Summary of Research

Keiichi Sakai

Keywords : long knot, little disks operad, iterated integral, configuration space, graph complex, (pure) braid group
(1) Overview. A long knot is an embedding $f: \mathbb{R}^{1} \hookrightarrow \mathbb{R}^{n}$ whose behaviour at infinity are fixed in advance. If a trivialization $w: V_{f} \underset{\rightarrow}{\approx} D^{n-1} \times \mathbb{R}^{1}$ of the tubular neighborhood V_{f} of a long knot f is specified, then we call the pair (f, w) a framed long knot. We denote by \mathcal{K}_{n} (resp. $\widetilde{\mathcal{K}}_{n}$) the space of all long knots (resp. framed long knots) with C^{∞}-topology. I am studying the topological properties of \mathcal{K}_{n}, in particular the case $n>3$ (my interest is in the topology of \mathcal{K}_{n} itself in large part, though this research is related to the classical knot theory).

Since the first study of \mathcal{K}_{3} due to V. Vassiliev, there have been appeared many researches of \mathcal{K}_{n} : In [3] and others, K. T. Chen's iterated integrals for loop spaces has been refined, and the perturbative invariants for knots in dimension three and some elements of $H_{D R}^{*}\left(\mathcal{K}_{n}\right)$, the "higher dimensional analogues" of these invariants, have been constructed as linear combinations of graphs. In $[2,8]$ actions of little disks operad were defined in geometric or homotopy-theoretic ways, and consequently the spaces $\mathcal{K}_{n}, \widetilde{\mathcal{K}}_{n}$ turn out to have homotopy types of double loop spaces. A lot of other interesting topics cross each other at \mathcal{K}_{n}, for instant, relation between the Lie algebras associated with the lower central series of pure braid groups and $\pi_{*}\left(\mathcal{K}_{n}\right) \otimes \mathbb{Q}$, rational homotopy theory of configuration spaces Conf $\left(\mathbb{R}^{n}, k\right)$, and so on. I am mainly studying the Poisson algebra structure on $H_{*}\left(\mathcal{K}_{n}\right)$ induced by the double loop structure of \mathcal{K}_{n}, through associations with many perspectives mentioned above.
(2) Results. At present, for $n>3$, explicit construction of elements of $H_{*}\left(\mathcal{K}_{n}\right)$ has not been done enough. For the construction, I made use of the Poisson bracket λ on $H_{*}\left(\mathcal{K}_{n}\right)$ and $H_{*}\left(\widetilde{\mathcal{K}}_{n}\right)$ induced by the actions of little disks operad (which is defined in at least three ways). Poisson bracket is a graded Lie bracket satisfying the Leibniz rule;

$$
\lambda: H_{p}(X) \otimes H_{q}(X) \longrightarrow H_{p+q+1}(X), \quad \lambda(x, y z)=\lambda(x, y) z \pm y \lambda(x, z)
$$

Here products $x y$ etc. are induced by the connecting sum of the long knots. In general there is no way to determine $\lambda(x, y)$ is zero or not for any x, y. But I have proved that $\lambda(x, y)$ is not zero for some x, y in the following ways.
(2-1) We can define a cochain map I from certain graph complex to de Rham complex of $\widetilde{\mathcal{K}}_{n}$ via the iterated integrals (which was constructed in [3] for \mathcal{K}_{n}, and I generalized it to the case of $\widetilde{\mathcal{K}}_{n}$ in [6]). We say a graph is trivalent if exactly three edges emanate from each vertices of the graph. The elements in $H_{D R}^{*}\left(\widetilde{\mathcal{K}}_{n}\right)$ obtained from trivalent graph cocycles via iterated integral correspond to integral expressions of finite type invariants in dimension three. The dual elements in $H_{*}\left(\widetilde{\mathcal{K}}_{n}\right)$ to the trivalent cocycles have been given in [3] using the chord diagrams (which are trivalent graphs). In contrast, almost nothing has been known about non-trivalent graphs, because of combinatorial difficulties.

Firstly I constructed an example Γ of non-trivalent graph cocycle explicitly when $n>3$ is odd. Then I computed $\lambda(x, y)$ determined by the operad action in the sense of [2] for some elements $x \in H_{n-3}\left(\widetilde{\mathcal{K}}_{n}\right), y \in H_{2(n-3)}\left(\widetilde{\mathcal{K}}_{n}\right)$ corresponding to chord diagrams to prove the following.
Theorem 1 ([7]). When $n>3$ is odd, the integration of $I(\Gamma)$ over the cycle $\lambda(x, y) \in H_{3(n-3)+1}\left(\widetilde{\mathcal{K}}_{n}\right)$ is not zero. Thus (co)homology classes $I(\Gamma), \lambda(x, y)$ are not trivial, and moreover do not arise from trivalent graphs.
(2-2) In [5, 6] I studied \mathcal{K}_{n} from the viewpoint of homotopy theory. When $n>3$, it is known that \mathcal{K}_{n} is represented as a "totalization" of some co-simplicial space [8]. In [4] actions of operads on such totalizations were defined, hence a Poisson structure is induced on $H_{*}\left(\widetilde{\mathcal{K}}_{n}\right)$ (which does not necessarily coincide with that mentioned above). On the other hand, in [1] a spectral sequence converging to the homology group of a totalization was constructed. Its E^{2}-term is so-called a "Hochschild homology" which also appears in mathematical physics and so on, and on it a Poisson bracket is defined in an algebraic way [9]. In the following theorem I compare these two Poisson structures.
Theorem $2([5,6])$. The above two Poisson algebra structures are same on $H_{*}\left(\widetilde{\mathcal{K}}_{n}\right)$. In particular, by computing the spectral sequence, we can compute Poisson in the sense of $[4,8]$.

The cycle $\lambda(x, y)$ from Theorem 1 can be obtained by using the Poisson bracket in the sense of Theorem 2 [5, 6, 9].

References

[1] A. Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987), no. 2, 361-394.
[2] R. Budney, Little cubes and long knots, Topology 46 (2007), 1-27.
[3] A. Cattaneo, P. Cotta-Ramusino, and R. Longoni, Configuration spaces and Vassiliev classes in any dimensions, Algebr. Geom. Topol. 2 (2002), 949-1000.
[4] J. McClure and J. Smith, Cosimplicial objects and little n-cubes I, Amer. J. Math. 126 (2004), no. 5, 1109-1153.
[5] K. Sakai, Poisson structures on the homology of the space of knots, Geom. Topol. Monogr. 13 (2008), Groups, homotopy and configuration spaces (Tokyo 2005), 463-482.
[6] 2007.
[7] , Non-trivalent graph cocycle and cohomology of the long knot space, math.0711.4419.
[8] D. Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), no. 2, 461-486.
[9] V. Tourtchine (Turchin), On the homology of the spaces of long knots, Adv. in topological quantum field theory 179 (2004), 23-52.

