96 (with I. Tayama). Tabulation of 3-manifolds of lengths up to 10.
95 (with A. Shimizu). Quantization of the crossing number of a knot diagram.
94. The Alexander polynomials of immersed concordant links.
93. Characteristic genera of closed orientable 3-manifolds.
88. (with I. Tayama) Enumerating homology spheres with lengths up to 10 by a canonical order, Proceedings of Intelligence of Low-Dimensional Topology 2009 in honor of Professor Kunio Murasugi’s 80th birthday, (2009), 83-92.
86. Applying knot theory to sciences - mainly on knot models of a prion protein and a psychological mind (in Japanese), a civic lecture record, Sugaku Tushin, 14-4(February, 2010), 26-45.
82. Defining the absolute value of the linking number of a link without concept of a negative


79. Rational-slice knots via strongly negative-amphicheiral knots, Communications in Mathematical Research 25(2009), 177-192.

78. The (2,1)-cable of the figure eight knot is rationally slice (in a handwritten manuscript) (1980).

77 (with I. Tayama). Enumerating 3-manifolds with lengths up to 9 by a canonical order, Topology Appl. 157(2010), 261-268.


64. From linear algebra to homology (a monograph in Japanese), Baifukan Tokyo (2000).
52. Floer homology of topological imitations of homology 3-spheres, J. Knot Theory Ramifications 7(1998), 41-60.
51. Osaka City University Internet Lectures on knot theory (in Japanese, 1997).
46. Mutative hyperbolic homology 3-spheres with the same Floer homology, Geometriae Dedicata 61(1996), 205-217.
42. On coefficient polynomials of the skein polynomial of an oriented link, Kobe J. Math. 11(1994), 49-68.
41. Splitting a 4-manifold with infinite cyclic fundamental group, Osaka J. Math. 31(1994), 489-495.
27. On the signature invariants of infinite cyclic coverings of closed odd dimensional manifolds, Algebraic and Topological Theories-to the memory of Dr. T. Miyata, Kinokuniya Co. Ltd. (1985), 52-85.


8. On n-manifolds whose punctured manifolds are imbeddable in (n+1)-sphere and spherical