Summary of my research activities

M. Katsuma

Nuclear reactions

Nuclear reaction theory Low-energy nuclear reaction relevant to astrophysics

- Theoretical ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction rates are calculated.

Nuclear rainbow phenomena

- Investigated the phenomenological potential for the α +¹²C system
- Scrutinized the nuclear interaction potential between $^{16}O^{-16}O$ nuclei.
- Investigated molecular resonance for the ${}^{16}O+{}^{16}O$ system at low energies, in the consistent description with the nuclear rainbow.

Cluster structure, and Molecular resonances

- Predicted the 8⁺ and 9⁻ resonant states in the rotational bands of ¹⁶0.
- Tried to describe the molecular resonance for the $^{16}\mathrm{O}^{+16}\mathrm{O}$ system, with microscopic coupled-channel method.

Spin polarization

- Examined the possibility of the spin-orbit part of the microscopic folding model for ³He, and predicted the experimental results for spin-polarization.

<u>Nuclear data</u>

Reaction rates for astrophysics: NACRE (Brussels)

- Worked for an update and extension project of nuclear reaction rate library (NACRE), was in charge of the development of a code package evaluating lowenergy nuclear reactions relevant to nuclear astrophysics.
- Proposed the re-consideration of the contribution from the direct mechanism using the direct capture potential model and distorted wave Born approximation (DWBA).

Charged particle nuclear reactions: NRDF, EXFOR (Hokkaido Univ.)

- Developed a web application of a calculator of elastic scattering cross section.
- Tried to establish an evaluation method for mass fragmentation of the highenergy proton induced reactions in the development of the accelerator driven nuclear reactors.
- Engaged in the assistance of the construction and design of nuclear reactors with accelerator-driven transmutation system for the next generation.