ALGEBRAIC EQUATIONS AND KNOT INVARIANTS

FUMIKAZU NAGASATO (JSPS RESEARCH FELLOW)

Abstract

In this talk, for a knot K in 3 -sphere S^{3}, we define algebraic varieties $\mathcal{F}^{(d)}(K)(d=1,2,3)$ in a complex space \mathbb{C}^{N} in the following steps. For a braid presentation σ of a knot K, we first construct finitely many polynomials $\left\{p_{\sigma, i}\right\}_{i}$ on \mathbb{C}^{N} by using an action of the braid σ on the Kauffman bracket skein module (KBSM) of a handlebody at $t=-1$ with trace-free condition. Then the ideal $\mathcal{S L}^{(3)}(\sigma)$ generated by the polynomials $\left\{p_{\sigma, i}\right\}_{i}$ gives an algebraic variety $\mathcal{F}^{(3)}(\sigma)$ via the Hilbert Nullstellensatz. In fact, $\mathcal{F}^{(3)}(\sigma)$ turns out to be invariant under the Markov moves and thus becomes a knot invariant. This is a desired variety $\mathcal{F}^{(3)}(K)$. The above process can be used for restrictions $\mathcal{S} \mathcal{L}^{(2)}(\sigma)$ and $\mathcal{S} \mathcal{L}^{(1)}(\sigma)$ of the ideal $\mathcal{L}^{(3)}(\sigma)$. Then we can get knot invariants $\mathcal{F}^{(d)}(K)(d=1,2)$.

The first variety $\mathcal{F}^{(1)}(K)$ is actually trivial invariant. The third one $\mathcal{F}^{(3)}(K)$ can be considered as a variety containing "a section" of the $S L(2, \mathbb{C})$-character variety of the knot group by using Bullock's theorem (quantization of the $S L(2, \mathbb{C})$-character variety). This view point gives relationships of the variety $\mathcal{F}^{(3)}(K)$ with the number of $S L(2, \mathbb{C})$-irreducible metabelian characters of the knot group (the knot determinant), and moreover the maximal degree (or span) of the Apolynomial $A_{K}(m, l)$ in terms of l, which polynomial is a knot invariant introduced by Cooper, Culler, Gillet, Long and Shalen. Regarding the second variety $\mathcal{F}^{(2)}(K)$, the quotient ring $\mathbb{C}\left[x_{1}, \cdots, x_{n}\right] / \mathcal{S L}^{(2)}(\sigma)$ ($n \leq N$) turns out to be isomorphic to the degree 0 knot contact homology which was researched by L. Ng in detail.

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

E-mail address: fukky@math.titech.ac.jp

