On the Alexander polynomial satisfying Ozsváth-Szabó's condition for lens sugery

Teruhisa KADOKAMI
Osaka City University COE Resercher
30/Jun/2006 (Friday Seminar at OCU)

P. Ozsváth and Z. Szabó [3] showed the following:

Theorem Let K be a knot in S^{3}. If K yields a lens space, then the Alexander polynomial of K has the following form:

$$
\Delta_{K}(t)=(-1)^{m}+\sum_{i=1}^{m}(-1)^{m-i}\left(t^{c_{i}}+t^{-c_{i}}\right) \quad\left(c_{0}=0<c_{1}<c_{2}<\cdots<c_{m}\right)
$$

Let $T(r, s)$ be an (r, s)-torus knot. The Alexander polynomial of $T(r, s)$ satisfies Ozsváth-Szabó's condition above. For a positive integer $n, \Delta_{T(r, s)}\left(t^{n}\right)$ also satisfies the condition. We showed the following:
Main Theorem Let K be a knot in S^{3}. If K yields a lens space and $\Delta_{K}(t)=$ $\Delta_{T(r, s)}\left(t^{n}\right)$ where n is a positive integer, then we have $n=1$.

This theorem implies that Ozsváth-Szabó's condition does not characterize the Alexander polynomial of a knot in S^{3} having a lens surgery.

References

[1] T. Kadokami, On the Alexander polynomial satisfying Ozsváth-Szabó's condition for lens sugery, preprint (2006).
[2] T. Kadokami and Y. Yamada, A deformation of the Alexander polynomials of knots yielding lens spaces, preprint (2006).
[3] P. Ozsváth and Z. Szabó, On knot Floer homology and lens space surgeries, Topology, 44 (2005), 1281-1300.
[4] M. Tange, Ozsváth Szabó's correction term and lens surgery, preprint (2006).

