AN ENUMERATION OF THETA-CURVES WITH UP TO SEVEN CROSSINGS

HIROMASA MORIUCHI

Abstract

A θ-curve is a graph embedded in S^{3} which consists of two vertices and three edges, where each edge joins the vertices. In this talk, we enumerate all the prime θ-curves with up to seven crossings. We can enumerate all the θ curves in order of crossing numbers by using a prime basic θ-polyhedron. A θ-pol yhedron is a connected planar graph embedded in 2-sphere, whose two vertices are 3 -valent, and the others are 4 -valent. There exist twenty-four prime basic θ-polyhedra with up to seven 4 -valent vertices. We can obtain a θ-curve diagram from a prime basic θ-polyhedron by substituting algebraic tangles for their 4 -valent vertices. The θ-curves are mutually distinct by the Yamada polynomial, which is an invariant of a θ-curve.

