In 2013, in a joint work with K.Ueda, we proved that Ebeling-Ploog's transpose duality extends to the polytope duality for families of weighted $K 3$ hypersurfaces associated bimodular singularities and other isolated hypersurface singularities. Moreover, the polytope duality in this case may extend to the lattice mirror symmetry in the sense as follows:

Let Δ and Δ^{\prime} be the reflexive polytopes obtained in the study of MaseUeda. Families $\left(\mathcal{F}_{\Delta}, \mathcal{F}_{\Delta^{\prime}}\right)$ of weighted $K 3$ hypersurfaces associated to the polytopes Δ and Δ^{\prime} are lattice mirror symmetric if an isometry of Picard lattices

$$
\operatorname{Pic}(\Delta) \simeq U \oplus T\left(\Delta^{\prime}\right)
$$

holds. In fact, among the isolated hypersurface singularities in question, in the following cases in the presenting list, the families attain lattice mirror symmetry:

Denote by $C_{8}^{6}:=\left(\begin{array}{cc}-4 & 1 \\ 1 & -2\end{array}\right)$.

Singularity	$\operatorname{Pic}(\Delta)$	$\rho(\Delta)$	$\rho\left(\Delta^{*}\right)$	$\operatorname{Pic}\left(\Delta^{*}\right)$	Singularity
Q_{12}	$U \oplus E_{6} \oplus E_{8}$	16	4	$U \oplus A_{2}$	E_{18}
$Z_{1,0}$	$U \oplus E_{7} \oplus E_{8}$	17	3	$U \oplus A_{1}$	E_{19}
E_{20}	$U \oplus E_{8}^{\oplus 2}$	18	2	U	E_{20}
$Q_{2,0}$	$U \oplus A_{6} \oplus E_{8}$	16	4	$U \oplus C_{8}^{6}$	Z_{17}
E_{25}	$U \oplus E_{7} \oplus E_{8}$	17	3	$U \oplus A_{1}$	Z_{19}
Q_{18}	$U \oplus E_{6} \oplus E_{8}$	16	4	$U \oplus A_{2}$	E_{30}

Now let us consider the following problem: let $\left(\Delta_{M U}, \Delta_{M U}^{\prime}\right)$ be a pair of reflexive polytopes obtained in Mase-Ueda's study, which does not attain the lattice mirror symmetry. Is it possible to take another pair $\left(\Delta, \Delta^{\prime}\right)$ instead of $\left(\Delta_{M U}, \Delta_{M U}^{\prime}\right)$, such that the lattice mirror symmetry holds ?

Let Δ be a reflexive polytope with corresponding toric variety \mathbb{P}_{Δ} and $\tilde{\mathbb{P}}_{\Delta}$ denote its minimal resolution. For a generic anticanonical member Z of \mathbb{P}_{Δ}, and its simultaneous minimal resolution \tilde{Z}, denote by $L_{0}(\Delta)$ the rank of the cokernel of a natural restriction

$$
r: H^{1,1}\left(\tilde{\mathbb{P}}_{\Delta}\right) \rightarrow H^{1,1}(\tilde{Z})
$$

So far, we obtain the following negative answer for one case.
Example. Let us consider a self-dual transpose pair pair $B=B^{\prime}=W_{18^{-}}$ singularity, and take a polytope

$$
\Delta=\operatorname{Conv}\{(0,-1,0),(-2,3,0),(-3,5,-1),(1,-1,0),(0,0,1)\}
$$

Then, Δ is reflexive and $L_{0}(\Delta)=0$.
No reflexive subpolytope of $\Delta_{[M U]}=\Delta_{(a ; d)}=\Delta_{(3,4,7,14 ; 28)}$ other than this satisfies $L_{0}=0$.
Indeed, starting from $\Delta_{[M U]}$ and we know that $\Delta_{[M U]}$ has an inner lattice point on the edge connecting $(0,-1,0)$ and $(2,-1,0)$ which makes L_{0} grow by 6 . So, we have to remove a vertex $(2,-1,0)$ from $\Delta_{[M U]}$. In order that to be reflexive, we have to remove a vertex $(-1,1,1)$ as well. The resulting subpolytope is the presenting Δ

We also have $\rho(\Delta)=17$ and $\rho\left(\Delta^{*}\right)=1$. This together with the fact that $L_{0}(\Delta)=0$ leads that $\rho(\Delta)+\rho\left(\Delta^{*}\right)=17+1+0=18 \neq 20$. Therefore, the isometry $\operatorname{Pic}(\Delta) \simeq U \oplus T\left(\Delta^{\prime}\right)$ does not hold. Thus for this pair, the answer seems NO.

