Plan of my research

Reiko Shinjo

My concrete research plan consists of three parts as follows;

(1)Complementary Regions of diagrams of a knot, link and spatial graphs.

We would like to extend the result in [9] to spatial graph diagrams. Given a diagram of a knot or link, it can be regarded as a planar 4 -valent graph embedded on the 2 -sphere \mathbb{S}^{2} by ignoring which strand is the overstrand at each crossing. This graph divides the sphere into n-gons, which we call faces and which meet at vertices and along edges. In [9], we studied the possibilities for the collection of complementary n-gon faces associated to the diagrams of a knot or link. By Euler Characteristic and the fact that a diagram D of a knot or link can be regarded as a planar 4 -valent graph in \mathbb{S}^{2}, we have:

$$
2 p_{2}(D)+p_{3}(D)=8+p_{5}(D)+2 p_{6}(D)+3 p_{7}(D)+\cdots . \quad(*)
$$

where $p_{n}(D)$ is the number of faces of D with i sides. A diagram of a spatial graph also can be regarded as a planar graph embedded on \mathbb{S}^{2} by ignoring which edge is the overstrand at each crossing. However we can not use ($*$) unless the spatial graph is an 4 -regular graph embedded in \mathbb{S}^{2}. If we try to extend the result in [9] to spatial graphs, another equation like ($*$) that can adjust to a diagram of a spatial graph is necessary. First of all, we examine spatial graphs which are embedded 4 -valent graphs. We also examine 3 -connected graphs which it is comparatively easy to treat.

(2) The characterization of knots realizing (3,4)-diagrams.

Though we found some universal sequence whose length is three, we have not found a universal sequence whose length is two. However there are infinitely many knots realizing (3,4)-diagrams. Hence we would like to know whether the sequence $(3,4)$ is universal or not. So far, the way to prove that the given sequence is not universal has not been found except for using (*). We would like to find knot invariants from which we can obtain infomation of complementary regions of diagrams. If $(3,4)$ is not universal, we would like to characterize the knots realizing (3,4)-diagrams. We will also investigate whether the sequence $(3,4)$ is universal from graph theoretical viewpoint.
(3) On an infinite sequence of mutually non-conjugate braids which close to the same knot

By the Classification Theorem of closed 3 -braids given by J. S. Birman-W. W. Menasco, it is known that any link which is a closed n-braid ($n=1,2$ or 3) has only a finite number of conjugacy classes of n-braid representatives in the n-braid group B_{n}. H. R. Morton and T. Fiedler gave infinite sequences of 4 -braids which result in the unknot and E. Fukunaga gave such a sequence for $(2, p)$-torus links. In [4], [5] and [7], we construct some such sequences. Since our method doesn't work for some links, we would like to improve it so that it can be used for links. In [5], generalizing sequences given by Morton, Fiedler and Fukunaga, for any knot K represented as a closed n-braid ($n \geq 3$), we gave an infinite sequence of mutually non-conjugate ($n+1$)-braids representing K. Though all braids in the infinite sequence given in $[5][7]$ are reducible, we conjectured that for knots which is a closed n-braid satisfying certain conditions have such infinite sequence. Since we gave the partial answer for the conjecture in [4], we would like to solve the conjecture.

