Plan of Research

Shin'ya Okazaki

$\underline{\text { Bridge genus and braid genus for lens space }}$

We would like to calculate the bridge genus and the braid genus for a lens space. Let $n(p, q)$ be the number which is the minimal number of "length" of a continued fraction for $\frac{p}{q}$ with even numbers p, q. In my results, for every lens space $L(p, q)$ up to $p \leq 10, n(p, q)+2$ is correspond to the bridge number and the braid number of $L(p, q)$. We would like to show that the property holds for every lens space. For every orientable closed connected 3-manifold M, the following inequalities hold.

$$
g_{\mathrm{H}}(M) \leq g_{\text {bridge }}(M) \leq g_{\text {braid }}(M) .
$$

Here, $g_{\mathrm{H}}(M)$ is the Heegaard genus of M. If above property holds, then we have an example of M such that $g_{\text {bridge }}(M)-g_{\mathrm{H}}(M)>n$ for any n.

If a lens space $L(p, q)$ is obtained by the 0 -surgery along a link L, then the component number of L is grater than or equal to 3 . Thus, for the lens space obtained by the 0 -surgery along L which is the closer of a pure 3 -braid, the bridge number and the braid number are equal to 3 . We would like to show that such lens spaces are only $L(2 n, 1)$.

Bridge genus and braid genus for Seifert manifold

We would like to calculate the bridge genus and the braid genus for a Seifert manifold. We can give the upper bounds for the Seifert manifolds whose base space is a 2 -sphere and singular fibers are represented by an even number similarly to the calculation for a lens space. There is many Seifert manifolds represented by the braid in the table of 3 -manifold by Kawauchi-Tayama-Burton. If the Seifert manifold M represented by a pure 3 -braid is not obtained by the 0 -surgery along any 2 -component link, then the bridge genus and the braid genus of M are equal to 3 . We would like to characterize the Seifert manifold M represented by the pure 3-braid.

We have already shown that $\operatorname{SFS}\left[S^{2}:(2,1)(2 n+1, n)(4 n+2,-4 n-1)\right]$ is represented by $1^{2 n}$, and $\operatorname{SFS}\left[S^{2}:(2,1)(2 n+1, n)(2 n+2,-2 n-1)\right]$ is represented by $1^{2 n},-2,1^{2},-2$. We would like to consider that the relation between the singular fibers $(2 n+1, n)(4 n+2,-4 n-1)$ and $(2 n+1, n)(2 n+$ $2,-2 n-1)$ and full twists $1^{2 n}$.

