Results of my research

Shin'ya Okazaki

Definition of handlebody-knot and earlier study

A handlebody-knot is a handlebody embedded in the 3-sphere S^3 , denoted by H. A fundamental problem in handlebody-knot theory is the classification problem of handlebody-knots. In the paper [Ishii– Kishimoto–Moriuchi– Suzuki], we have the table of genus two handlebody-knots up to six crossings. In this paper, the table obtained by using a computer, lists the number of conjugacy classes of representations from some subgroup of $SL(n, \mathbb{Z})$ to G(H), and the quandle coloring invariant. Here, G(H) is the fundamental group of the exterior of H.

Results of my research

We obtain a new invariant of handlebody-knots comes from the Alexander invariant. The Alexander polynomial is an invariant for a pair of a handlebody-knot and its meridian system. However, the new invariant depend on only the handlebody-knot type.

For convenience, we suppose that the genus of a handlebody-knot is two. We choice a meridian system M for given handlebody-knot H. In general, the second multi-variable Alexander polynomial for the pair (H, M) is non-trivial, denoted by $\Delta_{(H,M)}(s,t) = \Sigma c s^x t^y$. We have the graph from $\Delta_{(H,M)}(s,t)$ as follows.

For each term $T_i = c_i s^x t^y$ of $\Delta_{(H,M)}(s,t)$, we take the black vertex b_i of the graph labeled by c_i . For any three terms $T_i = c_i s^{x_i} t^{y_i}$, $T_j = c_j s^{x_j} t^{y_j}$ and $T_k = c_k s^{x_k} t^{y_k}$, we take three points (x_i, y_i) , (x_j, y_j) and (x_k, y_k) in \mathbb{R}^2 , respectively. We take the white vertex of the graph labeled by $x_i y_j + x_j y_k + x_k y_i - x_i y_k - x_j y_i - x_k y_j$ which is connected to three black vertex b_i , b_j and b_k . Then, we have the graph, denoted by G_H .

<u>Theorem</u>

The graph G_H is an invariant of H.

References

 A. Ishii, K. Kishimoto, H. Moriuchi and M. Suzuki, The table of genus two handlebody-knots up to six crossings, *J. Knot Theory Ramifications.*, Vol. 21, No. 4 (2012), 1250035, 9 pp.