In search of an ideal polynomial representation of a knot-type

Rama Mishra
JSPS Researcher, Osaka City University
affiliation: Indian Institute of technology-Delhi, India

Abstract

One of the central themes of geometric knot theory is to find an ideal configuration of knot-types in a specified category. Here we consider the space \mathbb{P} of all polynomial knots. Following Vassiliev's notation $\mathbb{P}=K^{3} \backslash \Sigma$, where K^{3} is the set of all maps $\phi: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ defined by $\phi(t)=(x(t), y(t), z(t))$ where $x(t)=t^{d}+a_{1} t^{d-1}+\cdots+$ $a_{d-1} t, y(t)=t^{d}+b_{1} t^{d-1}+\cdots+b_{d-1} t$, and $z(t)=t^{d}+c_{1} t^{d-1}+\cdots+$ $\left.c_{d-1} t\right)$ and Σ is the descriminent space of K^{3}. The topology of the space \mathbb{P} is still under investigation. It is proved that any C^{1} knot in S^{3} is isotopy equivalent to the closure of the image of such a map for some degree d. Also the path components of \mathbb{P} correspond to a knot-type. It can be easily proved that nontrivial knots cannot be realized by such maps of degree less than 5. As, polynomial represenatation for a given knot-type is not unique, the question of choosing an ideal poynomial representation makes sense. We have made an effort to define an energy function on the space \mathbb{P} and based on this function we call a polynomial representation of a given knot-type with minimum energy to be the ideal one. We shall discuss if such an ideal representation for a given knot-type exists?

