The growth rate of tunnel numbers of m-small knots

Tsuyoshi Kobayashi and Yo'av Rieck

March 13, 2006

Abstract

Let $K \subset M$ be a knot in a closed orientable 3-manifold. Let $n K$ be the connected sum of n copies of $k, E(\cdot)$ knot exteriors, and $g(\cdot)$ Heegaard genus. In "On the growth rate of tunnel number of knots" (to appear in Journal fur die reine und angewandte Mathematik, available at http://arxiv.org/abs/math.GT/0402025) we study the asymptotic behavior of the tunnel number under repeated connected sum operation. We define the growth rate of the tunnel number of K is defined to be: $$
g r_{t}(k)=\limsup _{n \rightarrow \infty} \frac{t(n K)-n t(K)}{n-1} .
$$

Let $g=g(E(K))-g(M)$. Given an integer $i(1 \leq i \leq g)$ let b_{i} be the bridge index of K with respect to Heegaard surfaces of M of genus $g(E(K))-i$. In this talk we prove that if K is meridionally small (that is, the exterior of K admits no essential meridional surface) than the growth rate of the tunnel number of K is: $$
g r_{t}(K)=\min _{1 \leq i \leq g} 1-\frac{i}{b_{i}} .
$$

The tools necessary (the strong Hopf-Haken annulus theorem and the Swallow Follow Torus Theorem) will be discussed, as well as some corollaries. Some of the material presented here is still in preparation; some appears in "Heegaard genus of the connected sum of msmall knots" (to appear in Communication in Analysis and Geometry, available at http://arxiv.org/abs/math.GT/0503229).

