A two dimensional lattice of knots by $C_{2 n}$-moves

Sumiko Horiuchi

Tokyo Woman's Christian University

Abstract

We consider a local move on a knot diagram, where we denote the local move by M. If two knots K_{1} and K_{2} are transformed into each other by a finite sequence of M-moves, the M-distance between K_{1} and K_{2} is the minimum number of times of M-moves needed to transform K_{1} into K_{2}. A M-distance satisfies the axioms of distance. A two dimensional lattice of knots by M-moves is the two dimensional lattice graph which satisfies the following : The vertex set consists of oriented knots and for any two vertices K_{1} and K_{2}, the distance on the graph from K_{1} to K_{2} coincides with the M-distance between K_{1} and K_{2}, where the distance on the graph means the number of edges of the shortest path which connects the two knots. Local moves called C_{n}-moves are closely related to Vassiliev invariants. In this talk, we show that for any given knot K, there is a two dimensional lattice of knots by $C_{2 n}$-moves $(n>1)$ with the vertex K.

