Definition (c.f. Ebeling-Ploog) Let $B=(0,(f=0))$ and $B^{\prime}=\left(0,\left(f^{\prime}=0\right)\right)$ be germs of bimodular singularities in \mathbb{C}^{3}. A pair $\left(B, B^{\prime}\right)$ of singularities are called transpose dual if the following three conditions are satisfied.
(1) Defining polynomials f, f^{\prime} are invertible.
(2) Matrices $A_{f}, A_{f^{\prime}}$ of exponents of f and f^{\prime} are transpose to each other.
(3) f (resp. f^{\prime}) is compactified to a four-termed polynomial F (resp. F^{\prime}) in $\left|-K_{\mathbb{P}(a)}\right|$ (resp. $\left.\left|-K_{\mathbb{P}(b)}\right|\right)$, where $\mathbb{P}(a)$ (resp. $\left.\mathbb{P}(b)\right)$ is the 3-dimensional weighted projective space whose general members are Gorenstein $K 3$ with weight a (resp. b).

In a joint-work with Ueda, the following theorem is proved for every trnaspose-dual pair $\left(B, B^{\prime}\right)$ of bimodular singulairites.

Theorem (M-Ueda) For a transpose-dual pair (B, B^{\prime}), there exists a reflexive polytope Δ such that $\Delta_{F} \subset \Delta$ and $\Delta_{F^{\prime}} \subset \Delta^{*}$. Here $\Delta_{F}\left(\right.$ resp. $\left.\Delta_{F^{\prime}}\right)$ is the Newton polytope of $F\left(\right.$ resp. F^{\prime}) monomials corresponding to whose lattice points are fixed by an automorphic action of $F\left(\right.$ resp. $\left.F^{\prime}\right)$.

Let Δ be the reflexive polytope obtained in Theorem (M-Ueda). For a Δ-regular member S, a natural restriction mapping r from the minimal model $\widetilde{X_{\Delta}}$ of the toric variety X_{Δ} associated to Δ to the minimal model \widetilde{S} of S induces a restriction r_{*} from $H^{1,1}\left(\widetilde{X_{\Delta}}\right)$ to $H^{1,1}(\widetilde{S})$. Let $\operatorname{Pic}(\Delta):=$ $H^{1,1}(\widetilde{S}) \cap H^{2}(\widetilde{S}, \mathbb{Z})$ the Picard lattice of \widetilde{S}, and $T(\Delta)$ be its orthogonal complement in the $K 3$ lattice. Consider the following problem.

Problem Does an isometry $\operatorname{Pic}(\Delta) \simeq U \oplus T\left(\Delta^{*}\right)$ hold ?

Our main theorem is stated as follows:
Main Theorem For reflexive polytope $\Delta \operatorname{Pic}(\Delta) \simeq U \oplus T\left(\Delta^{*}\right)$ holds if and only if the map r_{*} is surjective, where explicit $\operatorname{Pic}(\Delta)$ and $\operatorname{Pic}\left(\Delta^{*}\right)$ are given in the table below. Denote by $C_{8}^{6}:=\left(\begin{array}{cc}-4 & 1 \\ 1 & -2\end{array}\right)$, and names of singularities follow Arnold.

Singularity	$\operatorname{Pic}(\Delta)$	$\rho(\Delta)$	$\rho\left(\Delta^{*}\right)$	$\operatorname{Pic}\left(\Delta^{*}\right)$	Singularity
Q_{12}	$U \oplus E_{6} \oplus E_{8}$	16	4	$U \oplus A_{2}$	E_{18}
$Z_{1,0}$	$U \oplus E_{7} \oplus E_{8}$	17	3	$U \oplus A_{1}$	E_{19}
E_{20}	$U \oplus E_{8}^{\oplus 2}$	18	2	U	E_{20}
$Q_{2,0}$	$U \oplus A_{6} \oplus E_{8}$	16	4	$U \oplus C_{8}^{6}$	Z_{17}
E_{25}	$U \oplus E_{7} \oplus E_{8}$	17	3	$U \oplus A_{1}$	Z_{19}
Q_{18}	$U \oplus E_{6} \oplus E_{8}$	16	4	$U \oplus A_{2}$	E_{30}

Not only the isometry of Picard lattice, but also we find a birational isomorphism between two families.
Corollary Compactified families of $K 3$ surfaces associated to singularities Q_{12} and $Q_{18}\left(\right.$ resp. $Z_{1,0}$ and $\left.E_{25}\right)$ have birational general members.

