REFINED KIRBY CALCULUS
 FOR RATIONAL HOMOLOGY SPHERES OF PRIME ORDERS

KENICHI FUJIWARA

We study a theory of integral framed links in \mathbf{S}^{3}. They provide a way to present all connected, smooth, orientable, closed 3-manifolds. Kirby calculus acts to relate all equivalent presentations. In order to visualize a 3-manifold and to study its invariants, it is sometimes useful to regard 3-manifolds as a set of link-surgery presentations with equivalence.
$\therefore\{$ oriented closed 3-manifolds $\}=\{$ framed links $\} /$ Kirby calculus
Such theory fortunately can be refined for integral homology 3-spheres. Habiro proposed refined Kirby calculus and framed links without linking to present all of them. Then he showed that it suffices to relate all equivalent presentations.
$\therefore\{$ integral homology 3-spheres $\}=\{$ framed links with $l k=0\} /$ refined Kirby calculus.
In this talk, we extend his theory direct to rational homology 3 -spheres of prime order p if $|p| \in 4 \mathbf{Z}-1$. Moreover, we see that it happens to extend otherwise.

Examples of framed links in Habiro's theory: stabilize the left hand side by U_{3}^{+1} and then apply a band slide of U_{2} over U_{3}^{+1}.

For rational homology 3-spheres of each prime order p, we use framed links to present them with linking matrix $\operatorname{diag}\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}, \ldots, \underset{0}{-1} 00, p\right)$, that is, one surgery coefficient is p, others are ± 1 and linking number are all 0 . We aim to prove that Habiro's calculus suffices to relate them. We review his method to present a sequence of (oriented and ordered) Kirby calculus $s \in \mathscr{S}$ by $\varphi: \mathscr{S} \rightarrow \operatorname{GL}(n ; \mathbf{Z})$. The method (0,0)-coupling re-normalizes linking matrices of our links according to the unimodular transformation
 We claim that we can modify s to \bar{s} with $\varphi(\bar{s})=I_{n}$, which Habiro's lemma applies to obtain the conclusion. To verify the claim, we study generators of $\mathrm{O}(\mathrm{A} ; \mathbf{Z})$ to realize them into \mathscr{S}.

Do such presentations give all homology 3-spheres? An affirmative answer will be showed if $|p| \in 4 \mathbf{Z}-1$. Otherwise, a delicate observation is required.

