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INTRODUCTION

The purpose of this survey lecture is to provide an exposition on the theory
of harmonic maps of surfaces, especially integrable system approach to harmonic
map theory of surfaces into symmetric spaces. For the recent progress in this area,
see, e. g. [OCAMI2008],

The harmonic map theory of surfaces into symmetric spaces investigates the
construction, the classification and the moduli spaces of solutions to the harmonic
map equations. The content of this article consists of the following topics:

(1) Harmonic map equation of Riemann surfaces into Lie groups and symmet-
ric spaces.

(2) Extended solutions of the harmonic map equation.

(3) Loop groups and infinite dimensional Grassmannian.

(4) Loop group actions and DPW representation formulas.

(5) Uniton transforms and harmonic maps of finite uniton number.

(6) Harmonic maps of finite type and harmonic maps of tori.

This article is based on the author’s lectures at the RIMS meeting “The Progress
and View of Harmonic Map Theory”, organized by Professor Hiroshi Iriyeh (Tokyo
Denki University), RIMS, Kyoto Univ., 2 (Wed)-4 (Thu) June, 2010. The author
would like to thank Hiroshi Iriyeh for his excellent organization and his kind invi-
tation to a keynote lecture at the meeting.

1. Harmonic Map EquaTions

1.1. Harmonic maps of Riemann manifolds. Let (M™, gu) be anm-dimensional
Riemanninan manifold and\(', gy) be ann-dimensional Riemanninan manifold.
Lety : M™ — N" be a smooth map.
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Definition 1.1. Theenergy functionator smooth maps is defined by
1
E(p) =5 f Ideldve.
M

Definition 1.2. ¢ is aharmonic map

—
def

For any compact supportézf°-variation{e} of ¢

d
d—tE(SOt)It:o =0.

Example. (1) Constant maps.

(2) Geodesics= 1-dimensional harmonic mapsdim(M) = 100

(3) Minimal surfaces (surfaces satisfying the equationsonfp film$ = con-
formal harmonic mags

(4) The Gauss map of constant mean curvature surfaces (surfaces satisfying
the equations osoup bubblesis a harmonic map into a 2-dimensional
unit spherél

(5) Besides so many various examples of harmonic maps are known (cf. J.
Eells and L. Lemaire, Two Reports on Harmonic Maps,[6]) 00 O O

Generally the harmonic map theory haffelient aspects in the cases di)(=
1, dim(M) = 2 and dimM) > 3, respectively.

Lety : M — N be a smooth map.

e ITN —— (TN, VN)

o |
(M. gw) —— (N gn)
Thesecond fundamental forof a smooth mag is defined by
BIX.Y) 1= Vde(Y) — de(VY'Y) (VXY € C(T M)).
Thetension fieldof the mapy is defined by
. 0 0
— 1] - cor -1 )
7(e) = (Ow) (55 5.7) € CT (@' TN)
Definition 1.3. Harmonic Map EquatiofHME) :

7(p) = 0.

Lety : M — N be a smooth map. Suppose ti\ais equipped with a semi-

Riemannian metrigy, or more generally a torsion-frediae connectiorVN.
Then
¢ is a harmonic map



. 62<pa a(pb a‘pc 8cpa o
— a’vY Yy _ k¥ | 2 _
7(p) = Im (5Xi(9Xj + (FN)bc X OX) (FM)” axk | oud
Here Qwm)ij, g',\’,| (FM)!‘J. denotes the components@y; and its Levi-Civita connec-
tion, and 'n)j denote the the components of the Levi-Civita connectiognoior
a torsion-free fline connection equipped

1.2. Harmonic maps of Riemann surfaces.

Fact. In the case wheM is 2-dimensional, the energy functional and harmonic-
ity of smooth maps are invariant under conformal deformations of a Riemannian
metric of M (conformal invariance!)

Suppose tha is an oriented 2-dimensional smooth manifoldet
[d] := {09 | p is a positive smooth function avl}

be a conformal class of a Riemannian metyaf MO

As a domain manifold of harmonic maps, we consider a Riemann surface (i.e.
a 1l-dimensional complex manifoldM([g]) = (M, J) rather than an oriented 2-
dimensional Riemannian manifol( g).

Lemma 1.1. ¢ : (M,[g]) = (M, J) — (N,VN) is a harmonic map

dz
Here {z,Z} denotes a local complex coordinate system of the Riemann surface
(M, )0

V%dcp(a)zo.
0z

This harmonic map equations means tha( %) is a local holomorphic sec-

tion of (T N)© with the holomorphic vector bundle structure defined bthe
operatorv®,

9z
1.3. Famous theorems on harmonic mapsThe first result is a classical result
due to the direct method of variations as follows:

Theorem 1.1. Let M and N be two compact Roemannnian manifolds. Suppose
that dim(M) = 10 that is, M = S'(a circle). Then any homotopy class of con-
tinuous map from M to N contains a harmonic map of minimum energy. Hence
each element of the fundamental grotjfN) of N can be represented by a closed
geodesic of minimum energy.

The second one is the Eells and Sampson’s theorem shown by nonlinear heat
equation methoda breakthrough!).

Theorem 1.2(Eells-Sampson, 1964). et M and N be two compact Roemannnian
manifolds. Suppose that the sectional curvatures of N are non-pasitiven Then

any homotopy class of continuous map from M to N contains a harmonic map of
minimum energy.



Remark.The homotopy class of a continuous map of degréérom a torusT? (a
compact Riemann surface of genus 1) to a unit 2-spBérdoes not contain any
harmonic map (cf. [6])

Thirdly, we mention Sacks-Uhlenbeck’s reults [28]. Mtbe a compact Rie-
mann surface antll be a compact Riemannain manifald~or eacha > 10 the
a-energy functionafor smooth map® : M — N is define as follows:

Eu(o) 1= fM (1 + IdelD) vy

Heredwy is a volume form of a Riemannian metric bf. If « = 10 thenE, is
equivalent to the usual energy functioriel It is known that ifa > 1, thenE,
satisfies the Palais-Smale Condition (C) .

The first result of Sacks-Uhlenbeck is the Removability theorem for an isolated
singularity of harmonic maps :

Theorem 1.3(Sacks-Uhlenbeck)Let N be a compact Riemannian manifold. Sup-
pose that a harmonic map: D\ {p} — N defined outside a point p in a domain D
of the Gauss plan€. If ¢ has finite energy, thep extends to a smooth harmonic
map from M to NU In particular, any harmonic map : C — N with finite energy
from the complex plan€ to N extends to a harmonic map from a Riemann sphere
S? = C U {0} to NO

The second result is on convergence, degeneration and bubbling of harmonic
maps:

Theorem 1.4(Sacks-Uhlenbeck)Let M be a compact Riemann surface and N be
a compact Riemannain manifaldSuppose that(i) > 1, a(i) —» 1(i — o),
¢o) © M\ {p} — N is a sequence of critical maps of,f and He.)) <

C (positive constant] Then there exist a subsequena€j)} c {a(i)}, a finite set

{p1, -, P} € M, a harmonic maw. : M — N, non-constant harmonic maps
W32 5 N(k=1,---,¢ssuch that
(1) @a(j) = Yoo (j = ) Cl-converges on any compact subset af M, - - - , p;}O

(2) e(@a(j)) — elgw) + Zﬁzl rrké(pk)gnverges as measuresn particular,
E(pe) = E(pe) + Yi_q E(@®) < TimjowE(pa(p) < Cand EE®) < mO

In my lecture at the RIMS meeting | mentioned about Micallef and Moore [17]
on sphere theorem for compact Riemannian manifolds with positive isotropic sec-
tional curvature as one of most successful applications of the Sack-Uhlenbeck’s
theory. There has been many other important applications and progress of the
Sack-Uhlenbeck’s theory: the construction of “Bubble tree”, the compactification
of the moduli space of harmonic mapsholomorphic curves and the Gromov-
Witten theory, etc.



2. HARMONIC MAPS INTO SYMMETRIC SPACES

2.1. Symmetric Spaces.Symmetric spaces form a class of smooth manifolds of
particularly high symmetry. Here we give a brief explanation on: What is a sym-
metric space ? We refer [12], [15] as the excellent textbooks.

We give attention to the following two conditions on a smooth manifdid
which are equivalent each otlier

(1) N is a semi-Riemannian manifold (or more generally a smooth manifold
with a torison-free fiine connection) such that the geodesic symmetry at
each point olN extends to an isometryffine transformation) oN.

(2) N is a homogeneous space

N=G/K,

whereG is a Lie group with an involutive automorphism andK is a

closed subgroup o6 such thatG? ¢ K ¢ G, HereG, denotes the
subgroup ofG consisting of all elements fixed by andG? its identity

component.

N is called asymmetric spaci N satisfies such a condition. A symmetric space is
locally characterized by the curvature conditdR = 00

Examples of symmetric spaces.

(1) Euclidean spac&", standard spher&"(c), real hyperbolic space form
H"(c).

(2) Projective spaceBP", CP", HP", OP? = F4/S pin(9). Grassmann mani-
folds ofk-planes Gg(R"), Gr(C"), Gr(H"), etc.

(3) Lie groupsG, St, SQ3), SU2), SAn), SU(n), U(n), Gy, etc. Homoge-
neous spaces®/G, etd]

Riemannian symmetric spaces were created and classified first by Elie Cartan.
There is a duality between Riemannian symmetric spaces of compact type (nonneg-
atively curved!) and Riemannian symmetric spaces of noncompact type (nonposi-
tively curved!) such a§" andH". All simply connected irreducible Riemannian
symmetric spaces are classified into 9 types of group manifolds (4 classical types
and 5 exceptional types) and 19 types of non-group manifolds (7 classical types
and 12 exceptional types).

Non-symmetric homogeneous spaces related to symmetric spaces are also im-
portant in geometry of symmetric spaces. For instance, Hopf fibrations, genralized
flag manifolds, twistor spaces, etc.

2.2. Harmonic map equations of Riemann surfaces into Lie groupsLet M

be a Riemann surface aél be a compact Lie group equipped with biinvariant
Riemannian metrigy. Letd = 6c denote the left-invariant Maurer-Cartan form
of G and it is fundamental th&t= g satisfies the Maurer-Cartan equations

d9(5+%[9(5/\9(5] =0. (21)
Here B1 A B2](X,Y) := [B1(X). B2(Y)] = [B1(Y). B2(X)]
5



Lety : M — G be a smooth map. Set
a=¢0=¢ptdp=0a +a",
wherea’ anda” denote the (J10)-part and the (QL)-part ofa, respectively. Then
a is a 1-form onM with values ing and by (2.1)a satisfies the Maurer-Cartan
equation
1
da + =[e A a] =0.
2
The harmonic map equation for the mags written as
a7 1 ’ 1"
Oa +§[a Aa’] =0. (2.2)
By using (2.2) we can show that (2.2) is equivalent to the equation

d+a=-V-10a' + V=10a” = V=1(-8a’ + da’’") = 0. (2.3)

2.3. Zero curvature formalism of harmonic map equation. For eacht € S* or
A€ C*=C\ {0}, we define

1 - ’ 1 124
ap=5(1-1 He +51-a”,

which @, is a 1-form onM with values ing for 1 € S andgC® for 1 € C*.

Theorem 2.1 ([23], [35], [36], [32]). The system of the Maurer-Cartan equa-
tion (2.2) and the harmonic map equatid@.3) is equivalent to the system of the
Maurer-Cartan equations

1
da, + é[(m Aay]=0 (YaeStorCY (2.4)

This equation is also called the “Uhlenbeck equation”

2.4. Lax equation formalism of harmonic map equation. The equation (2.4) is
equivalent to the Lax equation

L=k,
z 5 (2.5)
L:= =+ A-2HA;,, K:i=—-(1-2As.

HereA is thespectral parameteand set

1,(0 .1 (0



2.5. Gauge-theoretic formulation of harmonic map equation. The harmonic
map equation from a Riemann surfalgketo a Lie groupG can be formulated as
the Yang-Mills-Higgs equation over a Riemann surface in the following way. Let
P = M x G be a trivial principal bundle with structure gro@over a Riemann
surfaceM. Let Ap denote the fine space of all smooth connections Brand
Ql(gp) denote the vector space of all smooth 1-forms with values in the adjoint
bundlegp. Let A € Ap be a connection oR defined byda = d+%a andg € Q'(gp)

the Higgs field defined by = %a. Then the harmonic map equation is described
as the Yang-Mills-Higgs equation

1
{HM+§MAﬂ=O, -
dagp =da*¢ =0.

On the other hand, the slightlyfégrent Yang-Mills-Higgs equation over a Riemann
surfaceM

dag =dax¢=0
locally corresponds to the harmonic map equation into noncompact symmetric
spaceG®/G and the moduli space of its solutions is called tiechin System
See also [18], [19].

1
{HM—EMAﬂ=0, 2.8)

2.6. Extended solutions of the harmonic map equation.A solution
®,:M->G (1eSh

or
®,:M->G® (1eC)
to the linear partial dferential equations

P9=0tddb=0a,; (YieSlorC (2.9)
or equivalently locally
0 d
cp—la—z =(1-1YHA, q)_la_z =(1-2)A; (YaeStorc (2.10)

is called arextended solutionf a harmonic mag (Uhlenbeck [32]). Here we set
o =2Adzande” =2Adz 0000

If M is simply connected, there exists uniquely an extended soldtifor any
initial condition ®,(z) = y(1) (¥ A € St or C*)0 Herey can be considered as a
loop in a Lie grouf

2.7. Extended solutions and loop groups.([26])
The (free) loop group oF is defined by
AG:={y:St > G|C™).
The based loop group @& is defined by

QG :={y:S' > G|C™ y(1)=¢e).
7



The extended solution of a harmonic méap = ;> A T; with ®; = e can be

considered as a map into the based loop group
D:M>3z2+— P2 € QG.

Assume thatG is a compact Lie group. It is known th&G has the infinite
dimensional complex &hler manifold structure and H3(G, Z) = H%(QG, Z) =
Z, then it is Einstein-Khler. The Kahler form (and thus a symplectic form) is
given by

—00

1
was(é.n) = fo & (). )t
= €070 = FacE®)nO)xz,

(2.11)

for eaché, n € Qg.

Proposition 2.1. An extended solutio®, : M — G (1 € S') of a harmonic map
with ®; = e is nothing but a holomorphic map : M — QG whose dferential
do satisfying the condition

o ldo (aﬁz) e(@-a14C.

2.8. Correspondence between harmonic maps and extended solution8s-

sume thatM is a simply connected Riemann surfacat is, is conformal to
Riemann spher8?, Gauss plan€, unit open diskB?(1). Then from the above ar-
gument we see that there is a bijective correspondence between the quotient space
of all extended solutions modulo left translations by logpsS® — G

QG\{D: M — QG| extended solution$
={®d: M — QG| extended solution®(zp) = e}

and the quotient space of harmonic maps modulo left translations by elements of
G

G\{¢: M — G| harmonic maps
={¢p: M — G| harmonic mapse(zo) = e}.

Remark.The extended solutions for harmonic maps of a Riemann sukfidioto a
symmetric spac&/K can also be formulated (cf. [9], [7]). TH&artan immersion

of a symmetric spac&/K into G is fitting and useful in the formulation. It is
known that every compact Lie group and every compact symmetric spaces can be
immersed into a unitary group and a complex Grassmann manifold as a totally
geodesic submanifold. Note that a compositieny of a harmonic mag and a
totally geodesic immersionis also a harmonic map.

3. INFINITE DIMENSIONAL (GRASSMANNIAN AND LOOP GROUPS

The harmonic map theory in symmetric spaces is built up in the framework of
geometry of loop groups and infinite dimensional Grassmannian due to Pressley-
Segal [25], Segal-Wilson[27].

8



Suppose thas = U(n) (for the simplicity)d Define
HO = L3St CN),
HO = (f e LASLCY | F() = > dal,
i~0
HO = (f e LRSS CY 1 () = ) Ala),
i<0
HO = HY o HO.
Define an infinite dimensional complex GrassmanniarH&¥ by
Gr(H™) := {W| a closed vector subspacelsf? satisfying the conditions (1{2)}

Q) pr, W — Hﬂ”) is a Fredholm linear operator,

(2) pr_: W - H™ is a Hilbert-Schmidt linear operatdr

Moreover, we define an infinite dimensional submanifold of the infinite dimen-
sional Grassmannian Gi#(") as follows:

G = (W e Gr(H™) | W satisfying the conditions (3}4)}
(3) AWcCW.

(4) pr.(W+), pr_(W) consists ofc*-functions.

Then there is a dieomorphism (after a suitable completion) between
QG>yr— yH, EGI’S)E).

Grg,') is called thanfinite dimensional Grassmannian mod¢lQG.

The two fundamental splitting theorems for loops are obtained from theory of
infinite dimensional Grassmannian models.

Let T denote the maximal torus &, that is, the subgroup of all diagonal matri-
ces ofU(n). Define the complex (free) loop group GF by

AGC :={y:S' 5 G° | C™}
and its subgroups by
A*GC := {y € AG® |y extends continuously to holomorpHig — G},
A~GC := {y € AG®|y extends continuously to holomorpHix, — G°},
A7GE = {y € A"GE|y(e0) = €},
T :={6: S* — T c G continuous group homomorphi$m
Here
Do := {1 € CU{oo}||A] < 1},
Do :={1€ CU{co}||A] > 1}.
9



The following splitting theorem is called th@olar decompositioror lwasawa
decompositiorf the complex loop groupG®:

Theorem 3.1([25]). Anyy € AG® can be uniquely decomposed into
Y =YuY+>
wherey, € QG, y, € A*G®0 The multiplication map
QG x A*G® 3 (yy, y4) — yuy+ € AGE

is a difeomorphism (after a suitable completiah)

This theorem was shown by proving

0G = Gr" = AGC/A*GE.

The next splitting theorem is called tirkhoff decompositiorof the complex
loop groupAG®:
Theorem 3.2([25]). Anyy € AGC can be decomposed into

Y=Y-0%+,
wherey_ € A"G®, 6 € T,y, € A*G®. Moreover,A"G€ - A*G€ is a dense open
subset (“Bigg Cell”) of the identity component A€ and the multiplication map
A7GE x ATGE 3 (y_,y4) > y- v+ € A°GE - ATG® c AG®
is a diffeomorphism (after a suitable completian)

The Birkhdt splitting theorem for loops describes the Morse theoretic stratifica-
tion of QG for the energy functional of loops ([24])The complement of the Big
Cell can be characterized by zeros of a canonical global holomorphic sectbn
the dual determinant line bundle Detf Gr(H™) (cf. [27]).

Moreover we introduce another setting of loop groups and it is necessary to
define loop group actions on extended solutions of harmonic maps ([32], [1], [8]).
Choose a real numberwith 0 < ¢ < 1. Take two circles on a Riemann sphere

C U {0} as follows :
Ce:={1eC|lA =&},
C,1:={1eC|A =1}
RegardingC; as a circle with center O we denote hyits interior. Regarding
C.1 as a circle with center, we denote by, its interior.

lo:={1eC||1 <&},

l,1:={1eC|a>el).
Setl := 1, U 1.0 We denote the complementary subse€af {co} to the closure
| of | by

E:=(CU{co})\I.
10



At this setting we define éfierent groups of loops iG°.

A**"'GC := {g: C, UC,1 — GE, smooth map

AE£GC := [g e A% 'GC | g extends continuously to holomorptgE : E — G},

Ar°GE = (g e ARG [gF (1) = o),

A'*GE := {g e A**'GC | g extends continuously to holomorphgt: | — GC}.
In our case we define threality conditionong € A% GC as follows]

g) =g )" (YAeC,uC, ).

A‘EfﬁlGC = {g e A** GC | g satisfies the reality condition
AEGE = ABSGC N AZT GE,
AESGE = AFGE N AL GS,
ALPGE = A'*GC n A% G,

We describe the splitting theorem for these loop groups. This formulation was
inspired by Uhlenbeck [32]. The latter half of the statement is essential and was
proved by lan Mcintosh [16]. His proof is an ingenious combination of the Iwa-
sawa decomposition and the Birkfidecomposition.

Theorem 3.3([32], [1], [8], [16]). AB?GC - A'*GC is a dense open subset of the
identity component ok®*GC, and the multiplication map

AB*GC x A*GC 5 (ye, 1) — yem € AFSGC - AGC c A5 GC

is a diffeomorphism (after a suitable completion). Moreover, the restriction of this
T . . R . -1
multiplication map to real elements induces gethmorphism onta%* GC:

E.e~C l,e~C E,e~C l,e~C _ r&c tAC
AE5GE x ARGE — AEGC - ARG = AF G,

For each nonnegative integee 0 ork = oo, we define certain subsets @f5¢
andQG as follows:

Xk :={6 : C* — G | § is holomorphic orC*, 5(1) = e,

k k
()= Y AN, 5= ) 4By,
i=—k i=—k
XkRr :={0 € Xk | ¢ satisfies the reality condition,

i.e.5(1) 1 =64 Y)* (YA e CY).

Here notice thakp € X1--- € Xk C Xks1 C -+ C Xoo C QGC, X4, is a subgroup
of QGC andXo,R C X]_’R--- (- Xk,R (- Xk+l,R c .- C Xoo,R c QG, Xoo,R is a
subgroup ofRG.

11



4. LooP GROUP ACTIONS AND REPRESENTATION FORMULAS FOR HARMONIC MAPS

In this section we explain two fundamental and important structures of harmonic
map from Riemann surfaces to Lie groups and symmetric spaces The first one is
a structure ofnfinite dimensional group actiornan all such harmonic maps. The
second one is a structure\dkeierstrass type representation formylagich repre-
sents locally all such harmonic maps in terms of infinite dimensional holomorphic
potentials.

4.1. S'-action on harmonic maps. The groupS! = {¢ € C* | |¢| = 1} acts on the
based loop grou@G by

Q) =Ny Y (CeshyeQ).

The S*-action on extended solutions (and thus harmonic maps) is defined as
follows (C.-L. Terng): For eaclf € S* and each extended solutidy, : M —
G (1 € SY), we define

(" D), 1= Dy ACDE,ll .

Then the mapff®), : M — G (1 € S1) is a new extended solution.
Moreover the semigrou@?, and the complex grou@* also acts on extended
solutions of harmonic maps ([8], [33])

4.2. Loop group action. Inthis subsection we assume the setting of the Bifikho
Uhlenbeck decomposition in Section 3.
There is a natural injection

AE£GC 3 hi— hfls1 € QG,

wherehE denotes the continuous extensiorho# AE’iGC to a holomorphic map
hE : 1 — GC. We regard this injection as
Ee~C
AREG c QG.

Now, by using the Birkhfi-Uhlenbeck Decomposition Theorem 3.3, we define the
-1

group actionf of the infinite dimensional group” G on AE";GC c QG as

follows For eacty € Aff_ch and eachh € AE’?GC c QG,

g*h = gh(gh)* = (gh)e € AR5GC c QG.

Theorem 4.1([32], [1], [8]). Each ge Aﬁf_lGC and each extended solutia@n :
M — ASSGE, ¢® : M — ASEGE ¢ QG is a new extended solution.

This group actiorf is called theBirkhgf-Uhlenbeck group actiofcf. [1], [8]).
12



4.3. Loop group action . By the Iwasawa Decomposition Theorem 3.1, the nat-
ural group actiory of the infinite dimensional groupG® on QG is defined as
follows For eachy € AG® and eacld € QG,

Y5 1= y6(y6):t = (y6)u € QG.

Theorem 4.2([8]). For eachy € AG® and each extended solutidn: M — QG,
Y0 : M — QG is a new extended solution.

This group action is called thenatural group action(cf. [8]).

4.4. Relationship between the Birkhdf-Uhlenbeck action} and the natural
action. We easily see that the group actidgrendh of the subgroupAE:“iGC and
QG are simply left translations of extended solutions by loops. Thus we should
compare the group actiotisindy of Az°G® andA*GE.

For anye > 0, the groupA*G® can be embedded into the gromQSGC by the
following injective group homomorphism:

A*GE 3y +— 7 € AFGS, (4.1)
where for eachl € C U {o0}O
N y(2) (1€ CU{co}, [A] > &)
= _—l 1 (42)
(y(A~ )™ (1€ CU{co}, |1 < &).

Then we obtain
Theorem 4.3([8]). For eachl € A*G® ands € Xyr (0 < k < o0)[
Vi = 345 . (4.3)

Corollary 4.1 ([8]). For eachl € A*G® and extended solutioh : M — QG such
that @, is holomorphic in1 € C* entirely, we have

YD = D . (4.4)

The properties of the loop group action for harmonic maps, its Morse theoretic
aspect and applications to the study on spaces of harmonic maps were discussed in

[8].

4.5. DPW formula for harmonic maps (Iwasawa decompositioril Another im-
portant structure of harmonic maps of Riemann surfaces into Lie groups and sym-
metric spaces is a Weierstrass type representation formula of all such harmonic
maps in terms of holomorphic functions with values in a certain infinite dimen-
sional vector space. It is due to Dorfmeister-Pedit-Wu ([5]), the so-callew/
formula and here we shall explain their representation formula for harmonic maps.

Assume thatM c C is a simply connected domain of the complex plane. Fix a
base pointp € M.

Lety : M — G be a harmonic map. We may assume th@) = e after a
suitable left translation 06. Let® : M — QG be its extended solution with
®(29) = el

13



We consider the equation of the holomorphicity@e: ®b : M — AGC with
respecttd: M — A*GC:
0=0g=0Db+dab.
It 5-equation fob : M — A*GC
db=— (0 19d)b
=- %(1 ~ D’ b *.9)

Then there exists a solutidn: M — A*GC to the d-equation (4.5) satisfying
b(zy) = e, which has the freedom of right multiplication by holomorphic maps
h: M — A*G® with h(z) = e. Thus we obtairg = ®b : M — AG® which is

a holomorphic map in the sense tlégt= 0 and satisfieg(z) = eJJ Moreover we
definew, := g~tdg. Then we have a formula

1, =g 'dg =g 'og
=b Y@ 1od)b+ blab
= — 271Ad(bl20) X&) + [terms ofd' (> 0)].

Define an infinite dimensional complex vector space

A1 = {f € Ag® | ¢ has Fourier series expansign= Z A& } .
i=—1
Denote byQ9(M, A_; .,) the complex vector space of all smooth@)-forms
with values inA_; ., defined onM. Then we define the infinite dimensional vector
space of alholomorphic potentialsvith values inA_1 ., by

P = {ne QM A1) | du=0].

Eachu € P is expressed as

p= ) Api=p,dz,
i=—1
where eachy; is a holomorphic 1-form oM with values ing® andy; is a holo-
morphic function with values il_; ., on M. Then we have, € P.

We discuss the inverse construction frarto a harmonic map. For eaghe PO
it holds

1 _
d,u+§[/1/\y]=(9,u=0

and thus there exists a unique smooth mgap M — AGC such thaig(z) = e

and @) 'dg" = . In particular,g* : M — AGC is a holomorphic map in the
sense thafg” = 0. By Iwasawa Decomposition Theorem 3.1, there exist uniquely
o : M - QG andb* : M —» A*G such that

¢ = OH b
14



Note that®*(po) = e, b*(e) = el Then®* is an extended solution of a harmonic
map. Indeed, we have a formula

(@) 1dd# = (1 - 7Y) (Ad(B|=0)u-1) + (1 — 2) (Ad(D*[1=o)pi-1) -
Via the Grassmannian model 9
QG = Gr" = AG®/A*GE,

the corresponding extended solution of a harmonic map is expressed in terms of
the above holomorphic map: M — AG® as

D:M>3x+— dX)HY = g HP € G = AGS/ATGE.  (4.6)
Hence the natural group actigof y € A*G® c AGC is given by
(o)) HY = (Fo@) HP
=70 H
=9(2) HY
=792y *H? € GV = AGC/A*GE
for eachz € M. Note that an extended solutigh® : M — QG also satisfies
(y*®)(z0) = e. A holomorphic map representing the extended solugfdn: M —
QGis
ygy ' M3 pr—yg(p)y ' € AG®
and the corresponding holomorphic potential is given by
tye =(ygy ) Hdyay ™
=yg ty ydgy !
=y(g 'dgy*
= Yuoy
=Ad(y) (o) -
The holomorphic gauge transformation group
G:={h: M — A*G®|oh=0} 4.7)
acts on the infinite dimensionaffane space” of holomorphic potentials as fol-
lows For eachh € G and eachu € P, define
h-u:= (Adh)u - (dh)h™?
and therh - 4 € P. The based holomorphic transformation group is defined by
G°i={hegGIh(n)=el}, (4.8)
which is a normal subgroup @f. Then the above construction implies that
GA\P ={d: M — QG| extended solution®(z) = e}

={¢: M — G| harmonic mapsy(z) = e} .
15



Lethe G. We set

Ohy = h(zo) g, h™t: M — AGE. (4.9)
Then we haveh,,(20) = eandgﬁtdgw = h - u. Hence we obtain the formula
q)h-y = (gh-,u)u
= (h(z0)9.)u
= (h(z0)®y)u
= h(z)*®,, .

We mention about a notion of thrmalized meromorphic potentiaf a har-
monic map ([5]). Letp : M — G be a harmonic map witl(z) and® : M — QG
be its extended solution witf(z) = e. In order to construct the holomorphic
potential corresponding tp and®, we can use the Birkibdecomposition theo-
rem. SetM’ := ®~1(Big Cell) ¢ M, which is an open set dfl, andM \ M’ =
®~1((Big Cell)¥) is a discrete set oM by the holomorphicity ofb. On M’, by
Birkhoft decomposition theorem 3.2, we decompdseniquely as

® = h7 h+ ’
whereh_ : M - A7G®, h, : M - A*GC.

%(1 e L
=Ad(h;Y)(h~6h_) + h;%ah,
and thus
%(1 — 1) Ad(h,)(@”) = h™*6h_ + Ad(h,)(h;*oh,)

Comparing the we haverlh_ = 0 and
%(1 )" = hloh,
On the other hand,
%(1 -1 YHao =070
=Ad(h;Y)(h=toh_) + h;toh,
%(1 — 1Y) Ad(hy)(@) =hton. + Ad(h,)(h;1oh,).

Comparing with the cd@icients ofA~ on the both sides, we have

—:—ZL/l‘lAd(mh:o)(a') = h~2h..

Hence we obtain

1
htoh. = ~Za7 Ad(heLi-o)(@) = 7 1.
16



u = h™oh. = 171y_; is a holomorphic potential defined dvi’ corresponding

to the extended solutio®. It is possible to show thai extends to a meromor-
phic 1-form onM entirely by the geometric argument of the infinite dimensional
Grassmannian on the Big Cell and the dual determinant line bundle ([5]). This
meromorphic 1-formnu = A7 15_1 on M is called thenormalized meromorphic
potential

4.6. DPW formula for harmonic maps (Birkho ff-Uhlenbeck decompositiofl
In this subsection we assume the setting of the Bifikhiinlenbeck decomposition
in Section 3.

Let M be a simply connected domain of the complex pl@handz € M be a
base point. Suppose that

®: M — AR5GE c QG
is an extended solution of a harmonic map satisfyixim) = e.
We use the following complex loop groups defined over a cig;le
A°GC = {y: C, — G® | y is smooth},
A"*GC := {y € A*G® | y extends continuously to holomorphjt : I, — GF}.

Then by a solution to thé—problem there exists = (b,, by) : M — A:Q"EGC with
b(zp) = e such that

g=®b=(g.T): M — A% G°

andg, = ®b, : M — A®GC is a holomorphic map in the sense tlﬁgje =
A(®b,) = 0. Suchamap, : M — A'*GC has the freedom of right multiplications
by holomorphic maps, : M — A'*GC with h.(z) = e.
The holomoprhic 1-form o with values inAg®
Ky =, dge = g;'0g.
=b 10 19D b, + b1 b,

=%(1 — A1 hHbta’b, + b1 db,

is holomorphic with respecttd € I, \ {0} = D(0, &) \ {0} and has at most a simple
pole (a pole of at most order 1) at= 0.
Set

Afy 8% ={£:C; — g© | smooth,
£ extends continuously to holomorpHig\ {0} — ¢©
which has at most a simple pole at 0
and define
P o= e QWM. A% o®) [du =0} .
Eachu € ¢ can be expressed as
M= Z pid

i=—1
17



on C,. Here eachy; is a holomorphic 1-form oM with values ing®0 Then we
haveug, € P°.
Conversely, for each € #¢, there exists

9=0,= (@7 =(g.G): M — Az G°

such thatl

(@) 'd(@) = (&) ') =u. g)=e
onC,.. We take the Birkhfi-Uhlenbeck decomposition

g=>ob,
whered : M — AZ5GS,b: M — A°GE. Then
®:M— AEiGC c QG
is an extended solution of harmonic map. Indeed, we have a formula
@ 1dd =Ad(b)u — db bt
= [Ad(B)ul ez e
=(1- A7) (Ad(b(0))-1) + (1 - )(Ad(B(O))u—1) -
The holomorphic gauge transformation group
G :={h: M — A*G®|oh=0} (4.10)

acts on the infinite dimensionaffane spaceP® as followd] For eachh € G° and
eachu € #¢, define

h-u:=(Adhju—dh-h™t. (4.11)

Then we havé - 4 € P¢. The based holomorphic gauge transformation group is a
normal subgroup of° defined by

G :=(heg|hn)=-¢. (4.12)
Now we set
g, =h@)gh™: M — AGE. (4.13)

Then we havegf‘_ﬂ(zo) =eand

(9h,)"d(r,) - =h-u (4.14)
So we define
Ohy 1= (gﬁ_ﬂ,@) M — A G,

h=(hh:M— AFGE.
18
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Sinceh(zo) = (h(z0), h(zo)) € A°GE, we have

Ohyu =(%h,. Gh,)
=(h(z0) g; h™*, h(zo) g; h™Y)

=(h(z0) g; h™*, h(zo) g; h?) (4.16)
=(h(z0). h())(,- gZ)(h ™. h~T)
=h(zo) g, h™*.
Hence we obtain the formula
®n, = (Ghp)E
= (h(z0) 9. e
= (A(z0) @, b, h e (4.17)
= (R(z0)®,)e
= h(z0)* D,

4.7. Relationship of two kinds of DPW formulas for harmonic maps.
Theorem 4.4. The natural injective linear map ov&l
P> uvr— plc, € P°

induces a bijective correspondence between the moduli spaces of holomorphic po-
tentials by the based holomorphic gauge transformation groups

G°\P = G\ P

Moreover, they are equivariant with respect to the natural injective group homo-
morphism between the holomorphic gauge transformation grgups G¢. In
particular, they are equivariant with respect to the loop group actipasd§]

5. HARMONIC MAPS OF FINITE UNITON NUMBER AND CLASSIFICATION PROBLEM OF
HARMONIC 2-SPHERES

5.1. Uniton transform. Suppose thak = U(n). Set
Gr(C" =faeG|a® = Ip).
Eacha € Gr(C") can be expressed as
a=nay-—TwL =1 -1
in terms of the orthogonal projection
r=ay:C"=WoW — W
onto a vector subspace 6f

W:={veC"lav=V}.
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The finite dimensional complex Grasssmanian of complex vector subspaces of
C" Gr(C") is decomposed into connected components as

Gr(C") = ]i[ Gr(C".
k=0

Here Gi(C") is a complex Grassmann manifoldietlimensional vector subspaces
of C"OJ
A smooth map into the complex Grassmannian

r—nt: M- Gr(C") c U(n

can be identified with a complex vector subbunglef the trivial vector bundle
Ch'=MxC".

Lety : M — U(n) be a harmonic mdpWe use the same notation as in the
previous sections, such as= ¢*0 = ¢~ 1dyp, a connectionly = d+ %oz € Ap of the
trivial principal bundleP := M x G, a Higgs fieldp = %a e Qlgp), ¢ = ¢ +¢".

Let®; : M — U(n) (1 € S1) be an extended solution of a harmonic map
Using a smooth map into a complex Grassmanniarm : M — Gr(C") c U(n),
we define

O, =0(r+ A7) M—UMN) (1eSH
and then we have

Lemma 5.1. @ is also a new extended solution if and only if a complex Grassman-
nianz — 7+ : M — Gr(C") c U(n) satisfies the equations

7@ +¢")r =0,
{ﬂlgb’n =0. ®-1)

In this cases = ®_1 = 7o ® = p(r — x*) is a harmonic map.

The equations (5.1) is called thmiton equatiorof a harmonic mag and we
say that a harmonic map ¢an be obtained by making a uniton transform or by
adding a uniton to a harmonic map

We equip the trivial complex vector bundB' = M x C" over M with the holo-
morphic vector bundle structudg as thej-operator. The harmonic map equation
dy¢” = 0 implies thatp’ is a holomorphic Higgs field and thus we obtain a holo-
morphic Higgs vector bundle structu@', d7, ¢’). The first equation of the uniton
equations means the complex vector subbupdierresponding to a smooth map
n—n* into a complex Grassmannian is a holomorphic vector subbund@odl{).
The second equation of the uniton equations means that the complex vector sub-
bundlen is invariant under the action of a holomorphic Higgs field namely,
¢'(m) C n.

The procedure of th&auss bundleand theharmonic sequencef harmonic
maps of Riemann surfaces into complex projective spaces and complex Grassman-
nians is an examples of the uniton transform (cf. [6]).
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Lemma 5.2(Valli [34]). O Let M be a compact Riemann surface. Assume that a
harmonic mapp is obtained by adding a harmonic mago a unitonn. Then the
energy formula

E() - E(¢) = -8rdegfy). degf) := fM c(n) €Z. (5.2)

holds. Here ¢(;7) denotes the first Chern class of the complex vector buiidle
The invariant inner product of Lie algebra(n) of U(n) is defined agA, B) =
—tr(AB) (A, B € u(n)).

Definition 5.1. SetE = (C",d}), which is a holomorphic vector bundle. Consider
a holomorphic Higgs bundles( ¢”). If it holds u(V) < u(E) for any holomorphic
vector subbundl&/ c E invariant by¢’, then the holomorphic Higgs bundieis
calledsemi-stableHereu(V) := deg{/)/rank({).

From Lemma 5.2 and the concept of the semi-stability of holomorphic Higgs
bundle, we obtaini

Theorem 5.1 ([34], [21]). Any harmonic map of a compact Riemann surface
M into the unitary group Wn) can be transformed by a finite number of uniton
transforms into a harmonic map whose associated holomorphic Higgs bundle is
semistable. It is not possible to decrease the energy of a harmonic map with the
semistable holomorphic Higgs bundle by any uniton transform. In particular, if M
is a Riemann sphere, then any harmonic map of M infn)ldan be transformed

by a finite number of uniton transforms into a constant map.

5.2. Harmonic maps of finite uniton number. Suppose thab = U(n).

Definition 5.2. If a harmonic mapy : M — U(n) has an extended solutiah :
M — QU(n)

o= > T,
; (5.3)
O, =nmro®=ap (daeU(n),

theng is said to be ofinite uniton numberSuch a harmonic map: M — U(n) is

calledharmonic map of finite uniton number auniton solutionto the harmonic
map equationl Or equivalently it means that a harmonic map: M — U(n) has
an extended solutio® such that

D(M) € Xmr < QU(N) (5.4)

for some nonnegative integetr. We call such a minimal numben the minimal
uniton numberand theny or ® anm-uniton

A harmonic mapy : M — U(n) of finite uniton number is always weakly
conformal, that is, a branched minimal immersion. ([21]).

A O-uniton solution is a constant map 1-uniton solutiony is a left translation
¢ = chby somec € U(n) of a holomorphic map from a Riemann surfddeto a

complex Grassmann manifold: M — Gr(C").
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Theorem 5.2([32], [26]). Assume that a Riemann surface M is compacté@nd
M — QU(n) is an extended solution satisfies the base point condibi@g) = 1,0
Then® has finite Laurent expansion

q
©,= Y Td' (Ap.qeZ,p.q>0) (5.5)
i=-p
with respect tol € C*.

Corollary 5.1. If @ : M — QU(n) is an extended solution on a compact Riemann
surface, thep = 70 ® : M — U(n) is a harmonic maps of finite uniton number.

Corollary 5.2. Any harmonic mag : S? — U(n) of a Riemann sphere into a
unitary group is always a a harmonic maps of finite uniton number.

Theorem 5.3([32]). Suppose thap : M — U(n) is a harmonic map of finite
uniton number. Then there exists a unique extended sol@tioM — U(n) such
that

(1) dy1=nod=ap (JaeU(n),

(2) @y =X Tid' (VA€ C*), Tnz0,

(3) Vo(®) = C",
where \§(®) denotes a complex vector subspaceCbfspanned by{(To)v | Z €
M, v € C"}. Moreover this number m is equal to the minimal uniton number. of

Such an extended solution is called ti@malized extended solutiai a har-
monic map of finite uniton number.

Uhlenbeck proved the factorization theorem into unitons for harmonic maps of
finite uniton number, repeating the uniton transform procedure by a uniton given
by the kernel bundle of for the normalized extended solution.

Theorem 5.4([32]). Suppose thap : M — U(n) is a harmonic map of finite
uniton number. Then for somescU (n), ¢ can be decomposed into a product of a
finite number of smooth maps into complex Grassmann mariifolds

¢ =C(m —my) (am—7y) -
(1) Eachg) = c(my - 1) -+ (mi = #}) (i = 1,--- ,n) is a harmonic map
(2) Eachr; — x* is a uniton for a harmonic map®0
(3) m1 —n7 : M — Gr(C") is a holomorphic map.
(4) m< nand mis equal to the minimal uniton numbepaf
Moreover, if M is compaét then Hyp) = E(¢(™M) > E(o™) > ... > E(eM).

G. Segal [26] provided the filerent proofs of these results by the method of loop
groups and infinite dimensional Grassmannian.

The loop group actiorf of A:;EGC coincides with the loop group actidnof
A*GC on harmonic maps of finite uniton number ([8]¥his loop group action
is used in order to study the topological properties (such as path-connectedness,
fundamental groups) of the spaces of harmonic maps of a Riemann sphere into
some compact symmetric spaces ([8])
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The factorization theorem into unitons is a fundamental principle for classifi-
cation and explicit construction of a Riemann sphere into a compact symmetric
space, generalizing the known results in the casé$ ofS", CP", HP", Gr,(C"),

Qn(C), etc.

Problem 5.1. For each compact symmetric spade= G/K, investigate the com-
plete classification, the explicit construction and the properties of the space of all
harmonic maps of a Riemann sphere ikto

6. HARMONIC MAPS OF FINITE TYPE AND CLASSIFICATION PROBLEM OF HARMONIC TORI
6.1. Harmonic maps of finite type. Consider the based complex loop algebra
Qg = {£: 8" > ¢°, smooth£(1) = 0}.
Each¢ € Qg has Fourier series expansion
£= ) A=, ged
j€z\(0}
Define the based real loop algebra
Qg:={¢:S!' > g, C°-0,£1)=0].
Eaché € Qg has Fourier series expansion
£= ), (=-27)g, g€t &= (j€Z)\(0).
j€z\{0}
For eachd € N, define a finite dimensional real vector spac&aqfby

Qd:={§eag|§= > (1—1"')5,-}.

0<lj|=d

Introduce a Lax equation ov€ly] Denote by¢ a smooth function o824 with
values inM = C = R? and by{z = x+ V-1y} the standard complex coordinate
system oM = C = R2. The Lax equation is the partialftiérential equation of the
first order:

%)
= —e 2V=10- 1) (6.1)
The Lax equation(6.1) has the following properties: Define two vector fié|ds
Xo on Qgq:
1
506G = V=1X)e = [£, 2V-1(1- 17)é9] (V€ € Q). (6.2)

The following fact holds. The compactness®fs used in the proof of the second
statement.

Lemma 6.1. The two vector fieldsand X% commutélthat is, the bracket product
of vector fields o)y satisfieg Xy, Xo] = 0. Moreover, X and X% are complete
vector fields orf)q.
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So Ietq&t1 andq&t2 denote one-parameter transformation groups (flows) generated
by vector fields. For eac#f € Qq, a function

E:M=C3z=x+ V=-1yr— &XY) = (#F 0 )(E°) = (¢ 0 87)(¢°) € Qq (6.3)

is a solution to the Lax equation (6.1) with the initial conditi(0) = £°.
On the cofficientéy = £_4 of 279 the Fourier expansion in for th solution
& C — Qq, the following lemma holds:

Lemma 6.2. Thel-form onC with values ing
@y = 2V=1(1- A Y ¢gdz- 2V-1(1- 2) &dzZ

satisfies the Maurer-Cartan equation
1
da, + é[a/,l A &/1] =0

for eachd € S1. From this result, an extended solutidn : M = C —» QG
satisfyingd*6 = ®~1d® = o, exists. Hence we obtain a harmonic mag 7o ® :
C-G.

The harmonic map obtained in this way is calleldaamonic maps of finite type
or finite type solution8] Burstall-Ferus-Pinkall-Pedit [8]. Moreover, a harmonic
map of finite type has the property tfmt(a%) = go_ldtp(c%) is contained in an
AdGC-orbit in g©. In particular, ife/(£) is contained in an AGC-orbit through a
semisimple element g, ¢ : M = C — Gis called eharmonic map of semisimple
finite type]

Here we mention about the results due to Burstall and Pedit [4] on orbits of loop
group actions on harmonic mapsréssing orbits

For&l e Qq, setu = (1971z£%dz e . A holomorphic magy, : C — AGC with
9.(0) = e, g, dg, = pis g,(2) = exp® 1z (z € C). By Iwasawa decomposition
thorem, there exists unique)* : C — QG andb* : C — A*G® such that we
decompose, as

9.(2) = exp® ' z£(0)) = P b'(2) (¥zeC).
Thend®” : C —» QG is an extended solution of harmonic map of finite type. Via
the identificatiomG = Grg]), we can expres®* as
P @QHY = expa*zEMW) HLY

The so obtained harmonic map= (®*)_1 : M = C — G is of finite type.

A vacuum solution: Let A € g€ € be an arbitrary element satisfying,[A] = 0
(thusAis semisimple). Set

1 1 -
&= 5(1‘ A HA+ 5(1‘ DA€ Qg

and B
up =1 - A HA+ (1 - D)Adze P.
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Then its Iwasawa decomposition is

1 1 —
Gun = XPES(1 = A7HA+ 5(1- DA))

z z — z — Z — (6.4)
=exp(5(1- AHA+ 5= DAY exp(5(1- DA- S(1- DA)
and thus we obtain an extended solution
®p:C57—> exp(g(l A HA+ g_(l _)A) € QG (6.5)
and the corresponding harmonic map of finite type is
oa=®_1:C>z— explA+7ZA) €G. (6.6)

Such an extended solution or harmonic map is calledcuum solution
Burstall and Pedit [4] studied the orbit of the loop groukaC (dressing orbit)
of a vacuum solution and they proved

Theorem 6.1([4] ). Any harmonic map of semisimple finite type is contained in a
AkgGC-orbit (dressing orbit) of a vacuum solution.

6.2. Classification problem of harmonic tori. Suppose tha€/T" is a compact
Riemann surface of genus 1 (a torus) &br G/K is a compact Lie group (or a
compact symmetric spade)l ety : M = C/T" — G (or G/K) be a harmonic map.

Theorem 6.2(BFPP [3]) Assume thag is semisimple, that s, the functigp6) ()

on M has values in a set of semisimple elemeng$ ofrheny is a harmonic map
of (semisimple) finite type.

Theorem 6.3 (Burstall [2]). Assume that &K = S" or G/K = CP". ¢ is an
isotropic (=superminimal) harmonic map (thus a harmonic map of finite uniton
number) or a harmonic map of finite type.

In particulaf] in the cases/K = S?, any harmonic map : M = C/T’ — S?is
a +holomorphic map or a harmonic map of finite type.
The cases 06/K = Gr(C") andG/K = HP" are discussed in [30], [31]

Corollary 6.1 (Pinkall-Sterling [22]) The Gauss map gM — S?(1) of a constant
mean curvature torus M C/I" - R3immersed ir8-dimensional Euclidean space
R2 is a harmonic map of finite type.

Problem. Assume thal is a compact symmetric space other tiBnCP". Then
is any harmonic map : M = C/T" — N of a torus intoN a harmonic map of finite
uniton number or of finite type ?

Theory of harmonic maps of finite type on compact Riemann surfaces of genus
greater than 1 was discussed in [20].
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7. GENERALIZATION TO PLURIHARMONIC MAPS

The notion ofpluriharmonic mapsgs a natural generalization of harmonic maps
of Riemann surfaces to higher dimensional complex manifolds, focused on the
complex structure of the domain manifold of harmonic maps. Theory of pluri-
harmonic maps of complex manifolds into Lie groups and symmetric spaces are
discussed in [21], [20], etc. Pluriharmonic maps of complex manifolds are very
useful and significant even in the study of harmonic maps of Riemann surfaces.
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