Study proposal

Let F and F' be the compactifications of strange-dual pair of bimodular singularities B = (0, f), B' = (0, f'). By a result of Ueda-M, there exist reflexive polytopes Δ , Δ' such that Δ and the polar dual Δ'^* of Δ' coincide. **Problem 1** Determine the Picard lattices $\operatorname{Pic}(\mathcal{F}_{\Delta})$ and $\operatorname{Pic}(\mathcal{F}_{\Delta'})$ of the families \mathcal{F}_{Δ} and $\mathcal{F}_{\Delta'}$ of K3 surfaces associated with the polytopes Δ and Δ' . **Problem 2** Compare the Picard lattice of the family \mathcal{F}_{Δ} and the transcendental lattice of the family $\mathcal{F}_{\Delta'}$ in order that the families \mathcal{F}_{Δ} and $\mathcal{F}_{\Delta'}$ are mirror in the sense of Dolgachev.

In order to answer to Problem 1, we may need to study the method of computation of a Picard lattice of a member in a toric variety introduced by S.-M. Belcastro.

Let \mathcal{DS} be the family of double sextic K3 surfaces, that is, K3 surfaces obtained by the double cover of the projective plane branched along a sextic curve.

Problem 3 Classify subfamily of K3 surfaces in \mathcal{DS} and for each subfamily, compute the Picard lattice.

Classifying subfamily of \mathcal{DS} is equivalent to classifying reflexive subpolytope of the full Newton polytope $\Delta_{(1,1,1,3;6)}$ of the weighted projective space $\mathbb{P}(1,1,1,3)$ since a double sextic K3 surface is naturally identified with a weighted surface of degree 6 with weights (1,1,1,3). As to the Picard lattices, the method we used in Problem 1 can be applied to the subpolytopes that are classified.

Problem 4 For each subfamily of double sextic K3 surfaces in \mathcal{DS} , compute its mirror pair in the sense of Batyrev. Are they again subfamilies of double sextic K3 surfaces in \mathcal{DS} ?

Problem 5 For general members in each subfamily of double sextic K3 surfaces in \mathcal{DS} , describe the branch locus. Which subfamilies contain general members that have structure of elliptic fibration?

Problem 4 requires a computation due to the definition of polar dual polytope. Problem 5 may interpret studies of Horikawa about the moduli space of double sextic K3 surfaces, and Comparin-Garbagnati about elliptic K3 surfaces of degree 2.

Problem 6 Let S and \hat{S} be two K3 surfaces that are double sextic and admit elliptic fibration. Suppose S and \hat{S} are mirror pair in the sense of Batyrev. Is there any relation among elliptic fibrations of S and \hat{S} ?