AN ENUMERATION OF THETA-CURVES WITH UP TO SEVEN CROSSINGS

HIROMASA MORIUCHI

A θ -curve is a graph embedded in S^3 which consists of two vertices and three edges, where each edge joins the vertices. In this talk, we enumerate all the prime θ -curves with up to seven crossings. We can enumerate all the θ curves in order of crossing numbers by using a prime basic θ -polyhedron. A θ -polyhedron is a connected planar graph embedded in 2-sphere, whose two vertices are 3-valent, and the others are 4-valent. There exist twenty-four prime basic θ -polyhedra with up to seven 4-valent vertices. We can obtain a θ -curve diagram from a prime basic θ -polyhedron by substituting algebraic tangles for their 4-valent vertices. The θ -curves are mutually distinct by the Yamada polynomial, which is an invariant of a θ -curve.

OSAKA CITY UNIVERSITY