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Introduction

The purpose of this survey lecture is to provide an exposition on the theory
of harmonic maps of surfaces, especially integrable system approach to harmonic
map theory of surfaces into symmetric spaces. For the recent progress in this area,
see, e. g. [OCAMI2008],

The harmonic map theory of surfaces into symmetric spaces investigates the
construction, the classification and the moduli spaces of solutions to the harmonic
map equations. The content of this article consists of the following topics:

(1) Harmonic map equation of Riemann surfaces into Lie groups and symmet-
ric spaces.

(2) Extended solutions of the harmonic map equation.
(3) Loop groups and infinite dimensional Grassmannian.
(4) Loop group actions and DPW representation formulas.
(5) Uniton transforms and harmonic maps of finite uniton number.
(6) Harmonic maps of finite type and harmonic maps of tori.

This article is based on the author’s lectures at the RIMS meeting “The Progress
and View of Harmonic Map Theory”, organized by Professor Hiroshi Iriyeh (Tokyo
Denki University), RIMS, Kyoto Univ., 2 (Wed)-4 (Thu) June, 2010. The author
would like to thank Hiroshi Iriyeh for his excellent organization and his kind invi-
tation to a keynote lecture at the meeting.

1. Harmonic Map Equations

1.1. Harmonic maps of Riemann manifolds. Let (Mm, gM) be anm-dimensional
Riemanninan manifold and (Nn,gN) be ann-dimensional Riemanninan manifold.
Let φ : Mm→ Nn be a smooth map.
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Definition 1.1. Theenergy functionalfor smooth mapsφ is defined by

E(φ) :=
1
2

∫
M
∥dφ∥2dvg.

Definition 1.2. φ is aharmonic map
⇐⇒

def
For any compact supportedC∞-variation{φt} of φ，

d
dt

E(φt)|t=0 = 0 .

Example. (1) Constant maps.
(2) Geodesics= 1-dimensional harmonic maps（dim(M) = 1）．
(3) Minimal surfaces (surfaces satisfying the equations ofsoup films) = con-

formal harmonic maps．
(4) The Gauss map of constant mean curvature surfaces (surfaces satisfying

the equations ofsoup bubbles) is a harmonic map into a 2-dimensional
unit sphere，

(5) Besides so many various examples of harmonic maps are known (cf. J.
Eells and L. Lemaire, Two Reports on Harmonic Maps, [6])．　　　　

Generally the harmonic map theory has different aspects in the cases dim(M) =
1, dim(M) = 2 and dim(M) ≥ 3, respectively.

Let φ : M −→ N be a smooth map.

φ−1T N −−−−−→ (T N,∇N)

∇φ=φ−1∇
y y

(M,gM)
φ

−−−−−→ (N,gN)

Thesecond fundamental formof a smooth mapφ is defined by

β(X,Y) := ∇φXdφ(Y) − dφ(∇M
X Y) (∀X,Y ∈ C∞(T M)).

Thetension fieldof the mapφ is defined by

τ(φ) := (gM)i jβ(
∂

∂xi
,
∂

∂x j
) ∈ C∞(φ−1T N).

Definition 1.3. Harmonic Map Equation(HME) :

τ(φ) = 0 .

Let φ : M −→ N be a smooth map. Suppose thatN is equipped with a semi-

Riemannian metricgN, or more generally a torsion-free affine connection∇N.
Then
φ is a harmonic map
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⇐⇒

τ(φ) = gi j
M

(
∂2φa

∂xi∂x j
+ (ΓN)a

bc
∂φb

∂xi

∂φc

∂x j
− (ΓM)k

i j
∂φa

∂xk

)
∂

∂ua = 0 .

Here (gM)i j , gi j
M, (ΓM)k

i j denotes the components ofgM and its Levi-Civita connec-
tion, and (ΓN)a

bc denote the the components of the Levi-Civita connection ofgN, or
a torsion-free affine connection equipped onN.

1.2. Harmonic maps of Riemann surfaces.

Fact. In the case whenM is 2-dimensional, the energy functional and harmonic-
ity of smooth maps are invariant under conformal deformations of a Riemannian
metric ofM (conformal invariance!)．

Suppose thatM is an oriented 2-dimensional smooth manifold．Let

[g] := {ρg | ρ is a positive smooth function onM}
be a conformal class of a Riemannian metricg of M．

As a domain manifold of harmonic maps, we consider a Riemann surface (i.e.
a 1-dimensional complex manifold) (M, [g]) = (M, J) rather than an oriented 2-
dimensional Riemannian manifold (M,g).

Lemma 1.1. φ : (M, [g]) = (M, J)→ (N,∇N) is a harmonic map
⇐⇒

∇φ∂
∂z̄

dφ

(
∂

∂z

)
= 0 .

Here {z, z̄} denotes a local complex coordinate system of the Riemann surface
(M, J)．

This harmonic map equations means thatdφ
(
∂
∂z

)
is a local holomorphic sec-

tion of φ−1(T N)C with the holomorphic vector bundle structure defined by the∂̄-
operator∇φ∂

∂z̄

1.3. Famous theorems on harmonic maps.The first result is a classical result
due to the direct method of variations as follows:

Theorem 1.1. Let M and N be two compact Roemannnian manifolds. Suppose
that dim(M) = 1，that is, M = S1(a circle). Then any homotopy class of con-
tinuous map from M to N contains a harmonic map of minimum energy. Hence
each element of the fundamental groupπ1(N) of N can be represented by a closed
geodesic of minimum energy.

The second one is the Eells and Sampson’s theorem shown by nonlinear heat
equation method (a breakthrough!).

Theorem 1.2(Eells-Sampson, 1964). Let M and N be two compact Roemannnian
manifolds. Suppose that the sectional curvatures of N are non-positive．Then Then
any homotopy class of continuous map from M to N contains a harmonic map of
minimum energy.
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Remark.The homotopy class of a continuous map of degree±1 from a torusT2 (a
compact Riemann surface of genus 1) to a unit 2-sphereS2 does not contain any
harmonic map (cf. [6])．

Thirdly, we mention Sacks-Uhlenbeck’s reults [28]. LetM be a compact Rie-
mann surface andN be a compact Riemannain manifold．For eachα ≥ 1，the
α-energy functionalfor smooth mapsφ : M → N is define as follows:

Eα(φ) :=
∫

M
(1+ ∥dφ∥2)αdvM

HeredvM is a volume form of a Riemannian metric ofM. If α = 1，thenEα is
equivalent to the usual energy functionalE．It is known that ifα > 1, thenEα

satisfies the Palais-Smale Condition (C) .

The first result of Sacks-Uhlenbeck is the Removability theorem for an isolated
singularity of harmonic maps :

Theorem 1.3(Sacks-Uhlenbeck). Let N be a compact Riemannian manifold. Sup-
pose that a harmonic mapφ : D\ {p} → N defined outside a point p in a domain D
of the Gauss planeC. If φ has finite energy, thenφ extends to a smooth harmonic
map from M to N．In particular, any harmonic mapφ : C→ N with finite energy
from the complex planeC to N extends to a harmonic map from a Riemann sphere
S2 = C ∪ {∞} to N．

The second result is on convergence, degeneration and bubbling of harmonic
maps:

Theorem 1.4(Sacks-Uhlenbeck). Let M be a compact Riemann surface and N be
a compact Riemannain manifold．Suppose thatα(i) ≥ 1, α(i) → 1 (i → ∞),
φα(i) : M \ {p} → N is a sequence of critical maps of Eα(i) and E(φα(i)) ≤
C ( positive constant)．Then there exist a subsequence{α( j)} ⊂ {α(i)}, a finite set
{p1, · · · , pℓ} ⊂ M, a harmonic mapφ∞ : M → N, non-constant harmonic maps
φ̃(k) : S2 −→ N (k = 1, · · · , ℓ) s such that

(1) φα( j) → φ∞ ( j → ∞) C1-converges on any compact subset of M\{p1, · · · , pℓ}．
(2) e(φα( j)) → e(φ∞) +

∑ℓ
k=1 mk δ(pk) converges as measures．In particular,

E(φ∞)→ E(φ∞) +
∑ℓ

k=1 E(φ̃(k)) ≤ lim j→∞E(φα( j)) ≤ C and E(φ̃(k)) ≤ mk．

In my lecture at the RIMS meeting I mentioned about Micallef and Moore [17]
on sphere theorem for compact Riemannian manifolds with positive isotropic sec-
tional curvature as one of most successful applications of the Sack-Uhlenbeck’s
theory. There has been many other important applications and progress of the
Sack-Uhlenbeck’s theory: the construction of “Bubble tree”, the compactification
of the moduli space of harmonic maps,J-holomorphic curves and the Gromov-
Witten theory, etc.
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2. Harmonic maps into symmetric spaces

2.1. Symmetric Spaces.Symmetric spaces form a class of smooth manifolds of
particularly high symmetry. Here we give a brief explanation on: What is a sym-
metric space ? We refer [12], [15] as the excellent textbooks.

We give attention to the following two conditions on a smooth manifoldN,
which are equivalent each other：

(1) N is a semi-Riemannian manifold (or more generally a smooth manifold
with a torison-free affine connection) such that the geodesic symmetry at
each point ofN extends to an isometry (affine transformation) ofN.

(2) N is a homogeneous space

N = G/K ,

whereG is a Lie group with an involutive automorphismσ and K is a
closed subgroup ofG such thatG0

σ ⊂ K ⊂ Gσ．HereGσ denotes the
subgroup ofG consisting of all elements fixed byσ andG0

σ its identity
component.

N is called asymmetric spaceif N satisfies such a condition. A symmetric space is
locally characterized by the curvature condition∇R= 0．

Examples of symmetric spaces.

(1) Euclidean spaceEn, standard sphereSn(c), real hyperbolic space form
Hn(c).

(2) Projective spacesRPn, CPn, HPn, OP2 = F4/S pin(9). Grassmann mani-
folds ofk-planes Grk(Rn), Grk(Cn), Grk(Hn), etc.

(3) Lie groupsG, S1, S O(3), S U(2), S O(n), S U(n), U(n), G2, etc. Homoge-
neous spacesGC/G, etc．

Riemannian symmetric spaces were created and classified first by Elie Cartan.
There is a duality between Riemannian symmetric spaces of compact type (nonneg-
atively curved!) and Riemannian symmetric spaces of noncompact type (nonposi-
tively curved!) such asSn andHn. All simply connected irreducible Riemannian
symmetric spaces are classified into 9 types of group manifolds (4 classical types
and 5 exceptional types) and 19 types of non-group manifolds (7 classical types
and 12 exceptional types).

Non-symmetric homogeneous spaces related to symmetric spaces are also im-
portant in geometry of symmetric spaces. For instance, Hopf fibrations, genralized
flag manifolds, twistor spaces, etc.

2.2. Harmonic map equations of Riemann surfaces into Lie groups.Let M
be a Riemann surface andG be a compact Lie group equipped with biinvariant
Riemannian metricgM. Let θ = θG denote the left-invariant Maurer-Cartan form
of G and it is fundamental thatθ = θG satisfies the Maurer-Cartan equations

dθG +
1
2

[θG ∧ θG] = 0 . (2.1)

Here [β1 ∧ β2](X,Y) := [β1(X), β2(Y)] − [β1(Y), β2(X)] .
5



Let φ : M → G be a smooth map. Set

α := φ∗θ = φ−1dφ = α′ + α′′ ,

whereα′ andα′′ denote the (1,0)-part and the (0,1)-part ofα, respectively. Then
α is a 1-form onM with values ing and by (2.1)α satisfies the Maurer-Cartan
equation

dα +
1
2

[α ∧ α] = 0 .

The harmonic map equation for the mapφ is written as

∂̄α′ +
1
2

[α′ ∧ α′′] = 0 . (2.2)

By using (2.2) we can show that (2.2) is equivalent to the equation

d ∗ α = −
√
−1∂̄α′ +

√
−1∂α′′ =

√
−1(−∂̄α′ + ∂α′′) = 0 . (2.3)

2.3. Zero curvature formalism of harmonic map equation. For eachλ ∈ S1 or
λ ∈ C∗ = C \ {0}, we define

αλ :=
1
2

(1− λ−1)α′ +
1
2

(1− λ)α′′ ,

whichαλ is a 1-form onM with values ing for λ ∈ S1 andgC for λ ∈ C∗.

Theorem 2.1 ([23], [35], [36], [32]). The system of the Maurer-Cartan equa-
tion (2.2) and the harmonic map equation(2.3) is equivalent to the system of the
Maurer-Cartan equations

dαλ +
1
2

[αλ ∧ αλ] = 0 (∀ λ ∈ S1 or C∗) (2.4)

This equation is also called the “Uhlenbeck equation”．

2.4. Lax equation formalism of harmonic map equation. The equation (2.4) is
equivalent to the Lax equation

∂L
∂z̄
= [K, L] ,

L :=
∂

∂z
+ (1− λ−1)Az , K := −(1− λ)Az̄ .

(2.5)

Hereλ is thespectral parameterand set

Az :=
1
2
α′

(
∂

∂z

)
, Az̄ :=

1
2
α′′

(
∂

∂z̄

)
. (2.6)
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2.5. Gauge-theoretic formulation of harmonic map equation. The harmonic
map equation from a Riemann surfaceM to a Lie groupG can be formulated as
the Yang-Mills-Higgs equation over a Riemann surface in the following way. Let
P = M × G be a trivial principal bundle with structure groupG over a Riemann
surfaceM. Let AP denote the affine space of all smooth connections onP and
Ω1(gP) denote the vector space of all smooth 1-forms with values in the adjoint
bundlegP. Let A ∈ AP be a connection onP defined bydA = d+ 1

2α andϕ ∈ Ω1(gP)
the Higgs field defined byϕ = 1

2α. Then the harmonic map equation is described
as the Yang-Mills-Higgs equation F(A) +

1
2

[ϕ ∧ ϕ] = 0,

dAϕ = dA ∗ ϕ = 0 .
(2.7)

On the other hand, the slightly different Yang-Mills-Higgs equation over a Riemann
surfaceM  F(A) − 1

2
[ϕ ∧ ϕ] = 0,

dAϕ = dA ∗ ϕ = 0
(2.8)

locally corresponds to the harmonic map equation into noncompact symmetric
spaceGC/G and the moduli space of its solutions is called theHitchin System.
See also [18], [19].

2.6. Extended solutions of the harmonic map equation.A solution

Φλ : M → G (λ ∈ S1)

or
Φλ : M → GC (λ ∈ C∗)

to the linear partial differential equations

Φ∗θ = Φ−1dΦ = αλ (∀ λ ∈ S1 or C∗) (2.9)

or equivalently locally

Φ−1 ∂

∂z
Φ = (1− λ−1) Az, Φ

−1 ∂

∂z̄
Φ = (1− λ) Az̄, (∀ λ ∈ S1 or C∗) (2.10)

is called anextended solutionof a harmonic mapφ (Uhlenbeck [32]). Here we set
α′ = 2Azdzandα′′ = 2Az̄dz̄ ．　　　

If M is simply connected, there exists uniquely an extended solutionΦ for any
initial conditionΦλ(z0) = γ(λ) (∀ λ ∈ S1 or C∗)．Hereγ can be considered as a
loop in a Lie group．

2.7. Extended solutions and loop groups.([26])
The (free) loop group ofG is defined by

ΛG := {γ : S1→ G | C∞}.
The based loop group ofG is defined by

ΩG := {γ : S1→ G | C∞, γ(1) = e}.
7



The extended solution of a harmonic mapΦλ =
∑∞

i=−∞ λ
i Ti with Φ1 = e can be

considered as a map into the based loop group

Φ : M ∋ z 7−→ Φ(z) ∈ ΩG .

Assume thatG is a compact Lie group. It is known thatΩG has the infinite
dimensional complex K̈ahler manifold structure and ifH3(G,Z) � H2(ΩG,Z) �
Z, then it is Einstein-K̈ahler. The K̈ahler form (and thus a symplectic form) is
given by

ωΩG(ξ, η) :=
∫ 1

0
⟨ξ′(t), η(t)⟩dt

= ⟨ξ′(t), η(t)⟩L2 = ⟨JΩG(ξ(t)), η(t)⟩L2
1/2

(2.11)

for eachξ, η ∈ Ωg.

Proposition 2.1. An extended solutionΦλ : M → G (λ ∈ S1) of a harmonic map
with Φ1 = e is nothing but a holomorphic mapΦ : M → ΩG whose differential
dΦ satisfying the condition

Φ−1dΦ

(
∂

∂z

)
∈ (1− λ−1)gC .

2.8. Correspondence between harmonic maps and extended solutions.As-
sume thatM is a simply connected Riemann surface，that is, is conformal to
Riemann sphereS2, Gauss planeC, unit open diskB2(1). Then from the above ar-
gument we see that there is a bijective correspondence between the quotient space
of all extended solutions modulo left translations by loopsγ : S1→ G

ΩG \ {Φ : M −→ ΩG | extended solutions}
� {Φ : M −→ ΩG | extended solutions,Φ(z0) = e}

and the quotient space of harmonic maps modulo left translations by elements of
G

G \ {φ : M −→ G | harmonic maps}
� {φ : M −→ G | harmonic maps, φ(z0) = e} .

Remark.The extended solutions for harmonic maps of a Riemann surfaceM into a
symmetric spaceG/K can also be formulated (cf. [9], [7]). TheCartan immersion
of a symmetric spaceG/K into G is fitting and useful in the formulation. It is
known that every compact Lie group and every compact symmetric spaces can be
immersed into a unitary group and a complex Grassmann manifold as a totally
geodesic submanifold. Note that a compositionι ◦ φ of a harmonic mapφ and a
totally geodesic immersionι is also a harmonic map.

3. Infinite dimensional Grassmannian and loop groups

The harmonic map theory in symmetric spaces is built up in the framework of
geometry of loop groups and infinite dimensional Grassmannian due to Pressley-
Segal [25], Segal-Wilson[27].
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Suppose thatG = U(n) (for the simplicity)．Define

H(n) := L2(S1,Cn),

H(n)
+ := { f ∈ L2(S1,Cn) | f (λ) =

∑
i≥0

λici},

H(n)
− := { f ∈ L2(S1,Cn) | f (λ) =

∑
i<0

λici},

H(n) = H(n)
+ ⊕ H(n)

− .

Define an infinite dimensional complex Grassmannian Gr(H(n)) by

Gr(H(n)) := {W | a closed vector subspace ofH(n) satisfying the conditions (1), (2)}
(1) pr+ : W→ H(n)

+ is a Fredholm linear operator,

(2) pr− : W→ H(n)
− is a Hilbert-Schmidt linear operator．

Moreover, we define an infinite dimensional submanifold of the infinite dimen-
sional Grassmannian Gr(H(n)) as follows:

Gr(n)
∞ := {W ∈ Gr(H(n)) |W satisfying the conditions (3), (4)}

(3) λW ⊂W.

(4) pr+(W
⊥), pr−(W) consists ofC∞-functions.

Then there is a diffeomorphism (after a suitable completion) between

ΩG ∋ γ 7−→ γH+ ∈ Gr(n)
∞ .

Gr(n)
∞ is called theinfinite dimensional Grassmannian modelof ΩG.
The two fundamental splitting theorems for loops are obtained from theory of

infinite dimensional Grassmannian models.
Let T denote the maximal torus ofG, that is, the subgroup of all diagonal matri-

ces ofU(n). Define the complex (free) loop group ofGC by

ΛGC := {γ : S1→ GC | C∞}
and its subgroups by

Λ+GC := {γ ∈ ΛGC | γ extends continuously to holomorphicD0 −→ GC},
Λ−GC := {γ ∈ ΛGC | γ extends continuously to holomorphicD∞ −→ GC},
Λ−1GC := {γ ∈ Λ−GC | γ(∞) = e},
Ť := {δ : S1 −→ T ⊂ G continuous group homomorphism},

Here

D0 := {λ ∈ C ∪ {∞} | |λ| < 1},
D∞ := {λ ∈ C ∪ {∞} | |λ| > 1} .
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The following splitting theorem is called thepolar decompositionor Iwasawa
decompositionof the complex loop groupΛGC:

Theorem 3.1([25]). Anyγ ∈ ΛGC can be uniquely decomposed into

γ = γu γ+ ,

whereγu ∈ ΩG, γ+ ∈ Λ+GC．The multiplication map

ΩG × Λ+GC ∋ (γu, γ+) 7−→ γu γ+ ∈ ΛGC

is a diffeomorphism (after a suitable completion)．

This theorem was shown by proving

ΩG � Gr(n)
∞ � ΛGC/Λ+GC .

The next splitting theorem is called theBirkhoff decompositionof the complex
loop groupΛGC:

Theorem 3.2([25]). Anyγ ∈ ΛGC can be decomposed into

γ = γ− δ γ+ ,

whereγ− ∈ Λ−GC, δ ∈ Ť , γ+ ∈ Λ+GC. Moreover,Λ−GC · Λ+GC is a dense open
subset (“Bigg Cell”) of the identity component ofΛGC and the multiplication map

Λ−1GC × Λ+GC ∋ (γ−, γ+) 7−→ γ− γ+ ∈ Λ−GC · Λ+GC ⊂ ΛGC

is a diffeomorphism (after a suitable completion)．

The Birkhoff splitting theorem for loops describes the Morse theoretic stratifica-
tion ofΩG for the energy functional of loops ([24])．The complement of the Big
Cell can be characterized by zeros of a canonical global holomorphic sectionσ of
the dual determinant line bundle Det∗ of Gr(H(n)) (cf. [27]).

Moreover we introduce another setting of loop groups and it is necessary to
define loop group actions on extended solutions of harmonic maps ([32], [1], [8]).

Choose a real numberε with 0 < ε < 1. Take two circles on a Riemann sphere
C ∪ {∞} as follows :

Cε := {λ ∈ C | |λ| = ε},
Cε−1 := {λ ∈ C | |λ| = ε−1} .

RegardingCε as a circle with center O we denote byIε its interior. Regarding
Cε−1 as a circle with center∞, we denote byIε−1 its interior.

Iε := {λ ∈ C | |λ| < ε},
Iε−1 := {λ ∈ C | |λ| > ε−1}.

SetI := Iε ⊔ Iε−1．We denote the complementary subset ofC∪ {∞} to the closure
Ī of I by

E := (C ∪ {∞}) \ Ī .
10



At this setting we define different groups of loops inGC.

Λε,ε
−1

GC := {g : Cε ⊔Cε−1 −→ GC, smooth map},

ΛE,εGC := {g ∈ Λε,ε−1
GC | g extends continuously to holomorphicgE : E→ GC},

Λ
E,ε
1 GC := {g ∈ ΛE,εGC | gE(1) = e},

ΛI ,εGC := {g ∈ Λε,ε−1
GC | g extends continuously to holomorphicgI : I → GC}.

In our case we define thereality conditionong ∈ Λε,ε−1
GC as follows：

g(λ)−1 = g(λ̄−1)∗ (∀λ ∈ Cε ⊔Cε−1) .

Λ
ε,ε−1

R GC := {g ∈ Λε,ε−1
GC | g satisfies the reality condition},

Λ
E,ε
R GC := ΛE,εGC ∩ Λε,ε

−1

R GC,

Λ
E,ε
R,1G

C := ΛE,ε
1 GC ∩ Λε,ε

−1

R GC,

Λ
I ,ε
R GC := ΛI ,εGC ∩ Λε,ε

−1

R GC.

We describe the splitting theorem for these loop groups. This formulation was
inspired by Uhlenbeck [32]. The latter half of the statement is essential and was
proved by Ian McIntosh [16]. His proof is an ingenious combination of the Iwa-
sawa decomposition and the Birkhoff decomposition.

Theorem 3.3([32], [1], [8], [16]). ΛE,εGC · ΛI ,εGC is a dense open subset of the
identity component ofΛε,ε

−1
GC, and the multiplication map

ΛE,εGC × ΛI ,εGC ∋ (γE, γI ) 7−→ γE γI ∈ ΛE,εGC · ΛI ,εGC ⊂ Λε,ε−1
GC

is a diffeomorphism (after a suitable completion). Moreover, the restriction of this

multiplication map to real elements induces a diffeomorphism ontoΛε,ε
−1

R GC:

Λ
E,ε
R,1G

C × ΛI ,ε
R GC −→ ΛE,ε

R GC · ΛI ,ε
R GC = Λ

ε,ε−1

R GC .

For each nonnegative integerk ≥ 0 or k = ∞, we define certain subsets ofΩGC

andΩG as follows:

Xk :={δ : C∗ −→ GC | δ is holomorphic onC∗, δ(1) = e,

δ(λ) =
k∑

i=−k

λiAi , δ(λ)−1 =

k∑
i=−k

λi Bi , },

Xk,R :={δ ∈ Xk | δ satisfies the reality condition,

i.e. δ(λ)−1 = δ(λ̄−1)∗ (∀λ ∈ C∗)} .

Here notice thatX0 ⊂ X1 · · · ⊂ Xk ⊂ Xk+1 ⊂ · · · ⊂ X∞ ⊂ ΩGC, X∞ is a subgroup
of ΩGC andX0,R ⊂ X1,R · · · ⊂ Xk,R ⊂ Xk+1,R ⊂ · · · ⊂ X∞,R ⊂ ΩG, X∞,R is a
subgroup ofΩG.

11



4. Loop group actions and representation formulas for harmonic maps

In this section we explain two fundamental and important structures of harmonic
map from Riemann surfaces to Lie groups and symmetric spaces The first one is
a structure ofinfinite dimensional group actionson all such harmonic maps. The
second one is a structure ofWeierstrass type representation formulas, which repre-
sents locally all such harmonic maps in terms of infinite dimensional holomorphic
potentials.

4.1. S1-action on harmonic maps. The groupS1 = {ζ ∈ C∗ | |ζ | = 1} acts on the
based loop groupΩG by

(ζ♮γ)(λ) := γ(ζ−1λ) γ−1(ζ−1) (ζ ∈ S1, γ ∈ ΩG) .

The S1-action on extended solutions (and thus harmonic maps) is defined as
follows (C.-L. Terng): For eachζ ∈ S1 and each extended solutionΦλ : M →
G (λ ∈ S1), we define

(ζ♮Φ)λ := Φζ−1λΦ
−1
ζ−1 .

Then the map (ζ♮Φ)λ : M → G (λ ∈ S1) is a new extended solution.
Moreover the semigroupC∗≤1 and the complex groupC∗ also acts on extended

solutions of harmonic maps ([8], [33])．

4.2. Loop group action ♯. In this subsection we assume the setting of the Birkhoff-
Uhlenbeck decomposition in Section 3.

There is a natural injection

Λ
E,ε
R,1G

C ∋ h 7−→ hE|S1 ∈ ΩG ,

wherehE denotes the continuous extension ofh ∈ ΛE,ε
R,1G

C to a holomorphic map

hE : I → GC. We regard this injection as

Λ
E,ε
R,1G

C ⊂ ΩG .

Now, by using the Birkhoff-Uhlenbeck Decomposition Theorem 3.3, we define the

group action♯ of the infinite dimensional groupΛε,ε
−1

R GC on ΛE,ε
R,1G

C ⊂ ΩG as

follows：For eachg ∈ Λε,ε
−1

R GC and eachh ∈ ΛE,ε
R,1G

C ⊂ ΩG,

g♯h := gh(gh)−1
I = (gh)E ∈ ΛE,ε

R,1G
C ⊂ ΩG .

Theorem 4.1([32], [1], [8]). Each g∈ Λε,ε
−1

R GC and each extended solutionΦ :
M → ΛE,ε

R,1G
C, g♯Φ : M → ΛE,ε

R,1G
C ⊂ ΩG is a new extended solution.

This group action♯ is called theBirkhoff-Uhlenbeck group action(cf. [1], [8]).
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4.3. Loop group action ♮. By the Iwasawa Decomposition Theorem 3.1, the nat-
ural group action♮ of the infinite dimensional groupΛGC on ΩG is defined as
follows：For eachγ ∈ ΛGC and eachδ ∈ ΩG,

γ♮δ := γδ(γδ)−1
+ = (γδ)u ∈ ΩG .

Theorem 4.2([8]). For eachγ ∈ ΛGC and each extended solutionΦ : M → ΩG,
γ♮Φ : M → ΩG is a new extended solution.

This group action♮ is called thenatural group action(cf. [8]).

4.4. Relationship between the Birkhoff-Uhlenbeck action ♯ and the natural
action ♮. We easily see that the group actions♯ and♮ of the subgroupsΛE,ε

R,1G
C and

ΩG are simply left translations of extended solutions by loops. Thus we should
compare the group actions♯ and♮ of ΛI ,ε

R GC andΛ+GC.
For anyε > 0, the groupΛ+GC can be embedded into the groupΛI ,ε

R GC by the
following injective group homomorphism:

Λ+GC ∋ γ 7−→ γ̂ ∈ ΛI ,ε
R GC, (4.1)

where for eachλ ∈ C ∪ {∞}，

γ̂ :=

γ(λ) (λ ∈ C ∪ {∞}, |λ| ≥ ε)
(γ(λ̄−1)−1)∗ (λ ∈ C ∪ {∞}, |λ| ≤ ε) .

(4.2)

Then we obtain

Theorem 4.3([8]). For eachλ ∈ Λ+GC andδ ∈ Xk,R (0 ≤ k ≤ ∞)，

γ♮δ = γ̂♯δ . (4.3)

Corollary 4.1 ([8]). For eachλ ∈ Λ+GC and extended solutionΦ : M → ΩG such
thatΦλ is holomorphic inλ ∈ C∗ entirely, we have

γ♮Φ = γ̂♯Φ . (4.4)

The properties of the loop group action for harmonic maps, its Morse theoretic
aspect and applications to the study on spaces of harmonic maps were discussed in
[8].

4.5. DPW formula for harmonic maps (Iwasawa decomposition）. Another im-
portant structure of harmonic maps of Riemann surfaces into Lie groups and sym-
metric spaces is a Weierstrass type representation formula of all such harmonic
maps in terms of holomorphic functions with values in a certain infinite dimen-
sional vector space. It is due to Dorfmeister-Pedit-Wu ([5]), the so-calledDPW
formula, and here we shall explain their representation formula for harmonic maps.

Assume thatM ⊂ C is a simply connected domain of the complex plane. Fix a
base pointz0 ∈ M.

Let φ : M → G be a harmonic map. We may assume thatφ(z0) = e after a
suitable left translation ofG. Let Φ : M → ΩG be its extended solution with
Φ(z0) = e．

13



We consider the equation of the holomorphicity ong = Φb : M → ΛGC with
respect tob : M → Λ+GC:

0 = ∂̄g = ∂̄Φ b+ Φ ∂̄b .

It ∂̄-equation forb : M → Λ+GC

∂̄b = − (Φ−1∂̄Φ) b

= − 1
2

(1− λ)α′′ b
(4.5)

Then there exists a solutionb : M → Λ+GC to the ∂̄-equation (4.5) satisfying
b(z0) = e, which has the freedom of right multiplication by holomorphic maps
h : M → Λ+GC with h(z0) = e. Thus we obtaing = Φb : M → ΛGC which is
a holomorphic map in the sense that∂̄g = 0 and satisfiesg(z0) = e．Moreover we
defineµφ := g−1dg. Then we have a formula

µφ = g−1dg= g−1∂g

= b−1(Φ−1 ∂Φ)b+ b−1 ∂b

= − λ−1Ad(b|λ=0)−1(α′) + [terms ofλi (≥ 0)] .

Define an infinite dimensional complex vector space

Λ−1,∞ :=

 ξ ∈ ΛgC | ξ has Fourier series expansionξ =
∞∑

i=−1

λi ξi

 .

Denote byΩ1,0(M,Λ−1,∞) the complex vector space of all smooth (1, 0)-forms
with values inΛ−1,∞ defined onM. Then we define the infinite dimensional vector
space of allholomorphic potentialswith values inΛ−1,∞ by

P :=
{
µ ∈ Ω1,0(M,Λ−1,∞) | ∂̄µ = 0

}
.

Eachµ ∈ P is expressed as

µ =

∞∑
i=−1

λiµi = µz dz,

where eachµi is a holomorphic 1-form onM with values ingC andµz is a holo-
morphic function with values inΛ−1,∞ on M. Then we haveµφ ∈ P.

We discuss the inverse construction fromµ to a harmonic map. For eachµ ∈ P，
it holds

dµ +
1
2

[µ ∧ µ] = ∂̄µ = 0

and thus there exists a unique smooth mapgµ : M → ΛGC such thatgµ(z0) = e
and (gµ)−1dgµ = µ. In particular,gµ : M → ΛGC is a holomorphic map in the
sense that̄∂gµ = 0. By Iwasawa Decomposition Theorem 3.1, there exist uniquely
Φµ : M → ΩG andbµ : M → Λ+G such that

gµ = Φµ · bµ .
14



Note thatΦµ(p0) = e, bµ(e) = e．ThenΦµ is an extended solution of a harmonic
map. Indeed, we have a formula

(Φµ)−1dΦµ = (1− λ−1) (Ad(bµ|λ=0)µ−1) + (1− λ) (Ad(bµ|λ=0)µ−1) .

Via the Grassmannian model ofΩG

ΩG � Gr(n) � ΛGC/Λ+GC,

the corresponding extended solution of a harmonic map is expressed in terms of
the above holomorphic mapg : M → ΛGC as

Φ : M ∋ x 7−→ Φ(x) H(n)
+ = g(x) H(n)

+ ∈ Gr(n) � ΛGC/Λ+GC . (4.6)

Hence the natural group action♮ of γ ∈ Λ+GC ⊂ ΛGC is given by

(γ♮Φ)(z) H(n)
+ = (γ♮Φ(z)) H(n)

+

= γΦ(z) H(n)
+

= γg(z) H(n)
+

= γg(z) γ−1H(n)
+ ∈ Gr(n) � ΛGC/Λ+GC

for eachz ∈ M. Note that an extended solutionγ♮Φ : M → ΩG also satisfies
(γ♮Φ)(z0) = e. A holomorphic map representing the extended solutionγ♮Φ : M →
ΩG is

γgγ−1 : M ∋ p 7−→ γg(p)γ−1 ∈ ΛGC

and the corresponding holomorphic potential is given by

µγ♮Φ = (γgγ−1)−1d(γgγ−1)

= γg−1γ−1γdgγ−1

= γ(g−1dg)γ−1

= γµΦγ
−1

=Ad(γ)(µΦ) .

The holomorphic gauge transformation group

G := { h : M −→ Λ+GC | ∂̄h = 0 } (4.7)

acts on the infinite dimensional affine spaceP of holomorphic potentials as fol-
lows：For eachh ∈ G and eachµ ∈ P, define

h · µ := (Adh) µ − (dh) h−1

and thenh · µ ∈ P. The based holomorphic transformation group is defined by

Ge := {h ∈ G | h(z0) = e} , (4.8)

which is a normal subgroup ofG. Then the above construction implies that

Ge\P � {Φ : M −→ ΩG | extended solutions,Φ(z0) = e}
� {φ : M −→ G | harmonic maps, φ(z0) = e} .
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Let h ∈ G. We set

gh·µ := h(z0) gµ h−1 : M −→ ΛGC . (4.9)

Then we havegh·µ(z0) = eandg−1
h·µdgh·µ = h · µ. Hence we obtain the formula

Φh·µ = (gh·µ)u

= (h(z0)gµ)u

= (h(z0)Φµ)u

= h(z0)♮Φµ .

We mention about a notion of thenormalized meromorphic potentialof a har-
monic map ([5]). Letφ : M → G be a harmonic map withφ(z0) andΦ : M → ΩG
be its extended solution withΦ(z0) = e. In order to construct the holomorphic
potential corresponding toφ andΦ, we can use the Birkhoff decomposition theo-
rem. SetM′ := Φ−1(Big Cell) ⊂ M, which is an open set ofM, andM \ M′ =
Φ−1((Big Cell)c) is a discrete set ofM by the holomorphicity ofΦ. On M′, by
Birkhoff decomposition theorem 3.2, we decomposeΦ uniquely as

Φ = h− h+ ,

whereh− : M → Λ−1GC, h+ : M → Λ+GC.

1
2

(1− λ)α′′ =Φ−1∂̄Φ

=Ad(h−1
+ )(h−1

− ∂̄h−) + h−1
+ ∂̄h+

and thus
1
2

(1− λ) Ad(h+)(α
′′) = h−1

− ∂̄h− + Ad(h+)(h
−1
+ ∂̄h+)

Comparing the we haveh−1
− ∂̄h− = 0 and

1
2

(1− λ)α′′ = h−1
+ ∂̄h+

On the other hand,

1
2

(1− λ−1)α′ =Φ−1∂Φ

=Ad(h−1
+ )(h−1

− ∂h−) + h−1
+ ∂h+

1
2

(1− λ−1) Ad(h+)(α
′) =h−1

− ∂h− + Ad(h+)(h
−1
+ ∂h+).

Comparing with the coefficients ofλ−1 on the both sides, we have

−1
2
λ−1 Ad(h+|λ=0)(α′) = h−1

− ∂h−.

Hence we obtain

h−1
− ∂h− = −

1
2
λ−1 Ad(h+|λ=0)(α′) = λ−1 η−1 .
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µ = h−1
− ∂h− = λ−1 η−1 is a holomorphic potential defined onM′ corresponding

to the extended solutionΦ. It is possible to show thatµ extends to a meromor-
phic 1-form onM entirely by the geometric argument of the infinite dimensional
Grassmannian on the Big Cell and the dual determinant line bundle ([5]). This
meromorphic 1-formµ = λ−1 η−1 on M is called thenormalized meromorphic
potential.

4.6. DPW formula for harmonic maps (Birkho ff-Uhlenbeck decomposition）.
In this subsection we assume the setting of the Birkhoff-Uhlenbeck decomposition
in Section 3.

Let M be a simply connected domain of the complex planeC andz0 ∈ M be a
base point. Suppose that

Φ : M −→ ΛE,ε
R,1G

C ⊂ ΩG

is an extended solution of a harmonic map satisfyingΦ(z0) = e.
We use the following complex loop groups defined over a circleCε:

ΛεGC := { γ : Cε −→ GC | γ is smooth},
ΛIεGC := { γ ∈ ΛεGC | γ extends continuously to holomorphicγI : Iε −→ GC} .

Then by a solution to thē∂-problem there existsb = (bε, bε) : M → ΛI ,ε
R GC with

b(z0) = esuch that

g = Φ b = (gε, gε) : M −→ Λε,ε
−1

R GC

and gε = Φ bε : M → ΛεGC is a holomorphic map in the sense that∂̄gε =
∂̄(Φbε) = 0. Such a mapbε : M → ΛIεGC has the freedom of right multiplications
by holomorphic mapshε : M → ΛIεGC with hε(z0) = e.

The holomoprhic 1-form onM with values inΛgC

µεΦ :=g−1
ε dgε = g−1

ε ∂gε

=b−1
ε Φ

−1∂Φbε + b−1
ε ∂bε

=
1
2

(1− λ−1)b−1
ε α

′bε + b−1
ε ∂bε

is holomorphic with respect toλ ∈ Iε \ {0} = D(0, ε) \ {0} and has at most a simple
pole (a pole of at most order 1) atλ = 0.

Set

Λε−1,∞g
C := { ξ : Cε −→ gC | smooth,

ξ extends continuously to holomorphicIε \ {0} −→ gC

which has at most a simple pole at 0}
and define

Pε :=
{
µ ∈ Ω1,0(M,Λε−1,∞g

C) | ∂̄µ = 0
}
.

Eachµ ∈ Pε can be expressed as

µ =

∞∑
i=−1

µiλ
i

17



on Cε. Here eachµi is a holomorphic 1-form onM with values ingC．Then we
haveµε

Φ
∈ Pε.

Conversely, for eachµ ∈ Pε, there exists

g = gµ = (gε, gε) = (gεµ,g
ε
µ) : M −→ Λε,ε

−1

R GC

such that　

(gε)−1d(gε) = (gε)−1∂(gε) = µ, g(z0) = e

onCε. We take the Birkhoff-Uhlenbeck decomposition

g = Φ b ,

whereΦ : M −→ ΛE,ε
R,1G

C, b : M −→ ΛI ,ε
R GC. Then

Φ : M −→ ΛE,ε
R,1G

C ⊂ ΩG

is an extended solution of harmonic map. Indeed, we have a formula

Φ−1dΦ =Ad(b)µ − db b−1

=
[
Ad(b)µ

]
Λ

E,ε
R,1g

C

=(1− λ−1)(Ad(b(0))µ−1) + (1− λ)(Ad(b(0))µ−1) .

The holomorphic gauge transformation group

Gε := {h : M −→ ΛIεGC | ∂̄h = 0} (4.10)

acts on the infinite dimensional affine spacePε as follows：For eachh ∈ Gε and
eachµ ∈ Pε, define

h · µ := (Ad h)µ − dh · h−1 . (4.11)

Then we haveh · µ ∈ Pε. The based holomorphic gauge transformation group is a
normal subgroup ofGε defined by

Gε,e := {h ∈ G | h(z0) = e} . (4.12)

Now we set

gεh·µ := h(z0) gεµ h−1 : M −→ ΛεGC . (4.13)

Then we havegεh·µ(z0) = eand

(gεh·µ)
−1 d(gεh·µ) . = h · µ (4.14)

So we define

gh·µ := (gεh·µ,g
ε
h·µ) : M −→ Λε,ε−1

GC,

h̃ = (h,h) : M −→ ΛI ,ε
R GC .

(4.15)
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Sinceh̃(z0) = (h(z0), h(z0)) ∈ ΛI ,ε
R GC, we have

gh·µ =(gεh·µ, g
ε
h·µ)

=(h(z0) gεµ h−1, h(z0) gεµ h−1)

=(h(z0) gεµ h−1, h(z0) gεµ h−1)

=(h(z0), h(z0))(gεµ,g
ε
µ)(h

−1, h−1)

=h̃(z0) gµ h̃−1 .

(4.16)

Hence we obtain the formula

Φh·µ = (gh·µ)E

= (h̃(z0) gµ h̃−1)E

= (h̃(z0)Φµ bµ h̃−1)E

= (h̃(z0)Φµ)E

= h̃(z0)♯Φµ .

(4.17)

4.7. Relationship of two kinds of DPW formulas for harmonic maps.

Theorem 4.4. The natural injective linear map overC

P ∋ µ 7−→ µ|Cε ∈ Pε

induces a bijective correspondence between the moduli spaces of holomorphic po-
tentials by the based holomorphic gauge transformation groups

Ge\P � Gε,e\Pε .

Moreover, they are equivariant with respect to the natural injective group homo-
morphism between the holomorphic gauge transformation groupsG → Gε. In
particular, they are equivariant with respect to the loop group actions♮ and♯．

5. Harmonic maps of finite uniton number and classification problem of
harmonic 2-spheres

5.1. Uniton transform. Suppose thatG = U(n). Set

Gr(Cn) = {a ∈ G |a2 = In}.

Eacha ∈ Gr(Cn) can be expressed as

a = πW − πW⊥ = π − π⊥

in terms of the orthogonal projection

π = πW : Cn =W⊕W⊥ −→W

onto a vector subspace ofCn

W := {v ∈ Cn |av= v}.
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The finite dimensional complex Grasssmanian of complex vector subspaces of
Cn Gr(Cn) is decomposed into connected components as

Gr(Cn) =
n⨿

k=0

Grk(Cn).

Here Grk(Cn) is a complex Grassmann manifold ofk-dimensional vector subspaces
of Cn．

A smooth map into the complex Grassmannian

π − π⊥ : M → Gr(Cn) ⊂ U(n)

can be identified with a complex vector subbundleη of the trivial vector bundle
Cn = M × Cn.

Let φ : M → U(n) be a harmonic map．We use the same notation as in the
previous sections, such asα = φ∗θ = φ−1dφ, a connectiondA = d+ 1

2α ∈ AP of the
trivial principal bundleP := M ×G, a Higgs fieldϕ = 1

2α ∈ Ω1(gP), ϕ = ϕ′ + ϕ′′.
Let Φλ : M → U(n) (λ ∈ S1) be an extended solution of a harmonic mapφ.

Using a smooth map into a complex Grassmannianπ − π⊥ : M → Gr(Cn) ⊂ U(n),
we define

Φ̃λ := Φλ(π + λπ
⊥) : M −→ U(n) (λ ∈ S1)

and then we have

Lemma 5.1. Φ̃ is also a new extended solution if and only if a complex Grassman-
nianπ − π⊥ : M → Gr(Cn) ⊂ U(n) satisfies the equations π⊥(∂̄ + ϕ′′)π = 0 ,

π⊥ϕ′π = 0.
(5.1)

In this caseφ̃ = Φ̃−1 = π ◦ Φ̃ = φ(π − π⊥) is a harmonic map.

The equations (5.1) is called theuniton equationof a harmonic mapφ and we
say that a harmonic map ˜φ can be obtained by making a uniton transform or by
adding a uniton to a harmonic mapφ．

We equip the trivial complex vector bundleCn = M ×Cn overM with the holo-
morphic vector bundle structured′′A as the∂̄-operator. The harmonic map equation
d′′Aϕ

′ = 0 implies thatϕ′ is a holomorphic Higgs field and thus we obtain a holo-
morphic Higgs vector bundle structure (Cn, d′′A, ϕ

′). The first equation of the uniton
equations means the complex vector subbundleη corresponding to a smooth map
π−π⊥ into a complex Grassmannian is a holomorphic vector subbundle of (Cn, d′′A).
The second equation of the uniton equations means that the complex vector sub-
bundleη is invariant under the action of a holomorphic Higgs fieldϕ′, namely,
ϕ′(η) ⊂ η.

The procedure of theGauss bundleand theharmonic sequenceof harmonic
maps of Riemann surfaces into complex projective spaces and complex Grassman-
nians is an examples of the uniton transform (cf. [6]).
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Lemma 5.2(Valli [34]) . 　 Let M be a compact Riemann surface. Assume that a
harmonic map̃φ is obtained by adding a harmonic mapφ to a unitonη. Then the
energy formula

E(ψ) − E(φ) = −8π deg(η), deg(η) :=
∫

M
c1(η) ∈ Z . (5.2)

holds. Here c1(η) denotes the first Chern class of the complex vector bundleη．
The invariant inner product of Lie algebrau(n) of U(n) is defined as⟨A, B⟩ :=
−tr(AB) (A, B ∈ u(n)).

Definition 5.1. SetE = (Cn,d′′A), which is a holomorphic vector bundle. Consider
a holomorphic Higgs bundle (E, ϕ′). If it holds µ(V) ≤ µ(E) for any holomorphic
vector subbundleV ⊂ E invariant byϕ′, then the holomorphic Higgs bundleE is
calledsemi-stable. Hereµ(V) := deg(V)/rank(V).

From Lemma 5.2 and the concept of the semi-stability of holomorphic Higgs
bundle, we obtain：

Theorem 5.1 ([34], [21]). Any harmonic map of a compact Riemann surface
M into the unitary group U(n) can be transformed by a finite number of uniton
transforms into a harmonic map whose associated holomorphic Higgs bundle is
semistable. It is not possible to decrease the energy of a harmonic map with the
semistable holomorphic Higgs bundle by any uniton transform. In particular, if M
is a Riemann sphere, then any harmonic map of M into U(n) can be transformed
by a finite number of uniton transforms into a constant map.

5.2. Harmonic maps of finite uniton number. Suppose thatG = U(n).

Definition 5.2. If a harmonic mapφ : M → U(n) has an extended solutionΦ :
M → ΩU(n)

Φ =

m∑
i=0

Tiλ
i ,

Φ−1 = π ◦ Φ = aφ (∃ a ∈ U(n)),

(5.3)

thenφ is said to be offinite uniton number. Such a harmonic mapφ : M → U(n) is
calledharmonic map of finite uniton numberor auniton solutionto the harmonic
map equation．Or equivalently，it means that a harmonic mapφ : M → U(n) has
an extended solutionΦ such that

Φ(M) ⊂ Xm,R ⊂ ΩU(n) (5.4)

for some nonnegative integerm. We call such a minimal numberm the minimal
uniton numberand thenφ orΦ anm-uniton.

A harmonic mapφ : M → U(n) of finite uniton number is always weakly
conformal, that is, a branched minimal immersion. ([21]).

A 0-uniton solution is a constant map．A 1-uniton solutionφ is a left translation
φ = c h by somec ∈ U(n) of a holomorphic map from a Riemann surfaceM to a
complex Grassmann manifoldh : M −→ Gr(Cn).
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Theorem 5.2([32], [26]). Assume that a Riemann surface M is compact andΦ :
M → ΩU(n) is an extended solution satisfies the base point conditionΦ(z0) = In．
ThenΦ has finite Laurent expansion

Φλ =

q∑
i=−p

Tiλ
i (∃ p, q ∈ Z, p, q ≥ 0) (5.5)

with respect toλ ∈ C∗.

Corollary 5.1. If Φ : M → ΩU(n) is an extended solution on a compact Riemann
surface, thenφ = π ◦ Φ : M → U(n) is a harmonic maps of finite uniton number.

Corollary 5.2. Any harmonic mapφ : S2 → U(n) of a Riemann sphere into a
unitary group is always a a harmonic maps of finite uniton number.

Theorem 5.3 ([32]). Suppose thatφ : M → U(n) is a harmonic map of finite
uniton number. Then there exists a unique extended solutionΦ : M → U(n) such
that

(1) Φ−1 = π ◦ Φ = aφ (∃a ∈ U(n)),
(2) Φλ =

∑m
i=0 Tiλ

i (∀ λ ∈ C∗), Tm . 0,
(3) V0(Φ) = Cn,

where V0(Φ) denotes a complex vector subspace ofCn spanned by{(T0)zv | z ∈
M, v ∈ Cn}. Moreover this number m is equal to the minimal uniton number ofφ.

Such an extended solution is called thenormalized extended solutionof a har-
monic map of finite uniton number.

Uhlenbeck proved the factorization theorem into unitons for harmonic maps of
finite uniton number, repeating the uniton transform procedure by a uniton given
by the kernel bundle ofT0 for the normalized extended solution.

Theorem 5.4 ([32]). Suppose thatφ : M → U(n) is a harmonic map of finite
uniton number. Then for some c∈ U(n), φ can be decomposed into a product of a
finite number of smooth maps into complex Grassmann manifolds：

φ = c(π1 − π⊥1 ) · · · (πm− π⊥m) .

(1) Eachφ(i) = c(π1 − π⊥1 ) · · · (πi − π⊥i ) (i = 1, · · · , n) is a harmonic map．
(2) Eachπi − π⊥i is a uniton for a harmonic mapφ(i)．
(3) π1 − π⊥1 : M → Gr(Cn) is a holomorphic map.
(4) m< n and m is equal to the minimal uniton number ofφ．

Moreover, if M is compact，then E(φ) = E(φ(m)) > E(φ(m−1)) > · · · > E(φ(1)).

G. Segal [26] provided the different proofs of these results by the method of loop
groups and infinite dimensional Grassmannian.

The loop group action♯ of ΛI ,ε
R GC coincides with the loop group action♮ of

Λ+GC on harmonic maps of finite uniton number ([8])．This loop group action
is used in order to study the topological properties (such as path-connectedness,
fundamental groups) of the spaces of harmonic maps of a Riemann sphere into
some compact symmetric spaces ([8])．
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The factorization theorem into unitons is a fundamental principle for classifi-
cation and explicit construction of a Riemann sphere into a compact symmetric
space, generalizing the known results in the cases ofN = Sn, CPn, HPn, Gr2(Cn),
Qn(C), etc.

Problem 5.1. For each compact symmetric spaceN = G/K, investigate the com-
plete classification, the explicit construction and the properties of the space of all
harmonic maps of a Riemann sphere intoN.

6. Harmonic maps of finite type and classification problem of harmonic tori

6.1. Harmonic maps of finite type. Consider the based complex loop algebra

ΩgC :=
{
ξ : S1→ gC, smoothξ(1) = 0

}
.

Eachξ ∈ ΩgC has Fourier series expansion

ξ =
∑

j∈Z\{0}
(1− λ− j)ξ j , ξ j ∈ gC.

Define the based real loop algebra

Ωg :=
{
ξ : S1→ g, C∞-級, ξ(1) = 0

}
.

Eachξ ∈ Ωg has Fourier series expansion

ξ =
∑

j∈Z\{0}
(1− λ− j) ξ j , ξ j ∈ gC, ξ̄ j = ξ− j ( j ∈ Z \ {0}).

For eachd ∈ N, define a finite dimensional real vector space ofΩg by

Ωd :=

 ξ ∈ Ωg | ξ = ∑
0<| j|≤d

(1− λ− j)ξ j

 .
Introduce a Lax equation overΩd．Denote byξ a smooth function onΩd with

values inM = C = R2 and by{z = x +
√
−1y} the standard complex coordinate

system ofM = C = R2. The Lax equation is the partial differential equation of the
first order:

∂ξ

∂z
= [ ξ, 2

√
−1(1− λ−1)ξd ] . (6.1)

The Lax equation(6.1) has the following properties: Define two vector fieldsX1,
X2 onΩd:

1
2

(X1 −
√
−1X2)ξ = [ ξ, 2

√
−1(1− λ−1)ξd ] (∀ξ ∈ Ωd). (6.2)

The following fact holds. The compactness ofG is used in the proof of the second
statement.

Lemma 6.1. The two vector fields X1 and X2 commute，that is, the bracket product
of vector fields onΩd satisfies[X1,X2] = 0. Moreover, X1 and X2 are complete
vector fields onΩd.
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So letϕt
1 andϕt

2 denote one-parameter transformation groups (flows) generated
by vector fields. For eachξ0 ∈ Ωd, a function

ξ : M = C ∋ z= x+
√
−1y 7−→ ξ(x, y) := (ϕx

1 ◦ϕ
y
2)(ξ0) = (ϕy

2 ◦ϕ
x
1)(ξ0) ∈ Ωd (6.3)

is a solution to the Lax equation (6.1) with the initial conditionξ(0) = ξ0.
On the coefficient ξd = ξ̄−d of λ−d the Fourier expansion inλ for th solution

ξ : C→ Ωd, the following lemma holds:

Lemma 6.2. The1-form onC with values ing

αλ := 2
√
−1(1− λ−1) ξddz− 2

√
−1(1− λ) ξ̄ddz̄

satisfies the Maurer-Cartan equation

dαλ +
1
2

[αλ ∧ αλ] = 0

for eachλ ∈ S1. From this result, an extended solutionΦ : M = C → ΩG
satisfyingΦ∗θ = Φ−1dΦ = αλ exists. Hence we obtain a harmonic mapφ = π◦Φ :
C→ G.

The harmonic map obtained in this way is called aharmonic maps of finite type
or finite type solutions（Burstall-Ferus-Pinkall-Pedit [3]）. Moreover, a harmonic
map of finite type has the property thatα′( ∂∂z) = φ−1dφ( ∂∂z) is contained in an

AdGC-orbit in gC. In particular, ifα′( ∂∂z) is contained in an AdGC-orbit through a
semisimple element ofgC, φ : M = C→ G is called aharmonic map of semisimple
finite type．

Here we mention about the results due to Burstall and Pedit [4] on orbits of loop
group actions on harmonic maps (dressing orbits).

Forξ0 ∈ Ωd, setµ = (λd−1zξ0)dz∈ P. A holomorphic mapgµ : C→ ΛGC with
gµ(0) = e, g−1

µ dgµ = µ is gµ(z) = exp(λd−1zξ0) (z ∈ C). By Iwasawa decomposition
thorem, there exists uniquelyΦµ : C → ΩG andbµ : C → Λ+GC such that we
decomposegµ as

gµ(z) = exp(λd−1 zξ(0)) = Φµ(z) bµ(z) (∀z ∈ C).

ThenΦµ : C → ΩG is an extended solution of harmonic map of finite type. Via
the identificationΩG � Gr(n)

∞ , we can expressΦµ as

Φµ(z) H(n)
+ = exp(λd−1zξ(1))H(n)

+ .

The so obtained harmonic mapφ = (Φµ)−1 : M = C→ G is of finite type.

A vacuum solution: Let A ∈ gC ∈ be an arbitrary element satisfying [A, Ā] = 0
(thusA is semisimple). Set

ξ0 :=
1
2

(1− λ−1)A+
1
2

(1− λ)Ā ∈ Ω1

and
µA := z{(1− λ−1)A+ (1− λ)Ā}dz∈ P.
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Then its Iwasawa decomposition is

gµA =exp(z{1
2

(1− λ−1)A+
1
2

(1− λ)Ā})

=exp({ z
2

(1− λ−1)A+
z̄
2

(1− λ)Ā}) exp({ z
2

(1− λ)Ā− z̄
2

(1− λ)Ā})
(6.4)

and thus we obtain an extended solution

ΦA : C ∋ z−→ exp(
z
2

(1− λ−1)A+
z̄
2

(1− λ)Ā) ∈ ΩG (6.5)

and the corresponding harmonic map of finite type is

φA = Φ−1 : C ∋ z−→ exp(zA+ z̄Ā) ∈ G . (6.6)

Such an extended solution or harmonic map is called avacuum solution.
Burstall and Pedit [4] studied the orbit of the loop groupΛI ,ε

R GC (dressing orbit)
of a vacuum solution and they proved

Theorem 6.1([4] ). Any harmonic map of semisimple finite type is contained in a
Λ

I ,ε
R GC-orbit (dressing orbit) of a vacuum solution.

6.2. Classification problem of harmonic tori. Suppose thatC/Γ is a compact
Riemann surface of genus 1 (a torus) andG (or G/K）is a compact Lie group (or a
compact symmetric space)．Let φ : M = C/Γ→ G (or G/K) be a harmonic map.

Theorem 6.2(BFPP [3]). Assume thatφ is semisimple, that is, the function(φ∗θ)
(
∂
∂z

)
on M has values in a set of semisimple elements ofgC. Thenφ is a harmonic map
of (semisimple) finite type.

Theorem 6.3 (Burstall [2]). Assume that G/K = Sn or G/K = CPn. φ is an
isotropic (=superminimal) harmonic map (thus a harmonic map of finite uniton
number) or a harmonic map of finite type.

In particular，in the caseG/K = S2, any harmonic mapφ : M = C/Γ → S2 is
a±holomorphic map or a harmonic map of finite type.

The cases ofG/K = Gr2(Cn) andG/K = HPn are discussed in [30], [31]

Corollary 6.1 (Pinkall-Sterling [22]). The Gauss map g: M → S2(1) of a constant
mean curvature torus M= C/Γ→ R3 immersed in3-dimensional Euclidean space
R3 is a harmonic map of finite type.

Problem. Assume thatN is a compact symmetric space other thanSn, CPn. Then
is any harmonic mapφ : M = C/Γ→ N of a torus intoN a harmonic map of finite
uniton number or of finite type ?

Theory of harmonic maps of finite type on compact Riemann surfaces of genus
greater than 1 was discussed in [20].
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7. Generalization to pluriharmonic maps

The notion ofpluriharmonic mapsis a natural generalization of harmonic maps
of Riemann surfaces to higher dimensional complex manifolds, focused on the
complex structure of the domain manifold of harmonic maps. Theory of pluri-
harmonic maps of complex manifolds into Lie groups and symmetric spaces are
discussed in [21], [20], etc. Pluriharmonic maps of complex manifolds are very
useful and significant even in the study of harmonic maps of Riemann surfaces.
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