A lecture at Osaka City University.

On 3-dimensional R iemannian manifolds with prescribed Ricci eigenvalues. (Joint work by O. Kowalski and Z. Vlášek).

Abstract:

We prove first the following Main Theorem:

Theorem 1. Let $\rho_1(x, y, z) > \rho_2(x, y, z) > \rho_3(x, y, z)$ be three real analytic functions defined on an open domain $U \subset \mathbf{R}^3[x, y, z]$. Then the local moduli space of (local) Riemannian metrics with the prescribed principal Ricci curvatures ρ_1 , ρ_2, ρ_3 can be parametrized by three arbitrary functions of two variables.

We are using the following results:

Theorem 2. Let $\rho_1(x, y, z) > \rho_2(x, y, z) > \rho_3(x, y, z)$ be three real analytic functions defined on an open domain $U \subset \mathbf{R}^3[x, y, z]$. Then all *diagonal* (local) Riemannian metrics with the principal Ricci curvatures ρ_1, ρ_2, ρ_3 depend on six arbitrary functions of two variables.

Theorem 3. Let (M, g) be a real analytic 3-dimensional Riemannian manifold. Then, in a neighborhood of each point $p \in M$, there is a system of local coordinates in which g adopts a diagonal form. All coordinate transformations for which the diagonal form is preserved depend on 3 arbitrary functions of two variables.

Theorem 3 is a classics. Then Theorem 1 follows easily from Theorem 2, which is the main result to be proved. The method of the proof is the classical Cauchy-Kowalewski Theorem. We also show a new proof of Theorem 3 at this occasion.

The problem solved in Theorem 1 remains <u>open</u> if some of the prescribed functions coincide, i.e., if we have $\rho_1(x, y, z) > \rho_2(x, y, z) = \rho_3(x, y, z)$. In this case one obtains an over-determined system of PDEs, and the Cauchy-Kowalewski Theorem cannot be applied.

Theorem 1 was proved earlier by the same authors for *constant* functions, i.e., for prescribed constants $\rho_1 > \rho_2 > \rho_3$. Here also the case $\rho_1 > \rho_2 = \rho_3$ was successfully investigated by different method. The result says, surprisingly, that the local moduli space of (local) Riemannian metrics with the prescribed constant principal Ricci curvatures $\rho_1 > \rho_2 = \rho_3$ can be parametrized by two arbitrary functions of one variable. Thus, we have "much less metrics" in the last case.

We also show that, for each triplet $\rho_1 > \rho_2 > \rho_3$ of prescribed *constants*, there is an *explicit* and *not locally homogeneous* metric *g* with the principal Ricci curvatures ρ_1, ρ_2, ρ_3 . (We call such metrics "generalized Yamato metrics"). Such explicit metrics exist only exceptionally for the case $\rho_1 > \rho_2 = \rho_3$.

Some other problems of the same kind are also solved or presented.

Recall finally that our results are of different nature than a famous result by *DeTurck* saying that, in dimensions $n \ge 3$, to every prescribed real analytic nondegenerate tensor ρ of type (0, 2) in a coordinate neighborhood of a point p ϵM , there is a Riemannian metric g (defined in possibly smaller coordinate neighborhood of $p \in M$,) such that ρ is the corresponding Ricci tensor.