Polynomial Knots and their Degree Sequence

Rama Mishra
Department of mathematics, Indian Institute of technology-Delhi, India

Abstract

A Polynomial Knot is a smooth embedding of R in R^{3} defined by $t \mapsto(f(t), g(t), h(t))$ where $f(t), g(t)$ and $h(t)$ are polynomials over the field of real numbers. They represent non-compact knots (introduced by Vassiliev). Two polynomial knots are said to be equivalent if there exists a one parameter family of polynomial embeddings of R in R^{3} connecting one to the other. It has been proved that every non-compact knot is ambient isototopic to a polynomial knot. If a polynomial knot is given by an embedding $t \mapsto(f(t), g(t), h(t))$ where $\operatorname{deg} f(t)=l, \operatorname{deg}(g(t))=m$ and $\operatorname{deg}(h(t))=n$ then we say that (l, m, n) is a degree sequence of the knot K. Degree sequence for a given knot may not be unique. If a degree sequence (l, m, n) for a given knot is minimal in the sense of lexicographic ordering of N^{3} then it is called the minimal degree sequence of that knot. In this talk we shall discuss degree sequences of knots and minimal degree sequence for some important class of knots.

