Research design

I have studied internal spaces preserving supersymmetries in string compactification. In Ref. [1], supersymmetric non-linear sigma models were obtained from $E_{8} \times E_{8}$ heterotic string theory. The 6-dimensional internal space was the intersecting 5 -brane which was determined by an 1-dimensional harmonic function. A part of gauge connection was identified with the spin connection with torsion(Hull connection) and then total gauge symmetry was partially broken. This solution broke E_{8} to the subgroup E_{6} because the holonomy of the Hull connection was $S U(3)$. In Ref. [1], the associated chiral spectra were compared with those of a E_{8} / E_{6} type sigma model. According to Ref. [1], the sigma model $E_{8} /\left(E_{6} \times S U(2) \times U(1)\right)$ predicts that there are two chiral and one anti-chiral fermions. The prediction was confirmed by explicitly solving the gaugino equation of motion on the intersecting 5 barne backgroud, where gaugino equation of motion of heterotic string theory is written in terms of a special combination of the spin and gauge connections and is called gaugino-Dirac equation. Consequently, two chiral and one anti-chiral fermions were obtained by solving the gaugino-Dirac equation. However, $E_{8} / S O(10)$ type sigma model is more favourable than E_{8} / E_{6} in phenomenological view, which includes three families of quarks and leptons.

To realize $E_{8} / S O(10)$, I attempted to construct supersymmetric solutions of heterotic supergravity, which admit the holonomy of the Hull connection is $S O(6)$ in Ref. [2]. In this paper, I identified a part of the gauge symmetry with Hull connection and then constructed the supersymmteric solutions which break E_{8} to $S O(10)$. However, I didn't compare the associated chiral spectra with that of $E_{8} / S O(10)$ type sigma model. In order to compare, I need to solve the gaugino Dirac equation on the geometry in Ref. [2]. Then, I will compare the spectra with predicted ones from $E_{8} / S O(10) \times U(1)^{3}$ sigma model.

Reference

[1] S. Mizoguchi and M. Yata, Prog. Theor. Exp. Phys. 2013, 53B01 (2013)
[2] K.Hinoue, S.Mizoguchi and Y.Yasui, Phys. Rev. D 90, 106009 (2014)

