Abstract of results

(1) Bimodular singularities and K3 surfaces

Being classified by Arnold, there are singularities with two parameters. Ebeling-Ploog find a strange duality among bimodular singularities in the following sense. Let B = (f, 0) and $\hat{B} = (\hat{f}, 0)$ be two bimodular singularities, where $f = \sum_{i=1}^{3} c_i x_1^{a_{i1}} x_2^{a_{i2}} x_3^{a_{i3}}$ and $\hat{f} = \sum_{i=1}^{3} \hat{k}_i x_1^{\hat{a}_{i1}} x_2^{\hat{a}_{i2}} x_3^{\hat{a}_{i3}}$ are the defining polynomials of respective singularities. Let $\mathcal{A} = (a_{ij})$ and $\hat{\mathcal{A}} = (\hat{a}_{ij})$ be matices associated to f and \hat{f} . The singularities B and \hat{B} are said to be strange dual if the matrices \mathcal{A} and $\hat{\mathcal{A}}$ are transpose each other.

It is known that the bimodular singularities are compactifed as an anticanonical member in the weighted projective space, and some of them are as a weighted K3 surface. Suppose there exists a finite group G (resp. \hat{G}) acting on F = 0 (resp. $\hat{F} = 0$). Denote by $\Delta_{(F,G)}$ (resp. $\Delta_{(\hat{F},\hat{G})}$) the Newton polytope of the G- (resp. \hat{G} -) invariants of F (resp. \hat{F}). We set the following question: does there exist reflexive polytopes Δ and Δ' such that Δ contains $\Delta_{(F,G)}$ and Δ' contains $\Delta_{(\hat{F},\hat{G})}$ and there exists an isometry of lattices that sends Δ to Δ'^* , where Δ'^* is the polar dual polytope of Δ' ?

We get following results as an answer to this question:

Theorem 1 Let (F, 0) and $(\hat{F}, 0)$ be compactifications of strange dual pair of bimodular singularities.

- (1) There exist reflexive polytopes Δ, Δ' and an isometry ϕ of lattices such that $\Delta_{(F,\{id\})} \subset \Delta, \ \Delta_{(\hat{F},\{id\})} \subset \Delta'$, and $\phi(\Delta) = \Delta'^*$.
- (2) (with K.Ueda) There exist reflexive polytopes Δ, Δ' and an isometry ϕ of lattices such that $\Delta_{(F,G)} \subset \Delta, \ \Delta_{(\hat{F},\hat{G})} \subset \Delta'$, and $\phi(\Delta) = \Delta'^*$, where G and \hat{G} are defined by the matrices A and \hat{A} .

(2) Elliptic fibrations on a singular K3 surface

Let X be a K3 surface. It is known that X admits a structure of elliptic fibration if and only if the Picard lattice Pic(X) of X contains the hyperbolic lattice U. It is difficult in general to determine the singular fibres of an elliptic K3 surface. But in case of a singular K3 surface, one can study elliptic K3 surfaces by using lattice theory. We get the following result in a study of singular K3 surface X with transcendental lattice $\begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}$:

Theorem 2 There are 51 types of singular fibres of the K3 surface X. For some types of fibres, we get the full Mordell-Weil lattice.