^\xi_q(r)$ is represented as
$$(z_1, \ldots, z_n)(c^\xi_q(r)) = (e^{2\pi i (\xi, \alpha_1)}, \ldots, e^{2\pi i (\xi, \alpha_n)}).$$

As r approaches $-\infty$, the curve in \mathbb{C}^n approaches the point $(0, \ldots, 0, 1, \ldots, 1)$. On the other hand, the coordinates take each intersection $V_p \cap X_I$ to the coordinate hyperplane $\{(z_1, \ldots, z_n) \mid z_i = 0\}$, and they take the intersection $V_p \cap X^0_I$ to the set $\{(z_1, \ldots, z_n) \mid z_i = 0$ if $1 \leq i \leq k\}$. So the curve approaches a point in $V_p \cap X^0_I$, as required.

Now suppose that the curve $c^\xi_q(r)$ converges as $r \to -\infty$ to a point in X^0_I. Let p be such that this limit point is contained in V_p. As before, without loss of generality assume that $I = \{1, \ldots, k\}$ and that the characteristic submanifolds that meet V_p are exactly X_1, \ldots, X_n; fix an isomorphism $(z_1, \ldots, z_n) : V_p \to \mathbb{C}^n = \mathbb{C}_{\alpha_1} \oplus \cdots \oplus \mathbb{C}_{\alpha_n}$ such that $z_i(q) = 1$ for all i; the curve $c^\xi_q(r)$ is represented as $(z_1, \ldots, z_n)(c^\xi_q(r)) = (e^{2\pi i (\xi, \alpha_1)}, \ldots, e^{2\pi i (\xi, \alpha_n)})$. Because the curve approaches a limit as $r \to -\infty$, the pairings (ξ, α_i) are nonnegative for all $i = 1, \ldots, n$. Because this limit is in X^0_I, the pairings are positive for every $i \in I$ and they vanish for every $i \in \{1, \ldots, n\} \setminus I$. Thus, $\xi \in C^0_I$ as required. \square

Corollary 12.
(1) For every $I, J \in \Sigma$, if $I \neq J$, then $C^0_I \cap C^0_J = \emptyset$.

(2) For every $I, J \in \Sigma$,
$$C_I \cap C_J = C_{I \cap J}.$$

(3) The collection of cones
$$\Delta := \{ C_I \mid I \in \Sigma \}$$
is a fan, that is, every face of every cone in Δ is itself in Δ, and the intersection of every two cones in Δ is a common face.

Proof. Part (1) follows from Lemma 11 because the sets X^0_I are disjoint. Part (3) follows from Part (2).

For Part (2), we only need to show the inclusion $C_I \cap C_J \subseteq C_{I \cap J}$, because the opposite inclusion is trivial. Let $\xi \in C_I \cap C_J$. Let $I' \subset I$ and $J' \subset J$ be the subsets such that $\xi \in C^0_{I'}$,
For every $I \in \Sigma$, we described an open subset \mathbb{C}^d_J. Then $C^0_I \cap C^0_J \neq \emptyset$. By Part (1), $I' = J'$. Let $L = I' = J'$. Then $L \subset I \cap J$, and $\xi \in C^0_L \subset C_{I \cap J}$.

Lemma 13. For every $I \in \Sigma$, the set X_I is an $(S^1)^n$-invariant smooth closed complex submanifold of X of complex codimension $|I|$, it is connected, and it contains a fixed point.

Proof. Fix $I \in \Sigma$.

Because each of the sets X_i, for $i \in I$, is closed in X, so is the intersection X_I of these sets.

Because X is the union of open subsets V_p, and because every intersection $V_p \cap X_I$ is an $(S^1)^n$-invariant complex submanifold of codimension $|I|$ in V_p, we deduce that X_I is itself an $(S^1)^n$-invariant complex submanifold of codimension $|I|$ in X. It remains to show that X_I is connected and contains a fixed point.

Choose any $\xi \in C^d_J$ (for example, we may take $\xi = \sum_{i \in I} \lambda_i$), and choose any q in the free $(\mathbb{C}^*)^n$ orbit in X. By Lemma 11, the curve $c^d_J(r)$ converges as $r \to -\infty$; let q' be its limit. Also by Lemma 11, for every p such that $V_p \cap X_I \neq \emptyset$, the limit point q' belongs to V_p. Because X_I is the union over such p of the subsets $V_p \cap X_I$, and because each of these subsets is connected and contains q', the union X_I is connected. Also, every p such that $V_p \cap X_I \neq \emptyset$ belongs to $V_p \cap X_I$; because the set of such ps is nonempty, X_I contains a fixed point.

Corollary 14. In the fan Δ, every cone is contained in an n dimensional cone.

Proof. Every cone in the fan has the form C^d_J for some $I \in \Sigma$. By Lemma 3, the set X_I contains a fixed point; let p be such a fixed point. Since V_p was chosen as in Lemma 2, by Example 9 there exist exactly n characteristic submanifolds, say, X_j for $j \in J \subset \{1, \ldots, m\}$ with $|J| = n$, that pass through p. Then $J \in \Sigma$, and C^d_J is an n dimensional cone in Δ that contains C^d_I.

5. ISOMORPHISM OF THE SUBSET X WITH A TORIC MANIFOLD

Let M be a complex manifold of complex dimension n, let the torus $(S^1)^n$ act on M faithfully by biholomorphisms, and assume that this action extends to a holomorphic $(\mathbb{C}^*)^n$-action. Moreover, assume that the action has at least one fixed point.

In Section 3 we described an open subset X of M and a unimodular fan Δ. Let $M\Delta$ be the toric variety that is associated to the fan Δ.

Lemma 15. There exists an $(S^1)^n$-equivariant biholomorphism between $M\Delta$ and X.

We recall some properties of the set X and the fan Δ. Let F denote the fixed point set in X. For every fixed point $p \in F$, let $\alpha_{p,1}, \ldots, \alpha_{p,n}$ denote the isotropy weights of the torus action at p.

1. The set X is the union over $p \in F$ of subsets V_p, such that each V_p is an invariant open neighbourhood of p that is equivariantly biholomorphic to the linear representation $\mathbb{C}_{\alpha_{p,1}}, \ldots, \mathbb{C}_{\alpha_{p,n}}$.

(2) The \(n \)-dimensional cones in \(\Delta \) are in bijection with the fixed point sets \(p \in F \), and the cone corresponding to the fixed point \(p \) is \(\text{pos}(\lambda_{i_1}, \ldots, \lambda_{i_n}) \), where \(\lambda_{i_1}, \ldots, \lambda_{i_n} \) is a basis of \(\text{Lie}(S^1)^n \) that is dual to the basis \(\alpha_{p,1}, \ldots, \alpha_{p,n} \) of \((\text{Lie}(S^1)^n)^* \).

The toric variety \(M_\Delta \) that is associated to the fan \(\Delta \) has similar properties: it is the union over \(p \in F \) of invariant subsets \(V'_p \), and every \(V'_p \) is equivariantly biholomorphic to \(\mathbb{C}^{\alpha_{p,1}} \oplus \ldots \oplus \mathbb{C}^{\alpha_{p,n}} \).

Lemma 15 follows immediately from these properties of \(X \) and \(M_\Delta \), by the following lemma.

Lemma 16. Let \(X \) and \(X' \) be complex manifolds of complex dimension \(n \), equipped with holomorphic \((\mathbb{C}^*)^n\)-actions. Suppose that there exist open dense \((\mathbb{C}^*)^n\) orbits \(O \) in \(X \) and \(O' \) in \(X' \). Suppose that there exist invariant open subsets \(V_p \) in \(X \) and \(V'_p \) in \(X' \), both indexed by \(p \in F \), such that \(X \) is the union of the sets \(V_p \) and \(X' \) is the union of the sets \(V'_p \), and that for each \(p \in F \) there exists an equivariant biholomorphism \(\varphi_p : V_p \to V'_p \). Then \(X \) is equivariantly biholomorphic to \(X' \).

Proof. Necessarily, \(O \) is contained in each \(V_p \) and \(O' \) is contained in each \(V'_p \). Fix a point \(q \) in \(O \) and a point \(q' \) in \(O' \). After possibly composing each \(\varphi_p \) by the action of an element of \((\mathbb{C}^*)^n\), we may assume that \(\varphi_p(q) = q' \) for each \(p \in F \). So, for each \(p \) and \(\tilde{p} \in F \), the maps \(\varphi_p \) and \(\varphi_{\tilde{p}} \) coincide at the point \(q \). By equivariance, \(\varphi_p \) and \(\varphi_{\tilde{p}} \) coincide on all of \(O \); by continuity, they coincide on the entire overlap \(V_p \cap V_{\tilde{p}} \). Thus, the \(\varphi_p \) fit together into a map

\[
\varphi = \bigcup_p \varphi_p : X \to X'.
\]

This map is holomorphic, equivariant, and onto. Similarly, the inverses \(\psi_p := \varphi_p^{-1} \) fit together into a map

\[
\psi = \bigcup_p \psi_p : X' \to X.
\]

We have that \(\psi \circ \varphi = \text{id}_X \) and \(\varphi \circ \psi = \text{id}_{X'} \); thus, \(\varphi : X \to X' \) is an equivariant biholomorphism, as required. \(\Box \)

6. The compact case

Let \(M \) be a complex manifold of complex dimension \(n \), with a faithful \((S^1)^n\)-action, with fixed points.

Suppose that \(M \) is compact. In Section \(\Box \) we extended the \((S^1)^n\)-action to a holomorphic \((\mathbb{C}^*)^n\)-action. In Section \(\Box \) we chose an open subset \(X \) of \(M \) of a particular form and we associated to it a fan \(\Delta \).

Lemma 17. The fan \(\Delta \) is complete.

We begin by proving a special case:
Lemma 18. Let M' be a complex manifold of complex dimension one, equipped with a faithful holomorphic action of S^1 with at least one fixed point. Suppose that M' is compact and connected. Then M' is equivariantly biholomorphic to $\mathbb{C}P^1$ with a standard \mathbb{C}^*-action.

Proof. Consider the S^1-action on M'. Near a fixed point, it is isomorphic to the restriction of either the standard S^1-action on \mathbb{C} or the opposite S^1-action on \mathbb{C} to an invariant neighbourhood of the origin in \mathbb{C}.

Consider the flow that is generated by $-J\xi$, where ξ generates the S^1-action. If the S^1-action near a fixed point is standard, then the trajectories of this flow converge to the fixed point as their parameter approaches $-\infty$. If the S^1-action near a fixed point is opposite from standard, then the trajectories of this flow converge to the fixed point as their parameter approaches ∞.

Outside the fixed point set, the action is free. The quotient M'/S^1 is a real one-manifold with boundary; its boundary is exactly the image of the fixed point set. Because M' is compact and contains a fixed point, and by the classification of one-manifolds, the quotient M'/S^1 must be a closed segment.

The flow on M' that is generated by $-J\xi$ descends to a flow on the interior of M'/S^1 that does not have fixed points. For each boundary component, the flow approaches that component either as its parameter approaches ∞ or as the parameter approaches $-\infty$. Necessarily, it approaches one boundary component when the parameter approaches ∞ and it approaches the other boundary component when the parameter approaches $-\infty$.

The corresponding fan must then be equal to the fan of $\mathbb{C}P^1$, and the manifold is equivariantly biholomorphic to $\mathbb{C}P^1$ by Lemma 16. \hfill \Box

We now return to the setup of Lemma 17: We have a complex manifold M of complex dimension n, with a faithful $(S^1)^n$-action, with fixed points. We assume that M is compact. We chose an open subset X of M of a particular form and we associated to it a fan Δ.

Lemma 19. Every $n-1$ dimensional cone in Δ is a common face of two n dimensional cones in Δ.

Proof. Let C_i be an $n-1$ dimensional cone in Δ, corresponding to the subset $I = \{i_1, \ldots, i_{n-1}\}$ of $\{1, \ldots, m\}$.

Let T_i be the codimension one subtorus of $(S^1)^n$ that is generated by the circles T_i for $i \in I$. By Lemma 13, X_i is a connected complex manifold of dimension one, equipped with a faithful holomorphic action of the circle $(S^1)^n/T_i$ with at least one fixed point. We will now show that X_i is compact, and will deduce Lemma 19 from Lemma 13.

First note that X_i is a connected component of the fixed point set of T_i in X. This follows from the facts that X_i is connected (by Lemma 13) and that, for every V_p in X, if the intersection $V_p \cap X_i$ is nonempty then it is a connected component of the fixed point set of T_i in V_p. Let N denote the connected component of the fixed point set of T_i in M that contains X_i. As in any holomorphic torus action on a complex manifold, N is a

Here, “is” means that there exists a unique manifold-with-boundary structure on M'/S^1 such that a function is smooth if and only if its pullback to M' is smooth.
Lemma gives an equivariant biholomorphism V. E. Buchstaber and T. E. Panov, \[\text{(S^1)^n-invariant closed complex submanifold of } M. \] By examining N near a point of X_f, we deduce that N has complex dimension one. Because N is closed in M and M is compact, N is compact. By Lemma [13], N is equivariantly biholomorphic to $\mathbb{C} \mathbb{P}^1$ with a standard action of the circle $(S^1)^n/T_f$. In particular, N contains two fixed points; denote them p' and p''. At least one of these fixed points is in X_f, by Lemma [13]. The intersection $V_{p'} \cap N$, being a $(C^*)^n$-invariant neighbourhood of p' in N, must be all of $N \setminus \{p''\}$. Similarly, the intersection $V_{p''} \cap N$, is all of $N \setminus \{p'\}$. Thus, the intersection $V_{p'} \cap V_{p''}$ is nonempty. Because at least one of the sets $V_{p'}$ and $V_{p''}$ is contained in X, and because X is a connected component of the union of the sets V_p, we deduce that X contains both $V_{p'}$ and $V_{p''}$. Thus, N is entirely contained in X, and so N must be equal to X_f. Thus, X is equivariantly biholomorphic to $\mathbb{C} \mathbb{P}^1$ with a standard action of the circle $(S^1)^n/T_f$. This implies the result of Lemma [13]. \[\square \]

We are now ready to prove Lemma [17].

Proof of Lemma [17]. Let $|\Delta|$ denote the union of the cones in Δ, and let $|\Delta|^{n-2}$ denote the union of the cones in Δ that have codimension ≥ 2. The complement $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$ is connected, open, and dense in $\text{Lie}(S^1)^n$.

By Lemma [13], the union of the relative interiors of the faces of Δ of dimension $(n-1)$ and of dimension n is open in $\text{Lie}(S^1)^n$. This union is $|\Delta| \setminus |\Delta|^{n-2}$. Thus, $|\Delta| \setminus |\Delta|^{n-2}$ is also open in $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$.

But because $|\Delta|$ is closed in $\text{Lie}(S^1)^n$, we also have that $|\Delta| \setminus |\Delta|^{n-2}$ is closed in $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$.

Because $|\Delta| \setminus |\Delta|^{n-2}$ is open and closed in $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$ and $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$ is connected, we deduce that $|\Delta| \setminus |\Delta|^{n-2}$ is either empty or is equal to all of $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$.

Because, by assumption, M has a fixed point, Δ has at least one n dimensional cone, so $|\Delta| \setminus |\Delta|^{n-2}$ is not empty. So $|\Delta| \setminus |\Delta|^{n-2}$ is equal to all of $\text{Lie}(S^1)^n \setminus |\Delta|^{n-2}$. Taking the closures, we deduce that $|\Delta| = \text{Lie}(S^1)^n$, as required. \[\square \]

We are now ready to prove our main theorem.

Proof of Theorem [1]. Lemma [16] gives an equivariant biholomorphism $\varphi: M_\Delta \rightarrow X$.

By Lemma [14], the fan Δ is complete. This implies that the toric variety M_Δ is compact. So X must be compact. Because M is Hausdorff and connected, and X is a subset that is both compact and open, X is all of M. So φ defines an equivariant biholomorphism from M_Δ to M, as required. \[\square \]

Acknowledgment. We thank Ignasi Mundet i Riera for a counterexample to a statement that, if true, would have simplified our proof (see Remark [3]).

References

Osaka City University Advanced Mathematical Institute, Sumiyoshi-ku, Osaka 558-8585, Japan.
E-mail address: ishida@sci.osaka-cu.ac.jp

Dept. of Mathematics, University of Toronto, 40 St. George Street, Toronto Ontario M5S 2E4, Canada
E-mail address: karshon@math.toronto.edu