Braid index of spatial graphs

Ken Kanno

0 Spatial Graph

In this paper we work in piecewise linear category. Let G be a finite graph, and \mathbb{R}^3 be an 3-dimensional Euclidean space. A *spatial embedding* of G is an embedding $g: G \to \mathbb{R}^3$ of G, and its image is called a *spatial graph*. A graph Gis *planar* is there exists a embedding $G \to \mathbb{R}^2$. A *diagram* is a regular projection of spatial graph that has relative height information added to it at each of the double points.

1 Reidemeister moves for Spatial Graphs

Theorem 1.1 Two spatial embeddings f and g is ambient isotopic if there exists an orientation preserving homeomorphism Φ such that $\Phi \circ f = g$.

Kauffman has defined *Reidemeister moves for graphs*[1], which consist of traditional Reidemeister moves for links and extra two moves involving a vertex.

Theorem 1.2 If two spatial graphs are ambient isotopic then any two diagrams of them are related by a finite sequence of Reidemeister moves for graphs.

2 Braid index for θ_n -curve

Let G be a θ_n -curve in \mathbb{R}^3 , such that all edges are oriented so that the origin and terminus of each edges are the same. We can obtain a *braid presentation* of θ_n -curve in the way that we obtained a link by a closure of a braid[2].

Theorem 2.1 Any θ_n -curve has a braid presentation.

We intend to expand this braid presentation for simply oriented θ_n -curve to an arbitrarily oriented θ_n -curve and other spatial graphs.

References

- L.Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc., 311(1989), 697-710.
- [2] T.Shinnoki, and T.Takamuki, On the braid index of θ_m-curve in 3-space, Math. Nachr., 260(2003), 84-92.