Plan of Research

Shin'ya Okazaki

Bridge genus and braid genus for lens space

We would like to calculate the bridge genus and the braid genus for a lens space. Let n(p,q) be the number which is the minimal number of "length" of a continued fraction for $\frac{p}{q}$ with even numbers p, q. In my results, for every lens space L(p,q) up to $p \leq 10$, n(p,q)+2 is correspond to the bridge number and the braid number of L(p,q). We would like to show that the property holds for every lens space. For every orientable closed connected 3-manifold M, the following inequalities hold.

$$g_{\rm H}(M) \le g_{\rm bridge}(M) \le g_{\rm braid}(M).$$

Here, $g_{\rm H}(M)$ is the Heegaard genus of M. If above property holds, then we have an example of M such that $g_{\rm bridge}(M) - g_{\rm H}(M) > n$ for any n.

If a lens space L(p,q) is obtained by the 0-surgery along a link L, then the component number of L is grater than or equal to 3. Thus, for the lens space obtained by the 0-surgery along L which is the closer of a pure 3-braid, the bridge number and the braid number are equal to 3. We would like to show that such lens spaces are only L(2n, 1).

Bridge genus and braid genus for Seifert manifold

We would like to calculate the bridge genus and the braid genus for a Seifert manifold. We can give the upper bounds for the Seifert manifolds whose base space is a 2-sphere and singular fibers are represented by an even number similarly to the calculation for a lens space. There is many Seifert manifolds represented by the braid in the table of 3-manifold by Kawauchi-Tayama-Burton. If the Seifert manifold M represented by a pure 3-braid is not obtained by the 0-surgery along any 2-component link, then the bridge genus and the braid genus of M are equal to 3. We would like to characterize the Seifert manifold M represented by the pure 3-braid.

We have already shown that $SFS[S^2:(2,1)(2n+1,n)(4n+2,-4n-1)]$ is represented by 1^{2n} , and $SFS[S^2:(2,1)(2n+1,n)(2n+2,-2n-1)]$ is represented by $1^{2n}, -2, 1^2, -2$. We would like to consider that the relation between the singular fibers (2n+1,n)(4n+2,-4n-1) and (2n+1,n)(2n+2,-2n-1) and full twists 1^{2n} .