Research Result

(1) (Intersection of stable and unstable manifolds for invariant Morse-Smale functions)

To understand GKM-theory in view of Witten's Morse theory, which describes the topology of closed manifolds in terms of negative gradient flows of Morse-Smale functions, we studied the intersection of stable and unstable manifolds of invariant Morse-Smale functions. Let Mbe a closed manifold and let a compact torus T act on M with finitely many fixed points. Let Φ be a T-invariant Morse-Smale function on M and (p,q) be a pair of critical points of Φ whose Morse indices are differ by 2. Then we proved that if the intersection of unstable manifold of p and the stable manifold of q is non-empty, each connected component of the intersection is equivariantly differmorphic to the open cylinder with canonical S^1 -action.

This result seems to suggest that there exists a similarity between Witten's Morse theory and GKM-theory depicted by the following proportion :

> (Critical point) : (Negative gradient flow) = (Fixed point) : (2-sphere).

(2) (Alexander polynomials for mixed links)

A mixed link is the union of finitely many S^1 embedded into the solid torus. We introduced the Alexander polynomial of a mixed link and studied a relationship to the usual Alexander polynomial.

(3) (Invariant Morse functions and representation coverings)

To establish the existence theorem of invariant Morse functions on finite dimensional manifolds, we introduced the notion of a representation covering. Let M be a closed manifold and let a compact T act on M with finitely many fixed points. Let M^T be the fixed point set. Then an open covering $\{U_p | p \in M^T\}$ of M is called a T-representation covering if each U_p is T-invariant and T-equivariantly diffeomorphic to the tangential representation T_pM . Then one can show that Madmits a T-representation covering if it admits a T-invariant Morse function. In particular, by applying the result to torus manifolds, one finds that every torus manifold which has at least one point whose stabilizer group is non-trivial and finite does not admit invariant Morse function, so we can prove the non-existence of invariant Morse function without using algebraic topology.