INEQUIVALENT SURFACE-KNOTS WITH THE SAME KNOT QUANDLE

KOKORO TANAKA

We have a knot quandle Q(k) and a fundamental class $[k] \in H_2^Q(Q(k);\mathbb{Z})$ as invariants for a classical knot k. Similarly, we have a knot quandle Q(F) and a fundamental class $[F] \in H_3^Q(Q(F);\mathbb{Z})$ as invariants for a surface-knot F.

For classical knots, Joyce and Matveev independently proved that Q(k) characterizes the classical knot k up to reflected inverse, and Eisermann proved that the pair Q(k) and [k] characterize the classical knot k completely.

We consider the following "hierarchy" for surface-knots F and F'.

- (i) There exists a quandle isomorphism $\phi: Q(F) \to Q(F')$.
- (ii) There exists a quandle isomorphism $\phi: Q(F) \to Q(F')$ such that

$$\phi_*[F] = [F'] \in H_3^Q(Q(F'); \mathbb{Z})$$

(ii)' There exists a quandle isomorphism $\phi: Q(F) \to Q(F')$ such that

$$\phi_*[F] = \pm [F'] \in H_3^{\mathbf{Q}}(Q(F'); \mathbb{Z}).$$

- (iii) The surface-knot F is equivalent to F'.
- (iii)' The surface-knot F is equivalent to F' or $-(F')^*$.

We note that (iii) \Rightarrow (ii) \Rightarrow (i) and (iii)' \Rightarrow (ii)' \Rightarrow (i) by definition.

In this talk, we illustrate the gap between (i) and (ii)', the gap between (ii)' and (iii)', and the gap between (ii) and (iii) for surface-knots.

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro, Tokyo 153-8914, Japan