Results of my research

Shin'ya Okazaki

A knot is the image of an embedding of circle in the 3 -sphere S^{3}, denoted by K. A link is the image of an embedding of circles $S^{1} \cup S^{1} \cup \cdots \cup S^{1}$ in the 3 -sphere S^{3}. Let $L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$ be an n-component link in S^{3}, and $N(L)$ a tubular neighborhood of L, and $E(L)$ the exterior of L. Let $\chi(L, 0)$ be the 3 -manifold obtained from $E(L)$ by attaching n solid tori $V_{1}, V_{2}, \ldots, V_{n}$ to $\partial E(L)$ such that the meridian of ∂V_{i} is mapped to the longitude of $K_{i}(i=1,2, \ldots, n)$. We call $\chi(L, 0)$ the 3-manifold obtained by the 0 -surgery of S^{3} along L. It is well known that every closed connected orientable 3 -manifold is obtained by the 0 -surgery of S^{3} along a link.

Let bridge $(L)($ resp. $\operatorname{braid}(L))$ be the bridge index (resp. the braid index) (cf. [5]). The bridge genus $g_{\text {bridge }}(M)$ (resp. the braid genus $g_{\text {braid }}(M)$) of M is the minimal number of bridge $(L)(\operatorname{resp} . \operatorname{braid}(L))$ for any L such that M is obtained by the 0 -surgery of S^{3} along L. The bridge genus and the braid genus are introduced by A.Kawauchi [6].

The following is the table of the bridge genus and the braid genus of a lens space $L(p, q)$ up to $p \leq 10$.

$L(p, q)$	$g_{\text {bridge }}$	$g_{\text {braid }}$
$L(2,1)$	3	3
$L(3,1)=L(3,2)$	4	4
$L(4,1)=L(4,3)$	3	3
$L(5,1)=L(5,4)$	6	6
$L(5,2)=L(5,3)$	4	4
$L(6,1)=L(6,5)$	3	3
$L(7,1)=L(7,6)$	8	8
$L(7,3)=L(7,4)=L(7,5)$	4	4
$L(7,1)=L(8,7)$	3	3
$L(8,3)=L(8,5)$	5	5
$L(9,1)=L(9,8)$	10	10
$L(9,2)=L(9,4)=L(9,5)=L(9,7)$	4	4
$L(10,1)=L(10,9)$	3	3
$L(10,3)=L(10,7)$	5	5

