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Abstract. We introduce the notion of a topological toric manifold and a topo-
logical fan and show that there is a bijection between omnioriented topological
toric manifolds and complete non-singular topological fans. A topological toric
manifold is a topological analogue of a toric manifold and the family of topolog-
ical toric manifolds is much larger than that of toric manifolds. A topological
fan is a combinatorial object generalizing the notion of a simplicial fan in toric
geometry.

Prior to this paper, two topological analogues of a toric manifold have been
introduced. One is a quasitoric manifold and the other is a torus manifold. One
major difference between the previous notions and topological toric manifolds is
that the former support a smooth action of an S1-torus while the latter support
a smooth action of a C∗-torus. We also discuss their relation in details.

1. Introduction

Toric geometry was established around 1970 by Demazure, Miyake-Oda, Mumford
etc. It provides examples of explicit algebraic varieties and finds many interesting
connections with combinatorics, see [7], [12]. A toric variety of complex dimension n
is a normal algebraic variety over the complex numbers C with an effective algebraic
action of (C∗)n having an open dense orbit, where C∗ = C\{0}. On the other hand,
a fan of real dimension n is a collection of cones in Rn with the origin as vertex
satisfying certain conditions. A fundamental theorem in toric geometry says that
there is a bijective correspondence between toric varieties of complex dimension n
and fans of real dimension n.

Among toric varieties, compact non-singular toric varieties, which we call toric
manifolds in this paper, are well studied. In particular, their cohomology rings,
Chern classes and genera such as signature are explicitly described in terms of the
associated fans. Among toric manifolds, projective ones provide examples of sym-
plectic manifolds. A projective toric manifold X admits a moment map whose image
is a simple convex polytope and can be identified with the orbit space of X by the
compact torus (S1)n of (C∗)n.
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Previous to this paper, two topological analogues of a toric manifold have been
introduced and a theory similar to toric geometry is developed for them using topo-
logical technique. One topological analogue is what is now called a quasitoric man-
ifold∗ introduced by Davis-Januszkiewicz [5] around 1990 and the other is a torus
manifold introduced by Masuda [10]† and Hattori-Masuda [8] around 2000.

A quasitoric manifold is a closed smooth manifold M of even dimension, say
2n, with an effective smooth action of (S1)n, such that M is locally equivariantly
diffeomorphic to a representation space of (S1)n and the orbit space M/(S1)n is a
simple convex polytope. A projective toric manifold with the restricted action of
the compact torus is a quasitoric manifold but there are many quasitoric manifolds
which do not arise this way. For example CP 2#CP 2 with a smooth action of
(S1)2 is quasitoric but not toric because it does not allow a complex (even almost
complex) structure, as is well-known. Davis-Januszkiewicz [5] show that quasitoric
manifolds M are classified in terms of pairs (Q, v) where Q is a simple convex
polytope identified with the orbit space M/(S1)n and v is a function on the facets
of Q with values in Zn satisfying a certain unimodularity condition.

A torus manifold is a closed smooth manifold M of even dimension, say 2n, with
an effective smooth action of (S1)n having a fixed point. An orientation datum
called an omniorientation is often incorporated in the definition of a torus manifold.
The action of (S1)n on a toric or quasitoric manifold has a fixed point, so they are
torus manifolds. A typical and simple example of a torus manifold which is neither
toric nor quasitoric is 2n-sphere S2n with a natural smooth action of (S1)n for n ≥ 2.
The orbit space S2n/(S1)n is contractible but there are many torus manifolds whose
orbit spaces by the torus action are not contractible unlike in the case of toric or
quasitoric manifolds. Although the family of torus manifolds is much larger than
that of toric or quasitoric manifolds, one can associate a combinatorial object ∆(M)
called a multi-fan to an omnioriented torus manifold M . Roughly speaking, a multi-
fan is also a collection of cones but cones may overlap unlike ordinary fans. When
M arises from a toric manifold, the multi-fan ∆(M) agrees with the ordinary fan
associated with M . In general, the multi-fan ∆(M) does not determine M , but it
contains a lot of geometrical information on M , e.g. genera of M such as signature,
Hirzebruch Ty (or χy) genus and elliptic genus can be described in terms of ∆(M)
([8], [9], [10]).

In this paper, we introduce a third topological analogue of a toric manifold, which
we believe is the correct topological analogue. Remember that a toric manifold of
complex dimension n is a compact smooth algebraic variety with an effective alge-
braic action of (C∗)n having an open dense orbit. It is known that a toric manifold is
covered by finitely many invariant open subsets each equivariantly and algebraically
isomorphic to a direct sum of complex one-dimensional algebraic representation

∗Davis-Januszkiewicz [5] uses the terminology toric manifold but it was already used in algebraic
geometry as the meaning of smooth toric variety, so Buchstaber-Panov [2] started using the word
quasitoric manifold.

†In [10], the notion of unitary toric manifold is introduced. It is a torus manifold with invariant
unitary (or weakly almost complex) structure.
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spaces of (C∗)n. Based on this observation we define our topological analogue of a
toric manifold as follows.

Definition. We say that a closed smooth manifold X of dimension 2n with an
effective smooth action of (C∗)n having an open dense orbit is a (compact) topo-
logical toric manifold if it is covered by finitely many invariant open subsets each
equivariantly diffeomorphic to a direct sum of complex one-dimensional smooth rep-
resentation spaces of (C∗)n.

We make two remarks. The first one is that the existence of the open dense orbit
of (C∗)n does not imply the existence of the local charts diffeomorphic to smooth
representation spaces of (C∗)n (see the example in Section 3) although it does in the
toric case. The second one is that there are many more smooth representations of
(C∗)n than algebraic ones. This stems from the fact that since C∗ = R>0 × S1 as
smooth groups, any smooth endomorphism of C∗ is of the form

(1.1) g 7→ |g|b+
√
−1c

( g
|g|

)v
with (b+

√
−1c, v) ∈ C× Z

and this endomorphism is algebraic if and only if b = v and c = 0. Therefore the
group Hom(C∗,C∗) of smooth endomorphisms of C∗ is isomorphic to C × Z while
the group Homalg(C∗,C∗) of algebraic endomorphisms of C∗ is isomorphic to Z.
This implies that topological toric manifolds are much more abundant than toric
manifolds.

Nevertheless, topological toric manifolds have similar topological properties to
toric manifolds. For instance, the orbit space of a topological toric manifold X by
the restricted compact torus action is a manifold with corners whose faces (even
the orbit space itself) are all contractible and any intersection of faces is connected
unless it is empty, so the orbit space looks like a simple polytope. This implies that
H∗(X) is generated by degree two elements as a ring like the toric or qusitoric case
(Proposition 8.3). However, the orbit space is not necessarily a simple polytope and
one can see the following.

Theorem 1.1 (see Theorem 10.2 for more details). The family of topological toric
manifolds with restricted compact torus actions is strictly larger than the family of
quasitoric manifolds up to equivariant homeomorphism.

As a combinatorial counterpart to a topological toric manifold, we introduce the
notion of a simplicial topological fan (we simply say topological fan in this paper)
generalizing the notion of a simplicial fan in toric geometry. A simplicial fan of
dimension n is a collection of simplicial cones in Rn satisfying certain conditions.
It can be regarded as a pair (Σ, v) of an abstract simplicial complex Σ and a map
v : Σ(1) → Zn, where Σ is the underlying simplicial complex of the fan, Σ(1) is
the set of vertices in Σ which correspond to one-dimensional cones in the fan, and
v assigns primitive integral vectors lying on the one-dimensional cones. We note
that the target group Zn of the map v should actually be regarded as the group
Homalg(C∗, (C∗)n) of algebraic homomorphisms from C∗ to (C∗)n.

We define a topological fan of dimension n to be a pair ∆ = (Σ, β) of an ab-
stract simplicial complex Σ and a map β : Σ(1) → Hom(C∗, (C∗)n) satisfying certain
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conditions, where Hom(C∗, (C∗)n) denotes the group of smooth homomorphisms
from C∗ to (C∗)n. We may think of a topological fan as a collection of cones
in Hom(C∗, (C∗)n) by forming cones C using the Σ and β. As observed in (1.1),
Hom(C∗, (C∗)n) is isomorphic to Cn×Zn, so we may regard β as a map to Cn×Zn

and write β = (b+
√
−1c, v) accordingly. Then an ordinary simplicial fan is a topo-

logical fan with b = v and c = 0. Cones obtained from the pair (Σ, b), which are the
projected images of the cones C on the real part of the first factor of Cn×Zn, do not
overlap and define an ordinary simplicial fan over R while cones formed from the
pair (Σ, v), which are the projected images of C on the second factor of Cn×Zn, may
overlap and define a multi-fan. A topological fan ∆ is called complete if the ordinary
fan (Σ, b) is complete, and non-singular if the multi-fan (Σ, v) is non-singular, i.e.
if {v({i})}i∈I is a part of a Z-basis of Zn for any I ∈ Σ.

One can associate a complete non-singular topological fan ∆(X) of dimension n
to an omnioriented topological toric manifold X of dimension 2n. Conversely, one
can construct an omnioriented topological toric manifold X(∆) from a complete
non-singular topological fan ∆ using the quotient construction of toric manifolds
developed by Cox [4]. Our main theorem in this paper is the following.

Theorem 1.2 (Theorem 8.1). The correspondences X → ∆(X) and ∆ → X(∆)
give bijections

{Omnioriented topological toric manifolds of dimension 2n}
� {Complete non-singular topological fans of dimension n}

and they are inverses to each other.

We also classify omnioriented topological toric manifolds up to equivariant dif-
feomorphism or equivariant homeomorphism in terms of the associated topological
fans (Corollary 8.2).

This paper is organized as follows. In Section 2 we study smooth representations
of (C∗)n. In Section 3 we deduce some properties of topological toric manifolds.
This tells us how to define topological fans. In Section 4 we construct a topological
space X(∆) with an action of (C∗)n from a complete non-singular topological fan
∆ = (Σ, β). We prove that X(∆) with the action of (C∗)n is actually a topological
toric manifold in Sections 5 and 6. In Section 7 we studyX(∆) as an (S1)n-manifold.
In particular, we prove that the (S1)n-equivariant homeomorphism type of X(∆)
does not depend on the first component of the β (Theorem 7.2). Our main theorem
is proved in Section 8. A topological toric manifold with the restricted action of the
compact torus is a torus manifold. So one can apply results on torus manifolds to
topological toric manifolds. Using a result from [11], we describe the cohomology
ring of a topological toric manifoldX in terms of the associated topological fan ∆(X)
(Proposition 8.3). We also describe the total Pontrjagin class of X. In Section 9
we show that the Barnette sphere, which is a non-polytopal simplicial 3-sphere,
can be the underlying simplicial complex of a topological toric manifold but cannot
be that of a toric manifold. We discuss the relation of topological toric manifolds
with quasitoric manifolds in Section 10 and with torus manifolds in Section 11. In
Section 12, we introduce real topological toric manifolds and discuss their relation
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with small covers introduced by Davis-Januszkiewicz [5] as a real version of quasitoric
manifolds. Finally, we collect a few facts on the underlying simplicial complexes of
(topological) toric manifolds in the Appendix.

2. Smooth representations of (C∗)n

In this section we study smooth representations of (C∗)n and set up some notations
needed later. We begin with the case where n = 1. As is easily checked, any smooth
group endomorphism of C∗ is of the form

g → |g|b+
√
−1c

( g
|g|

)v
=: gµ with µ = (b+

√
−1c, v) ∈ C× Z.

Since GL(1,C) = C∗, a smooth group endomorphism of C∗ can be regarded as
a complex one-dimensional smooth representation of C∗. This representation is
algebraic if and only if b = v and c = 0. We set µ̄ := (b−

√
−1c,−v). Then gµ = gµ̄.

Lemma 2.1. (1) If b > 0, then the endomorphism g → gµ extends continuously
at g = 0. If v = ±1 in addition to b > 0, then the extended map is a
homeomorphism.

(2) ḡµ = gµ for any g ∈ C∗ if and only if c = 0.
(3) gµ = gpḡq for some integers p, q if and only if b is an integer congruent to v

modulo 2 and c = 0. In fact, gµ = g(b+v)/2ḡ(b−v)/2 in this case.
(4) A complex one-dimensional smooth representation g → gµ′

is isomorphic to
the representation g → gµ as real representations if and only if µ′ = µ or µ̄.

Proof. Statements (1), (2) and (3) are obvious. As for (4), if µ′ = µ̄, then the
complex conjugation map gives an isomorphism between those two representations,
proving the “if” part. Suppose that the two representations in (4) are isomorphic as
real representations. Then the traces of those representations as real representations
must be same, which means that the real part of gµ′

agrees with that of gµ for any
g ∈ C∗. This implies µ′ = µ or µ̄, proving the “only if” part. �

For µi = (bi +
√
−1ci, vi) (i = 1, 2) we have

(gµ1)µ2 =
(
|g|b1+

√
−1c1(g/|g|)v1

)µ2

= (|g|b1)b2+
√
−1c2

(
|g|

√
−1c1(g/|g|)v1

)v2

= |g|b1b2+
√
−1(b1c2+c1v2)(g/|g|)v1v2 ,

so if we define

(2.1) µ2µ1 := (b1b2 +
√
−1(b1c2 + c1v2), v1v2),

then we have

(2.2) (gµ1)µ2 = gµ2µ1 .

It is better to regard µ = (b+
√
−1c, v) as a 2× 2 matrix

(2.3)

[
b 0
c v

]
.
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Then (2.1) is nothing but the identity[
b2 0
c2 v2

] [
b1 0
c1 v1

]
=

[
b2b1 0

c2b1 + v2c1 v2v1

]
.

Let R be a ring consisting of 2 × 2 matrices of the form (2.3) with b, c ∈ R and
v ∈ Z. The identity matrix 1 (resp. zero matrix 0) of size 2 is the identity (resp.
zero) element of the ring R. The set Hom(C∗,C∗) of smooth endomorphisms of
C∗ forms a ring where the addition of ρ1, ρ2 ∈ Hom(C∗,C∗) is the endomorphism
g → ρ1(g)ρ2(g) and the multiplication of them is their composition. The observation
above shows that Hom(C∗,C∗) is isomorphic to R as rings.

For α = (α1, . . . , αn) ∈ Rn and β = (β1, . . . , βn) ∈ Rn, we define smooth homo-
morphisms χα ∈ Hom((C∗)n,C∗) and λβ ∈ Hom(C∗, (C∗)n) by

(2.4) χα(g1, . . . , gn) :=
n∏

k=1

gαk

k , λβ(g) := (gβ1

, . . . , gβn

).

We also define

(2.5) ⟨α, β⟩ :=
n∑

k=1

αkβk ∈ R.

Lemma 2.2. (1) (g1, . . . , gn) ∈ (C∗)n is the identity element if and only if
χα(g1, . . . , gn) = 1 for any α ∈ Rn.

(2) χα(λβ(g)) = g⟨α,β⟩.

(3) λβ(χα(g1, . . . , gn)) = (
n∏

k=1

gβ1αk

k , . . . ,

n∏
k=1

gβnαk

k ).

Proof. (1) The “only if” part is trivial. If α has 1 at the i-th entry and 0 at the
other entries, then χα(g1, . . . , gn) = gi. This implies the “if” part.

Statements (2) and (3) easily follow from (2.2), (2.4) and (2.5). �
For {αi}ni=1 and {βi}ni=1 with αi, βi ∈ Rn, we define group endomorphisms

⊕n
i=1 χ

αi

and
∏n

i=1 λβi
of (C∗)n by

(
n⊕

i=1

χαi)(g1, . . . , gn) := (χα1(g1, . . . , gn), . . . , χαn(g1, . . . , gn))

(
n∏

i=1

λβi
)(g1, . . . , gn) :=

n∏
i=1

λβi
(gi).

(2.6)

With this understood, we have

Lemma 2.3. If {αi}ni=1 is dual to {βi}ni=1, i.e. ⟨αi, βj⟩ = δij1 where δij denotes the
Kronecker delta, then the composition( n∏

i=1

λβi

)( n⊕
i=1

χαi
)
: (C∗)n → (C∗)n

is the identity, in particular, both
⊕n

i=1 χ
αi and

∏n
i=1 λβi

are automorphisms of
(C∗)n.
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Proof. It follows from (2.6) and Lemma 2.2 (2) that if we write αi = (α1
i , . . . , α

n
i )

and βi = (β1
i , . . . , β

n
i ), then( n∏

i=1

λβi

)( n⊕
i=1

χαi
)
(g1, . . . , gn)

=(
n∏

i=1

λβi
)
(
χα1(g1, . . . , gn), . . . , χαn(g1, . . . , gn)

)
=

n∏
i=1

λβi

(
χαi(g1, . . . , gn)

)
=

n∏
i=1

( n∏
k=1

g
β1

i αk
i

k , . . . ,
n∏

k=1

g
βn

i αk
i

k

)
=

( n∏
k=1

g
∑n

i=1 β1
i αk

i
k , . . . ,

n∏
k=1

g
∑n

i=1 βn
i αk

i
k

)
.

(2.7)

On the other hand, the assumption that ⟨αi, βj⟩ = δij1 is equivalent to the following
identity

(2.8)


α1

1 α2
1 . . . αn

1

α1
2 α2

2 . . . αn
2

...
...

. . .
...

α1
n α2

n . . . αn
n



β1

1 β1
2 . . . β1

n

β2
1 β2

2 . . . β2
n

...
...

. . .
...

βn
1 βn

2 . . . βn
n

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Each entry in (2.8) is a matrix of size 2, so that the product at the left hand side of
(2.8) can be viewed as a product of matrices of size 2n with entries in R or Z. Since
the product is the identity matrix, we may interchange the two matrices at the left
hand side of (2.8). Then the resulting identity shows that

∑n
i=1 β

j
iα

k
i = δjk1 and this

means that the last term in (2.7) reduces to (g1, . . . , gn), proving the lemma. �

Through the identification of R with C × Z, we identify Rn with Cn × Zn and
write βi ∈ Rn as (bi +

√
−1ci, vi) ∈ Cn × Zn. With this understood, we have

Lemma 2.4. If {bi}ni=1 and {vi}ni=1 are bases of Rn and Zn respectively, then {βi}ni=1

has a dual set {αi}ni=1, i.e. ⟨αi, βj⟩ = δij1 for any i, j.

Proof. Write βi = (β1
i , . . . , β

n
i ) as before and βk

i = (bki +
√
−1cki , v

k
i ). Setting

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

 , C =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

 , V =


v1

1 v1
2 . . . v1

n

v2
1 v2

2 . . . v2
n

...
...

. . .
...

vn
1 vn

2 . . . vn
n

 ,
we see that the second matrix at the left hand side of (2.8) is conjugate to this

block matrix

[
B 0
C V

]
by a permutation matrix P . The assumption in the lemma

implies that B ∈ GL(n,R) and V ∈ GL(n,Z). Therefore the above block matrix

has an inverse

[
B−1 0

−V −1CB−1 V −1

]
. Conjugating this matrix by P−1, we obtain
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the first matrix at the left hand side in (2.8), proving the existence of the dual set
{αi}ni=1. �

Consider a complex n-dimensional smooth representation of (C∗)n of the form⊕n
i=1 χ

αi with αi ∈ Rn. This representation is algebraic if and only if every factor
χαi is algebraic, so complex n-dimensional algebraic representations of (C∗)n are
parameterized by (Zn)n while complex n-dimensional smooth ones are parameterized
by (Rn)n = (Cn × Zn)n.

Throughout this paper we will denote the representation space of a representation
ρ by V (ρ). The following lemma would be obvious.

Lemma 2.5. (1) A smooth complex n-dimensional representation
⊕n

i=1 χ
αi of

(C∗)n is faithful if and only if the matrix in (2.8) formed from αi’s has an
inverse with entries in R.

(2) If
⊕n

i=1 χ
αi is faithful, then the representation space

⊕n
i=1 V (χαi) has an open

dense orbit and has only finitely many orbits. In fact, the open dense orbit is
unique and isomorphic to (C∗)n and the other orbits have real codimension
at least two.

Suppose that
⊕n

i=1 χ
αi is faithful. Then the representation space

⊕n
i=1 V (χαi)

has an open dense orbit isomorphic to (C∗)n as mentioned above. Since (C∗)n has a
canonical orientation,

⊕n
i=1 V (χαi) has an orientation induced from the open dense

orbit. On the other hand,
⊕n

i=1 V (χαi) has an orientation induced as the complex
vector space. These two orientations agree when the representation is algebraic.
But otherwise, they may disagree. For instance, if n = 1 and our representation of
C∗ is given by the complex conjugation g → ḡ, then those two orientations disagree.
The following lemma would be easy to see.

Lemma 2.6. Suppose that
⊕n

i=1 χ
αi is faithful and let {βi}ni=1 be dual to {αi}ni=1.

Then the two orientations on
⊕n

i=1 V (χαi) mentioned above agree if and only if the
determinant of the matrix in (2.8) formed from the αi’s or βi’s (viewed as a matrix
of size 2n) is positive.

We conclude this section with the classification of faithful complex n-dimensional
representation spaces of (C∗)n up to equivariant diffeomorphism or homeomorphism.

Lemma 2.7. Let
⊕n

i=1 V (χαi) and
⊕n

i=1 V (χα′
i) be complex n-dimensional faithful

representation spaces of (C∗)n. Let βi’s (resp. β′
i’s) be dual to αi’s (resp. α′

i’s).

(1) The above representation spaces are equivariantly diffeomorphic if and only
if there is a permutation σ on [n] = {1, 2, . . . , n} such that β′

σ(i) = βi or βiµ0

for any i where µ0 =

[
1 0
0 −1

]
.

(2) The above representation spaces are equivariantly homeomorphic if and only
if there is a permutation σ on [n] and some µi in

S :=

{[
b 0
c v

]
∈ R | b > 0, v = ±1

}
such that β′

σ(i) = βiµi for any i.



TOPOLOGICAL TORIC MANIFOLDS 9

Proof. The “if” part in (1) is obvious. Suppose that there is an equivariant dif-
feomorphism f :

⊕n
i=1 V (χαi) →

⊕n
i=1 V (χα′

i). Since the origin is the unique fixed
point in these representation spaces and their tangential representation space at the
origins are themselves, the differential df0 of f at the origin induces an isomorphism
between

⊕n
i=1 χ

αi and
⊕n

i=1 χ
α′

i as real representations. Since the representation⊕n
i=1 χ

αi (resp.
⊕n

i=1 χ
α′

i) is faithful, the factors χαi (resp. χα′
i) are mutually non-

isomorphic as real representations. Therefore, df0 maps V (χαi) to some factor of⊕
i=1 V (χα′

i) isomorphically as real representation spaces, so there is a permutation
σ on [n] such that αi = α′

σ(i) or ᾱ′
σ(i) by Lemma 2.1 (4). This implies the “only if”

part in (1) because ᾱ′
σ(i) = µ0α

′
σ(i) and the βi’s (resp. β′

i’s) are dual to the αi’s (resp.

α′
i’s).
The proof of statement (2) is as follows. We shall prove the “if” part first. We

may assume that σ is the identity without loss of generality. Since µi is in S, so is
µ−1

i and the map

(z1, . . . , zn)→ (z
µ−1

1
1 , . . . , zµ−1

n
n )

is a homeomorphism of Cn by Lemma 2.1 (1) and it easily follows from (2.2) that it
gives an equivariant homeomorphism from

⊕n
i=1 V (χαi) to

⊕n
i=1 V (χα′

i) with α′
i =

µ−1
i αi for any i. This implies the “if” part because the βi’s (resp. β′

i’s) are dual to
the αi’s (resp. α′

i’s).
Conversely, suppose there is an equivariant homeomorphism f :

⊕n
i=1 V (χαi) →⊕n

i=1 V (χα′
i). The fixed point set in

⊕n
i=1 V (χαi) under the action of the C∗-

subgroup λβi
(C∗) is

⊕
j ̸=i V (χαj) =: Vi which is of complex codimension one. Note

that any C∗-subgroup of (C∗)n whose fixed point set in
⊕n

i=1 V (χαi) is of com-
plex dimension one is λβi

(C∗) for some i. Since the same is true for
⊕n

i=1 V (χα′
i)

and the map f above is equivariant homeomorphism, one concludes that there is a
permutation σ on [n] such that

f(Vi) = V ′
σ(i) and λβi

(C∗) = λβ′
σ(i)

(C∗) for each i,

where V ′
i is defined similarly to Vi. The latter identity above implies that there is

an element µi =

[
bi 0
ci vi

]
∈ R such that

β′
σ(i) = βiµi for each i.

Here vi = ±1 because λβ′
σ(i)

and λβi
are both injective. Moreover, bi > 0 because

for any generic point ι in
⊕n

i=1 V (χαi), limg→0 λβi
(g)(ι) (resp. limg→0 λβ′

σ(i)
(g)(f(ι)))

converges to a point in Vi (resp. V ′
σ(i)) and f(Vi) = V ′

σ(i). Hence, µi lies in S, proving

the “only if”part in statement (2). �

3. Topological toric manifold and topological fan

A toric variety of complex dimension n is a normal algebraic variety of complex
dimension n with an effective algebraic action of (C∗)n having an open dense orbit.
A toric variety has only finitely many orbits. A compact smooth toric variety is
called a toric manifold. It is known that a toric manifold is covered by finitely many
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invariant open subsets each equivariantly and algebraically isomorphic to a direct
sum of complex one-dimensional algebraic representation spaces of (C∗)n. Based on
this observation we define our topological analogue of a toric manifold as follows.

Definition. We say that a closed smooth manifold X of dimension 2n with an
effective smooth action of (C∗)n having an open dense orbit is a topological toric
manifold if it is covered by finitely many invariant open subsets each equivariantly
diffeomorphic to a direct sum of complex one-dimensional smooth representation
spaces of (C∗)n.

Remark. Since the action of (C∗)n on the topological toric manifold X is assumed
to be effective, the direct sum of complex one-dimensional smooth representation
spaces of (C∗)n in the definition above must be faithful. On the other hand, it
is not difficult to see that any faithful smooth real 2n-dimensional representation
of (C∗)n is isomorphic to a direct sum of complex one-dimensional representations
as real representations. Therefore, we may replace “a direct sum of complex one-
dimensional smooth representation spaces of (C∗)n” in the definition above by “a
smooth representation space of (C∗)n”.

Lemma 3.1. A topological toric manifold has only finitely many orbits and the real
codimension of an orbit different from the open dense orbit is at least two.

Proof. The effectiveness of the action of (C∗)n in X implies the faithfulness of the
complex n-dimensional representations in the definition of a topological toric mani-
fold above. Therefore the lemma follows from Lemma 2.5 (2). �

In particular, the fixed point set X(C∗)n
of a topological toric manifold X consists

of finitely many points. It follows from the definition of a topological toric manifold
that each fixed point p ∈ X(C∗)n

has an invariant open neighborhood, denoted Op,
which is equivariantly diffeomorphic to a faithful representation space of (C∗)n. Then
we have

X =
∪

p∈X(C∗)n

Op.

Proposition 3.2. A topological toric manifold is simply connected, in particular,
orientable.

Proof. The open dense orbit in a topological toric manifold X, denoted O, can be
identified with (C∗)n. Since it is connected, its closure, that is X, is also connected.

Any orbit inX except O has codimension at least two and the number of the orbits
is finite by Lemma 3.1. Therefore the homomorphism κ∗ : π1(O) → π1(X) induced
from the inclusion map κ : O → X is surjective. On the other hand, since κ factors
through the inclusion maps O → Op → X and Op is simply connected because it is
diffeomorphic to a representation space, κ∗ must be trivial. This proves that π1(X)
is trivial. �

In the algebraic category, i.e. in the case of toric manifolds, the existence of an
open dense orbit implies the existence of a fixed point. However, this is not always
the case in the smooth category as is shown in the following example.
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Example. Take a smooth vector field on S1 having only one zero point, say x.
Integrating the vector field produces a smooth action of R on S1 which has two orbits
{x} and S1\{x}. We regard the action of R as an action of R>0 through a logarithmic
function R>0 → R. On the other hand, we take another S1 with a natural free S1-
action. Their product S1 × S1 supports a smooth action of R>0 × S1 = C∗. This
action of C∗ on S1 × S1 has no fixed point while it has two orbits, {x} × S1 and
(S1\{x})× S1, and the latter orbit is open and dense in S1 × S1.

We say that a closed connected smooth submanifold of a topological toric manifold
X of real codimension two is characteristic if it is fixed pointwise under some C∗-
subgroup of (C∗)n. There are only finitely many characteristic submanifolds, which
we denote by X1, . . . , Xm. We define

Σ(X) := {I ⊂ [m] | XI :=
∩
i∈I

Xi ̸= ∅} ∪ {∅}.

This is an abstract simplicial complex of dimension n− 1 and pure, i.e. any simplex
in Σ(X) is contained in some simplex of maximal dimension n− 1. We will denote
by Σ(k)(X) the subset of Σ(X) consisting of all (k−1)-simplices in Σ(X). Note that
Σ(1)(X) can be identified with [m].

Since X is locally equivariantly diffeomorphic to a direct sum of complex one-
dimensional smooth representation spaces of (C∗)n, the Xi’s intersect transversally
so that XI is a closed smooth submanifold of dimension 2(n− |I|) for I ∈ Σ(X), in
particular, XI is of dimension 0 when I ∈ Σ(n)(X) and

(3.1) X(C∗)n

=
∪

I∈Σ(n)(X)

XI .

We will see in Lemma 3.6 below thatXI is connected for any I ∈ Σ(X), in particular,
XI is one point when I ∈ Σ(n)(X).

Since Xi is fixed pointwise under some C∗-subgroup of (C∗)n, the normal bun-
dle νi of Xi to X is orientable, so that each Xi is orientable because so is X by
Proposition 3.2.

Convention. Since a topological toric manifold X of dimension 2n has an open
dense orbit which can be identified with (C∗)n and (C∗)n has a canonical orientation,
we give X the orientation induced from the orientation of (C∗)n throughout this
paper unless otherwise stated.

A choice of an orientation on each Xi together with the orientation on X is called
an omniorientation on X. An omniorientation on X determines a compatible ori-
entation on the normal bundle νi. Let Ci be the C∗-subgroup of (C∗)n which fixes
Xi pointwise. It acts on the normal bundle νi effectively through the differential
and preserves each fiber. As is easily checked, a real two-dimensional faithful rep-
resentation space V of C∗ has exactly two complex structures invariant under the
circle subgroup S1 of C∗ and they have different orientations. The action of g ∈ S1

on V with the complex structures is scalar multiplication by g or g−1 according to
the complex structures. Moreover, the action of C∗ on V preserves the complex
structure (but the action of g ∈ C∗ on V is not necessarily scalar multiplication by g
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or g−1, see Section 2). Applying this fact to each fiber of νi, one sees that νi admits
a unique complex structure which is invariant under the circle subgroup of Ci and
whose induced orientation is compactible with the omniorientation. Moreover, the
action of Ci on νi preserves the complex structure on νi. With this understood, we
have

Lemma 3.3. For each i ∈ [m] = Σ(1)(X), there is a unique βi(X) ∈ Rn such that

(3.2) λβi(X)(C∗) fixes Xi pointwise and λβi(X)(g)∗ξ = gξ for any g ∈ C∗, ξ ∈ νi,

where λβi(X)(g)∗ denotes the differential of λβi(X)(g) and the right hand side denotes
scalar multiplication by g.

Proof. Choose any group isomorphism γi : C∗ → Ci(⊂ (C∗)n). Then, for each fiber
νi|x of νi over x ∈ Xi, one has

λγi
(g)∗ξ = ρx

i (g)ξ for any g ∈ C∗, ξ ∈ νi|x
with some automorphism ρx

i of C∗. However, ρx
i is locally constant on x because X

is covered by representation spaces of (C∗)n.　 Since Xi is connected, it follows that
ρx

i is actually independent of x ∈ Xi; so we may denote ρx
i by ρi. Then, γi ◦ ρ−1

i will
be the desired βi(X). The uniqueness of βi(X) would be obvious. �

Note that if we reverse the orientation on Xi, then the orientation on νi will be
reversed and hence the complex structure on νi will become complex conjugate to
the original one.

If a fixed point p is in XI for I ∈ Σ(n), then

(3.3) τpX =
⊕
i∈I

νi|p as real (C∗)n-representation spaces

where τpX denotes the tangential representation space of X at p. Since X is ori-
ented by our convention, the left hand side of (3.3) has the orientation while the
omniorientation on X determines an orientation at the right hand side of (3.3), and
these two orientations may not agree. For instance, if we reverse the orientation on
only one Xi for i ∈ I, then the orientation at the right hand side of (3.3) will be
reversed while that at the left hand side of (3.3) will remain unchanged.

We shall write βi(X) in Lemma 3.3 as

βi(X) = (bi(X) +
√
−1ci(X), vi(X)) ∈ Rn = Cn × Zn.

Lemma 3.4. Suppose that X is omnioriented and let I ∈ Σ(n)(X). Then {bi(X)}i∈I

and {vi(X)}i∈I are bases of Rnand Zn respectively. Therefore, {βi(X)}i∈I has a
dual set, denoted {αI

i (X)}i∈I , and then the right hand side of (3.3) is isomorphic

to
⊕

i∈I V (χαI
i (X)) as complex representations. In particular, the invariant open

neighborhood Op of p is equivariantly diffeomorphic to
⊕

i∈I V (χαI
i (X)) and Op∩Xi ̸=

∅ if and only if i ∈ I.

Proof. Since the action of (C∗)n on X is effective, the endomorphism
∏

i∈I λβi(X) of
(C∗)n is injective and hence an automorphism. This implies the former statement
in the lemma. The latter one follows from (3.2) and Lemma 2.2 (2). �
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For I ∈ Σ(X) we denote by ∠bI(X) the cone spanned by bi(X)’s for i ∈ I. The
dimension of ∠bI(X) is equal to the cardinality of I by Lemma 3.4.

Lemma 3.5. Let ι be a point in the open dense orbit O of X. Let I ∈ Σ(n)(X) and
p ∈ XI . Then the following hold.

(1) If b ∈ ∠bI(X), then one can write b =
∑

i∈I ribi(X) with ri ≥ 0. In this
case limg→0 λ(b,0)(g)(ι) exists in Op ∩ XK where K = {i ∈ I | ri > 0}. In
particular, if b lies in the interior of ∠bI(X), then limg→0 λ(b,0)(g)(ι) = p.

(2) If b /∈ ∠bI(X), then the sequence λ(b,0)(gℓ)(ι) does not converge in Op for any
sequence gℓ (ℓ = 1, 2, . . . ) in C∗ approaching 0.

Proof. By Lemma 3.4 we may identify Op with
⊕

i∈I V (χαI
i (X)) where p corresponds

to the origin in the representation space. Since ι can be taken to be any point
in the open dense orbit, we may assume ι = (1, . . . , 1) through the identification.
Therefore,

λ(b,0)(g)(ι) = (χαI
i (X)(λ(b,0)(g)))i∈I

= (g⟨α
I
i (X),(b,0)⟩)i∈I in Op =

⊕
i∈I

V (χαI
i (X))(3.4)

and the absolute value of the i-component above is given by

(3.5) |χαI
i (X)(λ(b,0)(g))| = |g⟨α

I
i (X),(b,0)⟩| = |g|⟨ai,b⟩ for g ∈ C∗

where ai ∈ Rn denotes the real part of the first factor of αI
i (X) ∈ Rn = Cn × Zn.

(1) If b ∈ ∠bI(X), then ⟨ai, b⟩ = ri ≥ 0 for any i ∈ I. Hence ⟨ai, b⟩ > 0 for i ∈ K
and ⟨ai, b⟩ = 0 for i ∈ I\K. This together with (3.4) and (3.5) implies statement
(1) in the lemma.

(2) If b /∈ ∠bI(X), then there is an i ∈ I such that ⟨ai, b⟩ ≤ 0. Then a sequence

|χαI
i (X)(λ(b,0)(gℓ))| = |gℓ|⟨ai,b⟩ (ℓ = 1, 2, . . . ) does not converge for any sequence gℓ

(ℓ = 1, 2, . . . ) approaching 0. This together with (3.4) and (3.5) implies statement
(2) in the lemma. �

Lemma 3.6. XI is one point for any I ∈ Σ(n)(X), more generally, XI is connected
for any I ∈ Σ(X).

Proof. We treat the case when |I| = n first. Let p be any point in XI and let b be
any vector in the interior of ∠bI(X). Then limg→0 λ(b,0)(g)(ι) = p by Lemma 3.5
(1), where the left hand side is independent of the choice of p. This shows that XI

is one point.
A similar idea works for the general case. By definition, X is covered by Op’s

(p ∈ X(C∗)n
) and each Op is equivariantly diffeomorphic to a direct sum of complex

one-dimensional smooth representation spaces of (C∗)n, say Vp. Therefore XI ∩
Op is equivariantly diffeomorphic to an invariant linear subspace of Vp (unless the
intersection is empty) and hence each connected component of XI must have a fixed
point.

Let F be any connected component ofXI and let p be a fixed point in F . Then p =
XĨ for some Ĩ ∈ Σ(n)(X) with I ⊂ Ĩ. Let b be an element in the interior of ∠bI(X).
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Then Lemma 3.5 (1) applied with Ĩ as I and I as K says that limg→0 λ(b,0)(g)(ι) =: x
exists in Op∩XI , in fact, in Op∩F because Op∩XI is connected and p ∈ F . Therefore
x ∈ F . However the limit point x is independent of the choice of the fixed point p
and hence x is contained in every connected component of XI . This means that XI

is connected. �
Lemma 3.7.

∪
I∈Σ(X) ∠bI(X) = Rn and ∠bI(X) ∩ ∠bJ(X) = ∠bI∩J(X) for any

I, J ∈ Σ(X).

Proof. Suppose
∪

I∈Σ(X) ∠bI(X) ̸= Rn and let b ∈ Rn\
∪

I∈Σ(X) ∠bI(X). Since

b /∈ ∠bI(X) for any I ∈ Σ(n)(X) and X =
∪

p∈X(C∗)n Op, it follows from Lemma 3.5

(2) that λ(b,0)(gℓ)(ι) does not converge in X for any sequence gℓ in C∗ (ℓ = 1, 2, . . . )
approaching 0. This contradicts the compactness of X. Therefore the former state-
ment in the lemma is proven.

As for the latter statement in the lemma, it suffices to prove

(3.6) ∠bI(X) ∩ ∠bJ(X) ⊂ ∠bI∩J(X)

because the opposite inclusion is obvious. We shall prove (3.6) when I, J ∈ Σ(n)(X)
first. Suppose that (3.6) does not hold for those I and J . Then there is an element
b ∈ ∠bI(X) ∩ ∠bJ(X) which is not contained in ∠bI∩J(X). This means that when
we write b =

∑
i∈I ribi(X) with ri ≥ 0, then there is i ∈ I\J with ri > 0. Similarly,

when we write b =
∑

j∈J sjbj(X) with sj ≥ 0, then there is j ∈ J\I with sj > 0.

It follows from Lemma 3.5 (1) that limg→0 λ(b,0)(g)(ι) lies in Op ∩ Xi as well as in
Oq ∩Xj where p = XI and q = XJ . In particular Op ∩Xi ∩Xj ̸= ∅. However, since
j /∈ I, we have Op ∩Xj = ∅ by Lemma 3.4. This is a contradiction and hence (3.6)
holds for I, J ∈ Σ(n)(X).

Suppose that I, J ∈ Σ(X) may not be in Σ(n)(X). Then there are Ĩ , J̃ ∈ Σ(n)(X)
such that I ⊂ Ĩ and J ⊂ J̃ since Σ(X) is pure. Let b ∈ ∠bI(X) ∩ ∠bJ(X). Since
∠bI(X) ⊂ ∠bĨ(X), ∠bJ(X) ⊂ ∠bJ̃(X) and ∠bĨ(X)∩∠bJ̃(X) = ∠bĨ∩J̃(X) as proved
above, b sits in ∠bĨ∩J̃(X). Therefore

(3.7) b =
∑

k∈Ĩ∩J̃

rkbk(X) with rk ≥ 0.

Since b ∈ ∠bI ⊂ ∠bĨ and the expression of b as a linear combination of bi’s for i ∈ Ĩ
is unique, b must be a linear combination of bi’s for i ∈ I. On the other hand, we
have the expression (3.7) and Ĩ ∩ J̃ ⊂ Ĩ. It follows that {k ∈ Ĩ ∩ J̃ | rk ̸= 0} ⊂ I.
Similarly {k ∈ Ĩ ∩ J̃ | rk ̸= 0} ⊂ J . Therefore

{k ∈ Ĩ ∩ J̃ | rk ̸= 0} ⊂ I ∩ J.
This together with (3.7) shows that b ∈ ∠bI∩J(X), proving (3.6). �

Motivated by the observations above, we make the following definition.

Definition. Let Σ be an abstract finite simplicial complex of dimension n−1 (with
the empty set ∅ added) and let

β : Σ(1) →Rn = Cn × Zn
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where Σ(1) denotes the vertex set of Σ. We abbreviate an element {i} ∈ Σ(1) as i
and β({i}) as βi and express βi = (bi +

√
−1ci, vi) ∈ Cn × Zn. Then the pair (Σ, β)

is called a (simplicial) topological fan of dimension n if the following are satisfied.

(1) bi’s for i ∈ I are linearly independent whenever I ∈ Σ, and ∠bI∩∠bJ = ∠bI∩J

for any I, J ∈ Σ. (In short, the collection of cones ∠bI for all I ∈ Σ is an
ordinary simplicial fan although bi’s are not necessarily in Zn.)

(2) Each vi is primitive and vi’s for i ∈ I are linearly independent (over R)
whenever I ∈ Σ.

We say that a topological fan ∆ of dimension n is complete if
∪

I∈Σ ∠bI = Rn and
non-singular if the vi’s for i ∈ I form a part of a Z-basis of Zn whenever I ∈ Σ.

Remark. When bi = vi and ci = 0 for every i, ∆ can be thought of as an ordinary
simplicial fan. The notion of completeness and non-singularity above generalizes
that for an ordinary simplicial fan.

Definition. Let ∆ = (Σ, β) and ∆′ = (Σ′, β′) be topological fans.

(1) ∆ and ∆′ are equivalent, denoted [∆] = [∆′], if there is an isomorphism
σ : Σ→ Σ′ such that β′

σ(i) = βi for any i ∈ Σ(1).

(2) ∆ and ∆′ are D-equivalent, denoted [∆]D = [∆′]D, if there is an isomorphism
σ : Σ → Σ′ such that β′

σ(i) = βi or βiµ0 for any i ∈ Σ(1), where µ0 is the
element in Lemma 2.7.

(3) ∆ and ∆′ are H-equivalent, denoted [∆]H = [∆′]H , if there are an isomor-
phism σ : Σ→ Σ′ and µi ∈ S for each i ∈ Σ(1) such that β′

σ(i) = βiµi for any

i ∈ Σ(1), where S is the subset of R in Lemma 2.7.

Remark. One can form a collection of cones in Rn = Cn × Zn from a topological
fan. Then two topological fans ∆ and ∆′ are equivalent if and only if the collection
of cones derived from ∆ agrees with that from ∆′.

For a topological toric manifold X of dimension 2n, we associated the simplicial
complex Σ(X) of dimension n− 1 and deduced the map β(X) : Σ(1)(X)→ Rn. The
observations above show the following.

Lemma 3.8. ∆(X) := (Σ(X), β(X)) is a complete non-singular topological fan of
dimension n.

We gave X the orientation induced from the canonical orientation on the open
dense orbit. However, there is no canonical choice of orientations on the characteris-
tic submanifolds of X. We say that two omnioriented topological toric manifolds are
isomorphic if there is an equivariant diffeomorphism between them preserving the
omniorientations. An equivariant diffeomorphism or equivariant homeomorphism
between omnioriented topological toric manifolds preserves their characteristic sub-
manifolds but does not necessarily preserve the orientations on their characteristic
submanifolds. The following lemma follows from Lemma 2.7.

Lemma 3.9. If omnioriented topological toric manifolds X and Y are isomorphic
(resp. equivariantly diffeomorphic or equivariantly homeomorphic), then [∆(X)] =
[∆(Y )] (resp. [∆(X)]D = [∆(Y )]D or [∆(X)]H = [∆(Y )]H).
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4. Construction of a topological toric manifold X(∆)

In Section 3, we associated a complete non-singular topological fan ∆(X) to an
omnioriented topological toric manifold X. In this section and the subsequent two
sections, we will define a reverse correspondence, namely, we associate an omnior-
iented topological toric manifold X(∆) to a complete non-singular topological fan
∆.

In toric geometry, there are two ways to associate a toric manifold with a com-
plete non-singular fan: one is the gluing construction developed in [6], [7] or [12] and
the other is the quotient construction developed by Cox [4]. Although both con-
structions work in our setting, we adopt the quotient construction since the quotient
construction seems easier to understand.

Let ∆ = (Σ, β) be a complete non-singular topological fan of dimension n where
we take the vertex set Σ(1) as [m] = {1, 2, . . . ,m}. For I ⊂ [m], we set

(4.1) U(I) := {(z1, . . . , zm) ∈ Cm | zi ̸= 0 for ∀i /∈ I}.
Note that U(I) ∩ U(J) = U(I ∩ J) for any I, J ∈ [m] and U(I) ⊂ U(J) if and only
if I ⊂ J . We define

U(Σ) :=
∪
I∈Σ

U(I).

Remark. It is known (and easy to see) that U(Σ) is the complement of the union
of coordinate subspaces

Z :=
∪
J /∈Σ

{(z1, . . . , zm) ∈ Cm | zj = 0 for ∀j ∈ J},

that is, U(Σ) := Cm\Z.

Let
λ : (C∗)m → (C∗)n

be the homomorphism defined by

(4.2) λ(h1, . . . , hm) :=
m∏

k=1

λβk
(hk).

Lemma 4.1. λ is surjective and

(4.3) Kerλ = {(h1, . . . , hm) ∈ (C∗)m |
m∏

k=1

h
⟨α,βk⟩
k = 1 for any α ∈ Rn}.

Using {αI
i }i∈I for I ∈ Σ(n), which is dual to {βi}i∈I , we have

(4.4) Kerλ = {(h1, . . . , hm) ∈ (C∗)m | hi

∏
k/∈I

h
⟨αI

i ,βk⟩
k = 1 for any i ∈ I}.

Proof. It follows from Lemma 2.2 (1) that λ(h1, . . . , hm) =
∏m

k=1 λβk
(hk) is trivial if

and only if

χα
( m∏

k=1

λβk
(hk)

)
=

m∏
k=1

h
⟨α,βk⟩
k = 1 for any α ∈ Rn,



TOPOLOGICAL TORIC MANIFOLDS 17

proving (4.3). As for (4.4), since
⊕

i∈I χ
αI

i is an automorphism of (C∗)n by Lemma 2.3,
λ(h1, . . . , hm) =

∏m
k=1 λβk

(hk) is trivial if and only if

χαI
i
( m∏

k=1

λβk
(hk)

)
=

m∏
k=1

h
⟨αI

i ,βk⟩
k = hi

∏
k/∈I

h
⟨αI

i ,βk⟩
k = 1 for any i ∈ I,

proving (4.4). �

We define

X(∆) := U(Σ)/Kerλ =
∪
I∈Σ

U(I)/Kerλ.

Since the natural action of (C∗)m on Cm leaves the subset U(Σ) of Cm invariant,
it induces an effective action of (C∗)m/Kerλ on X(∆) having an open dense orbit
and only finitely many orbits. Since λ is surjective, (C∗)m/Kerλ can be identified
with (C∗)n via λ, so we think of X(∆) as a topological space with this action of
(C∗)n. In the next two sections, we will prove that X(∆) is actually a topological
toric manifold.

5. Local properties of X(∆)

For I ∈ Σ(n), we denote by CI the affine space Cn with coordinates indexed by
the elements in I and define a continuous map

φ̃I : U(I)→ CI

by

(5.1) φ̃I(z1, . . . , zm) := (
m∏

k=1

z
⟨αI

i ,βk⟩
k )i∈I = (zi

∏
k/∈I

z
⟨αI

i ,βk⟩
k )i∈I

where zk ̸= 0 for k /∈ I by the definition of U(I).

Claim 1. φ̃I is invariant under the action of Kerλ.

Proof. Let (h1, . . . , hm) ∈ Kerλ. Then it follows from (5.1) and (4.3) that

φ̃I(h1z1, . . . , hmzm) =
( m∏

k=1

(hkzk)
⟨αI

i ,βk⟩
)

i∈I
=

( m∏
k=1

h
⟨αI

i ,βk⟩
k

m∏
k=1

z
⟨αI

i ,βk⟩
k

)
i∈I

=
( m∏

k=1

z
⟨αI

i ,βk⟩
k

)
i∈I

= φ̃I(z1, . . . , zm),

proving the claim. �

By Claim 1 above, φ̃I induces a continuous map

φI : U(I)/Kerλ→ CI .

Claim 2. φI is a homeomorphism.
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Proof. By the definition of U(I), zk ̸= 0 for k /∈ I and zi for i ∈ I is an arbitrary
complex number, so φI is surjective.

The injectivity of φI is as follows. Suppose that

φ̃I(z1, . . . , zm) = φ̃I(ζ1, . . . , ζm)

for (z1, . . . , zm), (ζ1, . . . , ζm) ∈ U(I). Then it follows from (5.1) that

(5.2) zi

∏
k/∈I

z
⟨αI

i ,βk⟩
k = ζi

∏
k/∈I

ζ
⟨αI

i ,βk⟩
k

for each i ∈ I. We define an element (h1, . . . , hm) ∈ (C∗)m by

(5.3) hk := zk/ζk for k /∈ I and hi :=
∏
k/∈I

h
−⟨αI

i ,βk⟩
k for i ∈ I.

Then (h1, . . . , hm) ∈ Kerλ by (4.4) and (z1, . . . , zm) = (h1ζ1, . . . , hmζm) by (5.2) and
(5.3), proving the injectivity of φI .

Finally, if f̃I is a map sending (wi)i∈I ∈ CI to (z1, . . . , zm) ∈ U(I) where zi = wi

for i ∈ I and zk = 1 for k /∈ I, then the composition φ̃I ◦ f̃I is the identity on CI by
(5.1). Since f̃I is continuous, this shows that φ−1

I is also continuous.
This completes the proof of the claim. �

Remember thatX(∆) has an action of (C∗)n. We shall observe this action through
the local chart φI : U(I)/Kerλ → CI . We note that the underlying space of the

representation space V (
⊕

i∈I χ
αI

i ) can naturally be indentified with CI .

Lemma 5.1. The homeomorphism

φI : U(I)/Kerλ→ V (
⊕
i∈I

χαI
i )

is (C∗)n-equivariant.

Proof. To g ∈ (C∗)n we associate an element h = (h1, . . . , hm) ∈ (C∗)m defined by

hi =

{
χαI

i (g) for i ∈ I,
1 for i /∈ I.

Then

λ(h) =
m∏

i=1

λβi
(hi) =

∏
i∈I

λβi
(χαI

i (g)) = g

where the last identity follows from Lemma 2.3. Let z = (z1, . . . , zm) ∈ U(I) where

zi = 1 for i /∈ I. Then φI(z) = (zi)i∈I and φI(hz) = (hizi)i∈I = (χαI
i (g)zi)i∈I . This

shows that φI is (C∗)n-equivariant. �

Lemma 5.2. The transition functions of the local charts {(U(I)/Kerλ, φI)} for
X(∆) are smooth.



TOPOLOGICAL TORIC MANIFOLDS 19

Proof. Let J be another element of Σ(n) such that {vj | j ∈ J} is a Z-basis of Zn.

Since φJ ◦φ−1
I = φ̃J ◦f̃I , it follows from (5.1) that the j-component of φJ(φ−1

I (wi)i∈I)
for (wi)i∈I ∈ φI(U(I) ∩ U(J) ⊂ CI is given by

(5.4)
∏
i∈I

w
⟨αJ

j ,βi⟩
i

which is smooth since wi ̸= 0 for i ∈ I\J and ⟨αJ
j , βi⟩ = δji1 for i ∈ J . �

We express βi = (bi +
√
−1ci, vi) ∈ Cn × Zn = Rn as before.

Lemma 5.3. If ci = 0 for any i, then the transition function (5.4) is equivariant
with respect to the complex conjugation on Cn, so that the complex conjugation on
Cn induces an involution, called the conjugation, on X(∆) with n-dimensional fixed
point set.

Proof. Since ci = 0 for any i, the third component of ⟨αJ
j , βi⟩ in (5.4) is zero.

Therefore the lemma follows from Lemma 2.1 (2). �

Remark. The fixed point set of the conjugation on X(∆) in Lemma 5.3 has the
restricted action of (R∗)n which has an open dense orbit isomorphic to (R∗)n and the
number of orbits is finite. Such a manifold is called a real topological toric manifold
and discussed in Section 12.

If bi = vi and ci = 0 for any i, then X(∆) is a toric manifold and the transition
function in (5.4) is a Laurent monomial in wi’s. More generally, it follows from
Lemma 2.1 (3) that the transition function in (5.4) is a Laurent monomial in wi’s
and w̄i’s if bi is an integral vector congruent to vi modulo 2 and ci = 0 for any i.

Example. Here is an example of a topological toric manifold of dimension 4 which
is not a toric manifold. Let Σ be an abstract simplicial complex defined by

Σ := {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {4, 1}}.

Let e1, e2 denote the standard basis of R2 and define

β1 = (b1, v1) := (e1, e1), β2 = (b2, v2) := (e2, e2)

β3 = (b3, v3) := (−e1,−e1 − 2e2), β4 = (b4, v4) := (−e1 − e2,−e1 − e2)

where ci for 1 ≤ i ≤ 4 is understood to be 0. Note that ∆ = (Σ, β) is a complete
non-singular topological fan of dimension 2. Note also that (Σ, b) defines an ordinary
complete fan while the 2-dimensional cones obtained from (Σ, v) have an overlap and
defines a multi-fan, see figure 1. Note also that bi is an integral vector congruent to
vi modulo 2 and ci = 0 for any i, so that the transition functions in our case should
be Laurent monomials in w1, w2, w̄1 and w̄2. In fact, they are given explicitly below.
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v

v

v

v

b

b

b

b

Figure 1. vectors bi and vi

The dual set of {βj}j∈J for J ∈ Σ(2) is given as follows.

αJ
1 = (e1, e1), αJ

2 = (e2, e2) for J = {1, 2},
αJ

2 = (e2,−2e1 + e2), αJ
3 = (−e1,−e1) for J = {2, 3},

αJ
3 = (−e1 + e2, e1 − e2), αJ

4 = (−e2,−2e1 + e2) for J = {3, 4},
αJ

4 = (−e2,−e2), αJ
1 = (e1 − e2, e1 − e2) for J = {4, 1}.

Therefore, it follows from (5.4) that X(∆) is obtained by gluing four copies of C2

corresponding to elements in Σ(2) as follows:

C2 = C{3,2} (w−1
1 , w−1

1 w̄1w2) ←−−− (w1, w2) C{1,2} = C2

f1

y y
C2 = C{3,4} (w̄−1

1 w̄2, w̄1w
−1
1 w̄−1

2 )
f2←−−− (w1w

−1
2 , w−1

2 ) C{1,4} = C2

where f1(u1, u2) = (u1ū2, ū
−1
2 ), f2(v1, v2) = (v̄−1

1 , v̄1v
−1
1 v2) and the horizontal maps

above glue C2 along C∗ × C while the vertical ones glue C2 along C× C∗.
One can check that X(∆) is a closed smooth manifold (this is true for an arbi-

trary complete non-singular topological fan ∆ as is seen in the next section). It is
simply connected by Proposition 3.2, of dimension 4 and admits a smooth effective
action of (S1)2. One can also check that our X(∆) has the same cohomology ring as
CP 2#CP 2 using Proposition 8.3 in Section 8. Therefore it follows from the classifi-
cation result on closed smooth 4-manifolds with effective smooth action of (S1)2 (see
[13]) that our X(∆) is diffeomorphic to CP 2#CP 2. As is well-known, CP 2#CP 2

is not (the underlying manifold of) a toric manifold, in fact, it does not admits an
almost complex structure.

6. Global properties of X(∆)

In this seciton, we establish that X(∆) is a topological toric manifold and study
the tangent bundle of X(∆).

Lemma 6.1. X(∆) is Hausdorff.

Proof. Let [x] and [y] be points in X(∆) represented by x, y ∈ U(Σ). If [x] and [y]
are contained in a same local chart, they can be separated by open neighborhoods
since the chart is homeomorphic to Cn. Suppose x is contained in U(I) \ U(J) and
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y is contained in U(J) \ U(I). Since dim ∠bI ∩ ∠bJ ≤ n − 1, there is an element
a ∈ Rn such that

H+ := {b ∈ Rn | ⟨a, b⟩ ≥ 0} ⊃ ∠bI , H− := {b ∈ Rn | ⟨a, b⟩ ≤ 0} ⊃ ∠bJ ,
and H+ ∩ ∠bJ = H− ∩ ∠bI = ∠bI ∩ ∠bJ .

We define f1 : U(I)→ R≥0 and f2 : U(J)→ R≥0 by

f1(z1, . . . , zm) :=
m∏

k=1

|zk|⟨a,bk⟩ and f2(z1, . . . , zm) :=
m∏

k=1

|zk|−⟨a,bk⟩.

Both functions are well-defined (because ⟨a, bi⟩ ≥ 0 for i ∈ I and −⟨a, bj⟩ ≥ 0 for
j ∈ J) and invariant under the action of Kerλ by (4.3). Moreover f1 = f−1

2 on
U(I) ∩ U(J). Therefore, f1 and f2 define a continuous function

f1 ∪ f−1
2 : (U(I) ∪ U(J))/Kerλ→ [0,∞].

Since x = (x1, . . . , xm) is contained in U(I)\U(J), xi = 0 for some i ∈ I \ J by
(4.1) while ⟨a, bi⟩ is positive for any i ∈ I \J by the choice of a. Thus f1(x) = 0 and
hence (f1 ∪ f−1

2 )([x]) = 0. Similarly, since f2(y) = 0, we have (f1 ∪ f−1
2 )([y]) = ∞.

Therefore X(∆) is Hausdorff. �

Lemma 6.2. X(∆) is compact.

Proof. We shall show that X(∆) is covered by finitely many compact subsets. By
the definition of X(∆), (C∗)n is naturally embedded as the open dense orbit. The
embedding (C∗)n ↪→ X(∆) is given by

(6.1) (C∗)n ∋ g χI−→ (χαI
i (g))i∈I ∈ V (

⊕
i∈I

χαI
i )

φ−1
I−→ U(I)/Kerλ ⊂ X(∆),

where I ∈ Σ(n) and the embedding does not depend on the choice of I as is shown
in the proof of Lemma 5.1. We consider a subset

(6.2) CI := {g ∈ (C∗)n | |χαI
i (g)| =

n∏
k=1

|gk|a
Ik
i ≤ 1 for all i ∈ I},

where g = (g1, . . . , gn) and aI
i = (aI1

i , . . . , a
In
i ) ∈ Rn is the real part of the first

component of αI
i ∈ Rn = Cn × Zn. We also consider a surjective homomorphism

(6.3) − log | | : g = (g1, . . . , gn)→ − log |g| = (− log |g1|, . . . ,− log |gn|)

from (C∗)n to Rn. It follows from (6.2) and (6.3) that ⟨aI
i ,− log |g|⟩ ≥ 0 if and only

if g ∈ CI . Hence

(6.4) CI = (− log | |)−1(∠bI).
Since ∆ is complete, this shows that

(6.5) (C∗)n =
∪

I∈Σ(n)

CI and hence X(∆) =
∪

I∈Σ(n)

φ−1
I (χI(CI))
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where φ−1
I ◦χI is the embedding of (C∗)n intoX(∆) in (6.1). The closure φ−1

I (χI(CI))
is a compact subset of U(I)/ kerλ, that is homeomorphic to the polydisk {(wi)i∈I ∈
CI | |wi| ≤ 1 for ∀i ∈ I} via φI by (6.2). Hence X(∆) is compact. �
Corollary 6.3. X(∆) with the local charts {(U(I)/Kerλ, φI)} is a topological toric
manifold.

Proof. By Lemmas 6.1 and 6.2X(∆) is Hausdorff and compact and then Lemmas 5.1
and 5.2 show that X(∆) is a topological toric manifold. �

The topological toric manifold X(∆) associated with a topological fan ∆ = (Σ, β)
has a canonical omniorientation. In fact, the image of

U(Σ)i := U(Σ) ∩ {(z1, . . . , zm) ∈ Cm | zi = 0}
by the quotient map U(Σ) → U(Σ)/Kerλ = X(∆) is a characteristic submanifold
X(∆)i of X(∆) and the canonical normal orientation of U(Σ)i to U(Σ) induced
from the i-th factor of Cm defines a normal orientation of X(∆)i to X(∆) through
the projection map. This together with the orientation on X(∆) (induced from the
orientation on the open dense orbit) determines an orientation on X(∆)i, thus an
omniorientation on X(∆) is assigned.

Note that the identity (3.2) holds for βi := β(i) with respect to this omniorienta-
tion on X(∆). It is also clear that the simplicial complex Σ(X(∆)) associated with
X(∆) is the given Σ. For later use we will record this fact as a lemma.

Lemma 6.4. The topological fan associated with the omnioriented topological toric
manifold X(∆) is the given topological fan ∆.

Let πi : (C∗)m → C∗ be the projection onto the i-th factor of (C∗)m and denote
by V (πi) the complex one-dimensional representation space of πi. We consider the
diagonal action of (C∗)m on U(Σ)× V (πi), i.e.

(g1, . . . , gm)((z1, . . . , zm), w) = ((g1z1, . . . , gmzm), giw)

for (g1, . . . , gm) ∈ (C∗)m, (z1, . . . , zm) ∈ U(Σ), w ∈ V (πi)

and take the quotient by Kerλ. Since the action of Kerλ on U(Σ) is free and
the quotient by Kerλ has the residual action of (C∗)m/Kerλ = (C∗)n, the first
projection

(U(Σ)× V (πi))/Kerλ→ U(Σ)/Kerλ = X(∆)

defines a complex (C∗)n-line bundle over X(∆), which we denote by Li. On the
other hand, since X(∆) has the smooth action of (C∗)n, the tangent bundle τX(∆)
of X(∆) is a (C∗)n-vector bundle.

Theorem 6.5. There is a canonical short exact sequence of (C∗)n-vector bundles

0→ Cm−n →
m⊕

i=1

Li → τX(∆)→ 0

where Cm−n denotes the product bundle over X(∆) with fiber Cm−n on which the
action of (C∗)n is trivial.
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Proof. The differential of the quotient map q : U(Σ)→ U(Σ)/Kerλ = X(∆) induces
a surjective bundle homomorphism

dq : τU(Σ) = U(Σ)× Cm → τX(∆).

The kernel of dq is the tangent bundle along the fibers of the fiber bundle q : U(Σ)→
X(∆) and can be identified with the trivial bundle U(Σ)×Lie(Kerλ) where Lie(Kerλ)
is the Lie algebra of Kerλ. Therefore we have a short exact sequence of vector bun-
dles

(6.6) 0→ U(Σ)× Lie(Kerλ)
ρ−→ τU(Σ) = U(Σ)× Cm dq−→ τX(∆)→ 0

where the monomorphism ρ above is defined by ρ(z, η) = (z, ηz) where ηz denotes
the fundamental vector field at z associated with η ∈ Lie(Kerλ). In fact, the short
exact sequence (6.6) is equivariant with respect to the natural actions of (C∗)m

where the action of (C∗)m on Lie(Kerλ) is trivial, that on Cm is the coordinatewise
multiplication and that on τX(∆) descends to the action of (C∗)m/Kerλ = (C∗)n.
Taking quotients by Kerλ, (6.6) reduces to a short exact sequence of (C∗)n-vector
bundles

(6.7) 0→ X(∆)× Lie(Kerλ)→ (U(Σ)× Cm)/Kerλ→ τX(∆)→ 0.

Here X(∆)×Lie(Kerλ) = Cm−n and (U(Σ)×Cm)/Kerλ =
⊕m

i=1 Li, so (6.7) implies
the theorem. �

7. X(∆) as an (S1)n-manifold

In this section we study the topology of X(∆) as an (S1)n-manifold. Since X(∆)
is locally equivariantly diffeomorphic to sum of complex one-dimensional represen-
tation spaces, the orbit space X(∆)/(S1)n is a manifold with corners, so that faces
of X(∆)/(S1)n can naturally be defined. We think of X(∆)/(S1)n itself as a face of
X(∆)/(S1)n.

Lemma 7.1. All faces of X(∆)/(S1)n are contractible and the face poset of X(∆)/(S1)n

coincides with the inverse poset of Σ.

Proof. We shall give X(∆)/(S1)n a cubical decomposition using the decomposition

X(∆)/(S1)n =
∪

I∈Σ(n)

φ−1
I (χI(CI))/(S

1)n

induced from the decomposition (6.5). For I ∈ Σ(n), we define a map

ψI : φ−1
I (χI(CI))/(S

1)n → [0, 1]m

as follows. For a point p in φ−1
I (χI(CI)) we denote its image in the quotient

φ−1
I (χI(CI))/(S

1)n by [p]. Then the k-th coordinate of ψI([p]) is defined to be{
|φI(p)k| if k ∈ I,
1 if k /∈ I.

Claim. ψI = ψJ on φ−1
I (χI(CI))/(S

1)n ∩ φ−1
J (χJ(CJ))/(S1)n for any I, J ∈ Σ(n).
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It follows from (6.4) that − log |CI ∩ CJ | = ∠bI∩J . This means that if g ∈
CI ∩ CJ , then ⟨aI

i ,− log |g|⟩ = ⟨aJ
j ,− log |g|⟩ = 0, equivalently |g|aI

i = |g|aJ
j = 1,

again equivalently |χαI
i (g)| = |χαJ

j (g)| = 1, for i ∈ I\J and j ∈ J\I. This implies
that

φ−1
I (χI(CI)) ∩ φ−1

J (χJ(CJ))

= {p ∈ X(∆) | |φI(p)i| = |φJ(p)j| = 1 for any i ∈ I \ J and j ∈ J \ I}.
(7.1)

Therefore, if k ∈ I ∩ J , then it follows from (5.4) and (7.1) that

|φJ(p)k| =
∏
i∈I

|φI(p)i|⟨a
J
k ,bi⟩ =

∏
j∈I∩J

|φI(p)j|⟨a
J
k ,bj⟩ = |φI(p)k|

for p ∈ φ−1
I (χI(CI)) ∩ φ−1

J (χJ(CJ)), where the last equality above follows from the
fact ⟨aJ

k , bj⟩ = δkj. This proves the claim.
It follows from the claim above that the map

ψ :=
∪

I∈Σ(n)

ψI : X(∆)/(S1)n → [0, 1]m

is well-defined. Moreover, this map is an into homeomorphism and the image is

determined by Σ. Since each ψI

(
φ−1

I (χI(CI))/(S
1)n

)
is a cone with the cone point

(1, . . . , 1) ∈ [0, 1]m, so is X(∆)/(S1)n and hence contractible.
Through the map ψ, a face of X(∆)/(S1)n can be described as

ψ(X(∆)/(S1)n) ∩ {xj = 0 | j ∈ J}
for some J ∈ Σ where xj denotes the j-th coordinate of [0, 1]m. This shows that
not only X(∆)/(S1)n is contractible but also all proper faces of X(∆)/(S1)n are
contractible. Moreover it shows that the face poset of X(∆)/(S1)n coincides with
the inverse poset of Σ. �
Theorem 7.2. Let ∆ = (Σ, β) be a complete non-singular topological fan of dimen-
sion n. Then the (S1)n-equivariant homeomorphism type of X(∆) does not depend
on the first components b+

√
−1c of β = (b+

√
−1c, v) : Σ(1) →Rn = Cn × Zn.

Proof. For each I ∈ Σ(n), we regard (R≥0)
I as a closed subset of CI . Then, the

quotient space X(∆)/(S1)n can be regarded as a subset of X(∆) by

X(∆)/(S1)n =
∪

I∈Σ(n)

φ−1
I ((R≥0)

n)

and hence the map
f : (S1)n × (X(∆)/(S1)n)→ X(∆)

defined by f(g, x) = gx makes sense. If f(g, x) = f(g′, x′) for (g, x), (g′, x′) ∈
(S1)n × (X(∆)/(S1)n), then x = x′ and g′g−1x = x, that is, g′g−1 is an element of
the isotropy subgroup of (S1)n at x. Since the isotropy subgroup at x is determined
by the face F containing x in its relative interior and the second component v of β,
the (S1)n-equivariant homeomorphism type does not depend on the first component
of β. �
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Remark. It is unclear that Theorem 7.2 holds even for the (S1)n-equivariant dif-
feomorphism type of X(∆) although one can see that the (S1)n-equivariant diffeo-
morphism type of X(∆) remain unchanged through a continuous perturbation of
the first component b+

√
−1c of β (with Σ and v fixed).

8. Classification of topological toric manifolds

We have associated a complete non-singular topological fan ∆(X) to an omnior-
iented topological toric manifold X in Section 3. Remember that omnioriented
topological toric manifolds X and Y are isomorphic if there is an equivariant dif-
feomorphism preserving the omniorientations and if they are isomorphic, then the
topological fans ∆(X) and ∆(Y ) associated with X and Y are equivalent, that is,
[∆(X)] = [∆(Y )], see Lemma 3.9. Conversely we have constructed an omnioriented
topological toric manifold X(∆) to a complete non-singular topological fan ∆ in
Sections 4, 5 and 6. So we have two correspondences in opposite directions:

{Omnioriented topological toric manifolds of dimension 2n}
� {Complete, non-singular topological fans of dimension n}

where we do not distinguish between isomorphic omnioriented topological toric man-
ifolds and also between equivalent topological fans. We shall denote the correspon-
dence → (resp. ←) above by D (resp. X ).

Theorem 8.1. The correspondences D and X are inverses to each other, so they
are both bijections.

Proof. Lemma 6.4 says that the composition D ◦ X is the identity. Therefore, it
suffices to prove that D is injective.

Let X be an omnioriented topological toric manifold of dimension 2n. As ob-
served in Lemma 3.4, the associated topological fan ∆(X) determines the complex
n-dimensional representation space Vp for each fixed point p in X such that there
is an equivariant diffeomorphism to the invariant open neighborhood Op preserv-
ing the omniorientations, where the omniorientation on Vp is the one induced from
the complex structure on Vp and that on Op is the one induced from X. Choose
a point ι in the open dense orbit in X. We may assume that the omniorientation
preserving equivariant diffeomorphism Op → Vp, denoted by φp, sends ι to the point
1p := (1, . . . , 1) ∈ Vp(= Cn) for each p if necessary by composing an automorphism of
Vp given by an element of (C∗)n. Therefore, the transition function φq◦φ−1

p : Vp → Vq

for q ∈ X(C∗)n
maps 1p to 1q. Since the transition function is equivariant and defined

on a dense subset of Vp, such a map is unique. This shows that X is determined by
the associated topological fan ∆(X), which means the injectivity of D. �
Corollary 8.2. Two omnioriented topological toric manifolds X and Y are equiv-
ariantly diffeomorphic (resp. equivariantly homeomorphic) if and only if [∆(X)]D =
[∆(Y )]D (resp. [∆(X)]H = [∆(Y )]H).

Proof. The “only if” part is proved by Lemma 3.9. Suppose [∆(X)]D = [∆(Y )]D.
Then, changing the orientations on the characteristic submanifolds of X if necessary,
we may assume that [∆(X)] = [∆(Y )]. Then it follows from Theorem 8.1 that X
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(with the changed omniorientation) and Y are isomorphic, in particular they are
equivariantly diffeomorphic.

Now suppose [∆(X)]H = [∆(Y )]H . Then, changing the local coordinates of X
and Y through equivariant homeomorphism, one sees that there is a topological toric
manifoldX ′ such thatX ′ is equivariantly homeomorphic toX and [∆(X ′)] = [∆(Y )]
by Lemma 2.7. Then X ′ and Y are isomorphic by Theorem 8.1 and hence X and
Y are equivariantly homeomorphic. �

Remember that the orbit space X/(S1)n of a topological toric manifold X by
the restricted action of (S1)n is a manifold with corners. Since we may assume
that X is of the form X(∆) by Theorem 8.1, it follows from Lemma 7.1 that every
face of X/(S1)n (even X/(S1)n itself) is contractible and any intersection of faces
is connected unless it is empty. Therefore the following proposition follows from
Corollary 7.8 and Theorem 8.3 in [11].

Proposition 8.3. Let X be an omnioriented topological toric manifold and let
∆(X) = (Σ(X), β(X)) be the complete non-singular topological fan associated with
X. We may assume that the vertex set Σ(1)(X) of Σ(X) is [m] and express β(X)(i) =
(bi(X) +

√
−1ci(X), vi(X)) ∈ Cn × Zn for i ∈ [m] = Σ(1)(X). Then

H∗(X; Z) = Z[µ1, . . . , µm]/I
where µi ∈ H2(X; Z) and I is the ideal generated by the following two types of
elements:

(1)
∏

i∈I µi for I /∈ Σ(X),
(2)

∑m
i=1⟨u, vi(X)⟩µi for any u ∈ Zn.

Here µi is actually the Poincaré dual of the characteristic submanifold Xi in X.

Remark. Since the homeomorphism type of X does not depend on the bi(X) +√
−1ci(X)’s by Theorem 7.2, they should not appear in the expression of H∗(X; Z)

as above. When X is a toric manifold, Proposition 8.3 is well-known as Jurkiewicz-
Danilov’s Theorem (see p.134 in [12]).

As mentioned in Proposition 8.3, µi is the Poincaré dual of Xi in X. On the other
hand, we may assume X = X(∆) by Theorem 8.1, where ∆ = ∆(X). Then it is
not difficult to see that the complex line bundle Li over X(∆) in Theorem 6.5 is
an extension of the normal bundle νi of Xi = X(∆)i as real vector bundles. This
implies that the total Pontrjagin class of Li is given by 1 + µ2

i . Thus the following
proposition follows from Theorem 6.5.

Proposition 8.4. Let the situation and the notation be the same as in Proposi-
tion 8.3. Then the total Pontrjagin class of X is given by

∏m
i=1(1 + µ2

i ).

9. The Barnette sphere

We say that an abstract simplicial complex Σ is the underlying simplicial complex
of a (topological) toric manifold X if Σ = Σ(X). An abstract simplicial complex
whose geometric realization is homeomorphic to d-sphere Sd is called a simplicial
d-sphere. If Σ is the underlying simplicial complex of a topological toric manifold
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of dimension 2n, then Σ is a simplicial (n− 1)-sphere. However, the converse does
not hold in general, see Proposition A.1 in the appendix.

The boundary complex of a simplicial n-polytope is a simplicial (n − 1)-sphere.
Such a simplicial sphere is called polytopal. It is known that any simplicial d-sphere
is polytopal when d ≤ 2 but there is a non-polytopal simplicial d-sphere when
d ≥ 3. D. Barnette ([1]) found a non-polytopal simplicial 3-sphere (now known
as the Barnette sphere) with 8 vertices. Any simplicial 3-sphere with less than 8
vertices is polytopal and there are exactly two non-polytopal simplicial 3-spheres
with 8 vertices. The Barnette sphere is one and the other one is called the Brückner
sphere, see [14, p.143].

We recall the Barnette sphere, see [1] for the details. A d-diagram is a cell complex
consisting of a collection of d-polytopes and their faces satisfying certain conditions.
Figure 2 is a 3-diagram consisting of 8 vertices e1, e2, e3, e4, d1, d2, d3, d4 and 18 3-
simplices which are No.1 - No.18 in Table 1. The Barnette sphere is obtained by
gluing another 3-simplex along the boundary of the 3-diagram, so that it has 19
3-simplices and the glued 3-simplex is No.19 in Table 1.

e1

e2

e3

d4

d3 d2

d1

e4

Figure 2. 3-diagram of the Barnette sphere

No simplex sign No simplex sign No. simplex sign No. simplex sign

1 e1e2e3e4 + 6 d1d2e3e4 + 11 d1e2e3d2 + 15 e1d1d3d4 +
2 d1e2e3e4 − 7 e1d2d3e4 + 12 e1e2d1d4 + 16 d1e2d2d4 +
3 e1d2e3e4 − 8 d1e2d3e4 + 13 e1d3e3d4 + 17 d3d2e3d4 +
4 e1e2d3e4 − 9 e1d2e3d3 + 14 d2e2e3d4 + 18 d1d2d3e4 −
5 e1e2e3d4 − 10 e1e2d3d1 + 19 d1d2d3d4 +

Table 1. 3-simplices in the Barnette sphere

Theorem 9.1. The Barnette sphere can be the underlying simplicial complex of a
topological toric manifold but cannot be that of a toric manifold.

Proof. The Barnette sphere ΣB is known to be the underlying simplicial complex of
an ordinary complete fan over R (see [6, §5, Chapter III]). We assign each vertex
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of ΣB an arbitrary non-zero edge vector of the fan on which the vertex lies. This

defines a function b : Σ
(1)
B → R4. We also define a function v : Σ

(1)
B → Z4 by assigning

the standard basis vectors of Z4 to the vertices e1, e2, e3, e4 in this order and

v(d1) =


1
0
1
0

 , v(d2) =


1
1
0
0

 , v(d3) =


0
1
1
0

 , v(d4) =


1
1
1
1

 .
One can easily check that this satisfies the non-singular condition in the topological
fan. Therefore, if we define β = (b, v), then (ΣB, β) is a complete non-singular
topological fan so that ΣB is the underlying simplicial complex of the topological
toric manifold associated with (ΣB, β). This proves the former part of the theorem.

We shall prove the latter part of the theorem. Suppose that ΣB is the underlying
simplicial complex of a toric manifold. Then the primitive edge vectors in the fan

of the toric manifold define a function v : Σ
(1)
B → Z4 which satisfies not only the

non-singular condition

det[v(p1), v(p2), v(p3), v(p4)] = ±1 for any 3-simplex {p1, p2, p3, p4} in ΣB

but also the condition

(9.1) det[v(p1), v(p2), v(p3), v(p4)] = − det[v(p1), v(p2), v(p3), v(p
′
4)]

for any two 3-simplices {p1, p2, p3, p4} and {p1, p2, p3, p
′
4} in ΣB sharing a 2-simplex

(that is {p1, p2, p3} in this case).
Through a modular transformation of Z4, we may assume that the function v takes

the standard basis vectors of Z4 at the vertices e1, e2, e3, e4 in this order. Then it
follows from (9.1) that the signs of the determinants corresponding to the 3-simplices
in ΣB are as in Table 1. We write

v(di) = [di1, di2, di3, di4]
T for i = 1, 2, 3, 4.

Claim 1. The following equations must hold.

dii = −1 for i = 1, 2, 3, 4.(9.2)

dijdji = 0 for (i, j) = (1, 2), (2, 3), (3, 1).(9.3)

dj4 + di4dji = −1 for (i, j) = (1, 2), (2, 3), (3, 1).(9.4)

dji + dj4d4i = −1 for (i, j) = (1, 2), (2, 3), (3, 1).(9.5)

dij − dkj − d4j − dijdk4d4k = 1 for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).(9.6)

d13d32d21 + d12d23d31 = 0.(9.7)

The equations above follow by calculating the determinants corresponding to the
18 3-simplices in ΣB except the 3-simplex No.19. We shall briefly explain how we
obtain them. First, the equations (9.2) follow from the 3-simplices No.2-5. For
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instance, we obtain from No.2 that

−1 =

∣∣∣∣∣∣∣∣
d11 0 0 0
d12 1 0 0
d13 0 1 0
d14 0 0 1

∣∣∣∣∣∣∣∣ = d11.

Because of (9.2), we substitute −1 for dii in the following. Then the equations (9.3)
follow from the 3-simplices No.6-8. For instance, we obtain from No.6 that

1 =

∣∣∣∣∣∣∣∣
−1 d21 0 0
d12 −1 0 0
d13 d23 1 0
d14 d24 0 1

∣∣∣∣∣∣∣∣ = 1− d12d21,

which shows d12d21 = 0. Similarly, the equations (9.4) and (9.5) follow from the
3-simplices No.9-11 and No.12-14 respectively. For instance, we obtain from No.9
and 12 that

1 =

∣∣∣∣∣∣∣∣
1 d21 0 d31

0 −1 0 d32

0 d23 1 −1
0 d24 0 d34

∣∣∣∣∣∣∣∣ = −d34 − d32d24, 1 =

∣∣∣∣∣∣∣∣
1 0 −1 d41

0 1 d12 d42

0 0 d13 d43

0 0 d14 −1

∣∣∣∣∣∣∣∣ = −d13 − d14d43.

The equations (9.6) follow from the 3-simplices No.15-17. For instance, we obtain
from No.15 that

1 =

∣∣∣∣∣∣∣∣
1 −1 d31 d41

0 d12 d32 d42

0 d13 −1 d43

0 d14 d34 −1

∣∣∣∣∣∣∣∣ = d12 + d14d43d32 + d34d42d13 + d14d42 − d12d34d43 + d13d32

= d12 + (−1− d13)d32 + d34d42d13 + (−1− d34d13)d42 − d12d34d43 + d13d32

= d12 − d32 − d42 − d12d34d43

where we used (9.4) and (9.5) for (i, j) = (3, 1) at the third equality above. Finally
the equation (9.7) follows from the 3-simplex No.18:

−1 =

∣∣∣∣∣∣∣∣
−1 d21 d31 0
d12 −1 d32 0
d13 d23 −1 0
d14 d24 d34 1

∣∣∣∣∣∣∣∣ = −1 + d13d32d21 + d12d23d31 + d13d31 + d23d32 + d12d21

= −1 + d13d32d21 + d12d23d31

where we used (9.3) at the last equality above. This proves Claim 1.
The desired fact that the Barnette sphere ΣB cannot be the underlying simplicial

complex of a toric manifold follows once we prove the following claim.

Claim 2. The equations (9.3) - (9.7) have no integer solution.

First we note that the equations (9.3) and (9.7) imply that

(9.8) d13d32d21 = 0 and d12d23d31 = 0.
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Therefore

D := ♯{dji | dji = 0 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)}} is either 1, 2 or 3.

We shall observe that this does not occur, which implies the claim.
(1) The case where D = 3. In this case, it follows from (9.4) and (9.5) that

dj4 = −1 and d4i = 1 for 1 ≤ i, j ≤ 3. Substituting these in (9.6) and using dji = 0
for (i, j) = (1, 2), (2, 3), (3, 1), we get dij = 1 for (i, j) = (1, 2), (2, 3), (3, 1). However
this contradicts the fact d12d23d31 = 0 in (9.8).

(2) The case where D = 1 or 2. In this case dji ̸= 0 and dj′i′ = 0 for some (i, j)
and (i′, j′) in {(1, 2), (2, 3), (3, 1)}. Because of symmetry of the suffixes, we may
assume that d32 ̸= 0 and d13 = 0 without loss of generality. Then d23 = 0 from (9.3)
with (i, j) = (2, 3) and d14 = −1 from (9.4) with (i, j) = (3, 1), and then d43 = 1
follows from (9.5) with (i, j) = (3, 1). However these values do not satisfy (9.6) with
(i, j, k) = (2, 3, 1). This completes the proof of the claim and hence the theorem. �

The following corollary gives evidence that topological toric manifolds are much
more abundant than toric manifolds. The reader will find another evidence at the
end of Section 11.

Corollary 9.2. If n ≥ 4, then there are infinitely many simplicial (n − 1)-spheres
each of which can be the underlying simplicial complex of a topological toric manifold
but cannot be that of a toric manifold.

Proof. We do not use the 3-simplex No.19 in the proof of Theorem 9.1. Therefore
the proof also shows that any simplicial complex obtained by performing stellar
subdivisions on the 3-simplex finitely many times cannot be the underlying simplicial
complex of a toric manifold. On the other hand, any such simplicial complex can
be the underlying simplicial complex of a topological toric manifold by Lemma
A.2 in the appendix. This together with Lemma A.3 in the appendix implies the
corollary. �

10. Relation with quasitoric manifolds

Two topological analogues of a toric manifold are known so far. One is what
is now called a quasitoric manifold introduced by Davis-Januszkiewicz [5] and the
other is a torus manifold introduced by Masuda [10] and Hattori-Masuda [8]. We
will discuss the relation of topological toric manifolds with quasitoric manifolds in
this section and with torus manifolds in the next section.

The orbit space of a toric manifold X by the restricted action of (S1)n is often a
simple polytope. In fact, this is the case when X is projective (since X/(S1)n can be
identified with the image of a moment map) or when dimCX ≤ 3 (this is trivial when
dimCX = 1, 2 and follows from a well-known theorem of Steinitz (see [14]) when
dimCX = 3). Davis-Januszkiewicz assert in [5, line 15 in p.419] that the orbit space
of a toric manifold by the action of (S1)n can always be identified with a simple
polytope. But this is uncertain although no counterexamples to their assertion
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are known.‡ Anyway, modeled by toric manifolds in algebraic geometry, Davis-
Januszkiewicz introduced the following topological analogue of a toric manifold.

Definition (Davis-Januszkiewicz [5]). A closed smooth manifold M of dimension
2n with a smooth action of (S1)n is called a quasitoric manifold § over a simple
polytope Q if

(1) the action of (S1)n on M is locally standard, i.e. any point of M has an in-
variant open neighborhood equivariantly diffeomorphic to an open invariant
subset of a direct sum of complex one-dimensional representation spaces of
(S1)n,

(2) the orbit space M/(S1)n is the simple polytope Q.

Remark. The restricted action of (S1)n on a topological toric manifold X is locally
standard so that condition (1) above is satisfied. The orbit space X/(S1)n is a
manifold with corners whose faces are all contractible and any intersection of faces
is connected unless it is empty as remarked before. So it is a simple polytope when
n ≤ 3, so condition (2) is satisfied for any topological toric manifold X when n ≤ 3.
However, since suspension of a non-polytopal simplicial sphere is still non-polytopal,
the examples in Section 9 show that there are topological toric manifolds which do
not satisfy condition (2) when n ≥ 4.

Let M be a quasitoric manifold of dimension 2n with a simple polytope Q as the
orbit space. Then there are only finitely many codimension two closed connected
submanifolds fixed pointwise under some S1-subgroup of (S1)n. These submanifolds
are also called characteristic submanifolds of M and denoted by M1, . . . ,Mm. As
for a topological toric manifold X, the characteristic submanifolds of X are defined
as codimension two closed connected submanifolds of X fixed pointwise under some
C∗-subgroup of (C∗)n but they may also be defined as those submanifolds fixed
pointwise under some S1-subgroup of (S1)n.

As is well-known there is a natural isomorphism

λ : Zn → Hom(S1, (S1)n)

where Hom(S1, (S1)n) is the group of smooth homomorphisms from S1 to (S1)n.
In fact, the λ above maps an element q = (q1, . . . , qn) ∈ Zn to a homomorphism
λq : S1 → (S1)n sending g ∈ S1 to (gq1 , . . . , gqn) ∈ (S1)n. Let vi(M) be a primitive
vector in Zn such that λvi(M) is the S1-subgroup of (S1)n which fixes Mi pointwise.
Note that vi(M) is defined only up to sign so that it defines a unique element in the
quotient Zn/{±1}. In order to avoid the ambiguity of the sign, we need to specify
an omniorientation on M as is done for the topological toric manifolds.

Similarly to the topological toric case,

Σ(M) := {I ⊂ [m] |MI :=
∩
i∈I

Mi ̸= ∅}

‡Civan [3] claims that there exists a toric manifold of complex dimension 4 whose orbit space
by the restricted action of (S1)4 is combinatorially different from any simple 4-polytope, but his
proof is unclear unfortunately.

§In [5] this is called a toric manifold but since this terminology was already used in algebraic
geometry, Buchstaber-Panov [2] started using the word quasitoric manifold.
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is an abstract simplicial complex of dimension n−1 and the smoothness of M implies
the following non-singular condition:

(10.1) {vi(M)}i∈I is a part of a basis of Zn whenever I ∈ Σ(M).

Through the quotient map M → Q = M/(S1)n, the characteristic submanifolds
M1, . . . ,Mm of M bijectively correspond to the facets Q1, . . . , Qm of Q. Note that
for I ⊂ [m],

(10.2) I ∈ Σ(M) if and only if
∩
i∈I

Qi ̸= ∅,

which means that the face poset of Q coincides with the inverse poset of Σ(M), in
other words, the boundary complex of the simplicial polytope P dual to Q agrees
with Σ(M). Therefore the orbit space Q contains all the information of Σ(M). We
may regard the collection of the vi(M)’s as a map

(10.3) v(M) : [m] = Σ(1)(M)→ Zn/{±1}
sending i ∈ [m] to vi(M) ∈ Zn/{±1}.

Conversely, if there is a map

v : [m] = Σ(1)(M)→ Zn/{±1}
which satisfies condition (10.1), then one can construct a quasitoric manifoldM(Q, v)
over Q depending only on Q and v (see [5, Section 1.5]) and the following is known
to hold.

Proposition 10.1 (see Proposition 1.8 in [5]). Let M be a quasitoric manifold over
a simple polytope Q and let v(M) be the map associated with M . Then, there is
an equivariant homeomorphism M → M(Q, v(M)) covering the identity on Q. In
particular, the pair (Q, v(M)) determines the equivariant homeomorphism type of
M .

Here is a relation between topological toric manifolds and quasitoric manifolds.

Theorem 10.2. The family of topological toric manifolds as (S1)n-manifolds con-
tains the family of quasitoric manifolds up to equivariant homeomorphism. To be
more precise, the former family agrees with the latter when n ≤ 3 and properly
contains the latter when n ≥ 4 up to equivariant homeomorphism.

Proof. Let M be a quasitoric manifold over a simple polytope Q. We put the sim-
plicial polytope P dual to Q in Rn in such a way that the origin of Rn lies in the
interior of P and form cones by joining the origin and proper faces of P . This pro-
duces an ordinary complete simplicial fan. We identify the boundary complex of P
with Σ(M) and take any non-zero vector, denoted bi, lying on the 1-dimensional cone
corresponding to the vertex i ∈ Σ(1)(M). We take ci to be an arbitrary vector of Rn,
view vi(M) as an element of Zn by taking a lift and set βi(M) = (bi+

√
−1ci, vi(M)).

Then ∆(M) := (Σ(M), β) is a complete, non-singular topological fan, where β is the
map Σ(1)(M)→ Cn × Zn = Rn sending i to βi(M). The topological toric manifold
X(∆(M)) associated with ∆(M) is equivariantly homeomorphic to M as (S1)n-
manifolds by Proposition 10.1. (Note. Since there are uncountably many choices
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of the bi +
√
−1ci, there are uncountably many such topological toric manifolds

X(∆(M)) by Theorem 8.1.) This proves the former statement in the theorem.
The latter statement in the theorem follows from the Remark after the definition

of a quasitoric manifold above. �

Remark. It is natural to expect that the “homeomorphic” in Theorem 10.2 can be
replaced by “diffeomorphic”, but for that we would need to establish the diffeomor-
phism version of Proposition 10.1 that the pair (Q, v(M)) determines the equivariant
diffeomorphism type of M .

11. Relation with torus manifolds

A torus manifold is a closed connected orientable smooth manifoldM of dimension
2n with an effective smooth action of (S1)n having a fixed point.¶ Obviously a
topological toric manifold as an (S1)n-manifold is a torus manifold and the family
of torus manifolds is much larger than the family of topological toric manifolds as
(S1)n-manifolds as is seen below.

Example. We regard 2n-sphere S2n as the unit sphere of Cn ⊕ R. Then S2n has a
natural action of (S1)n defined by

(z1, . . . , zn, y)→ (g1z1, . . . , gnzn, y)

where (z1, . . . , zn) ∈ Cn, y ∈ R and (g1, . . . , gn) ∈ (S1)n. This action has two
fixed points, the north pole and the south pole, so S2n with the action of (S1)n

is a torus manifold. However, S2n for n ≥ 2 cannot be the underlying manifold
of a topological toric manifold by Proposition 8.3 because H∗(S2n) for n ≥ 2 is
not generated by degree two elements as a ring. The orbit space S2n/(S1)n is an
n-dimensional manifold with corners, see figure 3.

Figure 3. S4/(S1)2 and S6/(S1)3

The action of (S1)n on a torus manifold M is not necessarily locally standard and
hence the orbit space M/(S1)n may not be a manifold with corners, and even if the
action is locally standard (so that M/(S1)n is a manifold with corners), M/(S1)n

and its proper faces may not be contractible or may have non-trivial cohomology.
Here is a simple example.

¶In [8] an omniorientation is incorporated in the definition of a torus manifold.
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Example. Consider the standard (S1)2-action on CP 2 defined by

[z0, z1, z2]→ [z0, g1z1, g2z2]

where [z0, z1, z2] ∈ CP 2 and (g1, g2) ∈ (S1)2. This action is locally standard and
the orbit space CP 2/(S1)2 can be identified with a triangle ∆. Let q : CP 2 →
CP 2/(S1)2 = ∆ be the quotient map. A free (S1)2-orbit in CP 2 corresponds to an
interior point in the triangle ∆ through the map q. We take a closed disk D1 in the
interior of ∆. Note that q−1(D1) can be identified with D2×(S1)2 as (S1)2-manifolds
where (S1)2 acts trivially on D2 and as group multiplication on (S1)2. We remove
q−1(IntD1) from CP 2, where IntD1 denotes the interior of D1. On the other hand,
we take a closed disk D2 in a closed orientable surface Σg with genus g ≥ 1 and glue
(Σg\ IntD2) × (S1)2 to CP 2\q−1(IntD1) equivariantly along their boundary. This
produces a torus manifold of dimension 4 whose orbit space is the connected sum of
∆ with Σg at interior points. Since g ≥ 1, the orbit space is non-acyclic, see figure 4.

Figure 4. non-acyclic orbit space with g = 2

The following theorem from [11] clarifies the relation between the topology of a
torus manifold M and the topology and combinatorics of the orbit space M/(S1)n.

Theorem 11.1 ([11]). Let M be a torus manifold of dimension 2n.

(1) Hodd(M) = 0 if and only if the action of (S1)n on M is locally standard and
M/(S1)n is face acyclic, i.e. every face of M/(S1)n (even M/(S1)n itself) is
acyclic.

(2) H∗(M) is generated by degree two elements as a ring if and only if the action
of (S1)n on M is locally standard and M/(S1)n is a homology polytope, i.e.
in addition to the face acyclicity, any intersection of faces in M/(S1)n is
connected unless it is empty.

Although the family of torus manifolds is much larger than the family of topo-
logical toric manifolds as (S1)n-manifolds, one can associate a combinatorial object
called a multi-fan to a torus manifold ([8], [10]), which is another generalization of
an ordinary fan. We shall review it to compare with our topological fan.

Let M be a torus manifold of dimension 2n. As before, a characteristic submani-
fold of M is a codimension two closed connected submanifold fixed pointwise under
some S1-subgroup of (S1)n. There are only finitely many characteristic submanifolds
in M which we denote by M1, . . . ,Mm. Then the simplicial complex Σ(M) can be
defined as before. An omniorientation on M is a choice of an orientation on M and
on each Mi. Suppose M is omnioriented. Then the vectors vi(M) for i = 1, . . . ,m
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can be defined without ambiguity of sign similarly to the topological toric case, so
that we have a map

v(M) : [m] = Σ(1)(M)→ Zn

sending i to vi(M).
Let I ∈ Σ(n)(M). Then MI :=

∩
i∈I Mi is not necessarily one point but consists

of finitely many fixed points. For each fixed point p ∈MI we have an identity

(11.1) τpM =
⊕
i∈I

νi|p as real (S1)n-representation spaces

similarly to the topological toric case (3.3). Since M is omnioriented, both sides
above have orientations as discussed in Section 3. We set w(p) = 1 if the orientations
agree and w(p) = −1 if they disagree, and define

w+(M)(I) := #{p ∈MI | w(p) = 1}, w−(M)(I) := #{p ∈MI | w(p) = −1},
w(M)(I) := w+(M)(I)− w−(M)(I) for I ∈ Σ(n)(M).

When M is a topological toric manifold, MI is one point for I ∈ Σ(n)(M) so that
w(M)(I) = ±1. If M is a toric manifold, then M has a canonical omniorientation
induced from the complex structures on M and Mi’s, and w(M)(I) = 1 with the
canonical omniorientation.

Definition. A triple (Σ(M), v(M), w±(M)) is called the multi-fan associated to M .

Remark. Let X be an omnioriented topological toric manifold of dimension 2n
and let ∆(X) = (Σ(X), β(M)) be the topological fan associated with X. Since X
is omnioriented, one can define w±(X) in the same way as w±(M) above. Then the
multi-fan associated withX as an (S1)n-manifold is the triple (Σ(X), v(M), w±(X)).
Note that one can find w±(X) from β(X). In fact, it follows from Lemma 2.6 that
if the determinant of the matrix formed from {βi(X)}i∈I (viewed as a matrix of size
2n) is positive (resp. negative), then (w+(X)(I), w−(X)(I)) = (1, 0) (resp. (0, 1))
and hence w(X)(I) = 1 (resp. −1) for I ∈ Σ(n)(X).

Unlike the topological toric case, the multi-fan (Σ(M), v(M), w±(M)) does not de-
termine the torus manifold M . However, it contains a lot of geometrical information
on M because it contains the complete information on the tangential representation
at each fixed point. For instance, important characteristic numbers of M such as
signature, Hirzebruch Ty-genus (or χy-genus) and elliptic genus can be described in
terms of the multi-fan of M , see [8], [9]. Therefore, it is possible to describe those
invariants of a topological toric manifold X in terms of the topological fan ∆(X)
because the topological fan ∆(X) determines the multi-fan of X as remarked above.

For each I ∈ Σ(M), we form a cone ∠vI(M) in Rn generated by the vectors
vi(M) for i ∈ I. When M is a toric manifold, these cones do not overlap and
form an ordinary complete non-singular fan associated with M . Unless M is a
toric manifold, the cones ∠vI(M) may overlap. However, they are not placed at
random as is shown in the theorem below. In [8], the Todd genus is defined for
an omnioriented torus manifold M in such a way that when the omniorientation is
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induced from an (S1)n-invariant unitary (or weakly almost complex) structure, then
our Todd genus agrees with the Todd genus of M with the unitary structure.

Theorem 11.2 (Theorem 4.2 in [10]). Let M be an omnioriented torus manifold of
dimension 2n and let v be a generic element in Rn. Then the Todd genus T [M ] of
M is given by

T [M ] =
∑

v∈∠vI(M)

w(M)(I)

where I runs over elements in Σ(n)(M). In particular, the right hand side above is
independent of the choice of the generic element v because so is the left hand side.

As is well-known, the Todd genus of a toric manifold is one. This fact can also be
seen from the theorem above because when M is a toric manifold, w(M)(I) = 1 for
any I ∈ Σ(n)(M) and the cones ∠vI(M) do not overlap as remarked before. When
M is a topological toric manifold, w(M)(I) = ±1 for any I ∈ Σ(n)(M) but the Todd
genus T [M ] can take any integer. In fact, such examples are constructed for torus
manifolds of dimension 4 in [10, Section 4] but they are actually quasitoric manifolds
and since any quasitoric manifold is a topological toric manifold by Theorem 10.2,
the Todd genus can take any integer for topological toric manifolds. This gives
another evidence that topological toric manifolds are much more abundant than
toric manifolds, cf. Corollary 9.2.

12. Real topological toric manifolds and small covers

One can see that the argument developed in previous sections work with C, S1,Z
replaced by R, S0,Z/2 = {0, 1} respectively with a little modification. In fact,
the situation becomes simpler because any smooth group endomorphism of R∗ =
R>0 × S0 is of the form

g → |g|b( g
|g|

)v̄ with (b, v̄) ∈ R× Z/2.

In this section we will briefly discuss a real analogue of a topological toric manifold
and a quasitoric manifold.

Definition. We say that a closed smooth manifold Y of dimension n with an effec-
tive smooth action of (R∗)n having an open dense orbit is a (compact) real topological
toric manifold if it is covered by finitely many invariant open subsets each of which
is equivariantly diffeomorphic to a direct sum of real one-dimensional smooth rep-
resentation spaces of (R∗)n.

Similarly to the topological toric case, one can define characteristic submanifolds
Y1, . . . , Ym of Y , each of which is a codimension one connected closed submanifold
fixed pointwise under some R∗-subgroup of (R∗)n, and associate a combinatorial
object ∆(Y ) = (Σ(Y ), β̄(Y )). Here

Σ(Y ) := {I ⊂ [m] | YI :=
∩
i∈I

Yi ̸= ∅} ∪ {∅}



TOPOLOGICAL TORIC MANIFOLDS 37

and
β̄(Y ) : [m] = Σ(1)(Y )→ (Z/2)n

which sends i ∈ [m] to the R∗-subgroup of (R∗)n fixing Yi through a natural isomor-
phism

Hom(R∗, (R∗)n) ∼= Rn × (Z/2)n.

Definition. Let Σ be an abstract simplicial complex of dimension n− 1 (with the
empty set ∅ added) and let

β̄ : Σ(1) → Rn × (Z/2)n.

We express β̄(i) = β̄i = (bi, v̄i) ∈ Rn × (Z/2)n. Then a pair ∆ = (Σ, β̄) is called a
(simplicial) real topological fan of dimension n if the following are satisfied.

(1) bi’s for i ∈ I are linearly independent whenever I ∈ Σ, and ∠bI∩∠bJ = ∠bI∩J

for any I, J ∈ Σ. (In short, the collection of cones ∠bI for all I ∈ Σ is an
ordinary simplicial fan although the bi’s are not necessarily in Zn.)

(2) v̄i’s for i ∈ I are linearly independent over Z/2 whenever I ∈ Σ.

We say that a topological fan ∆ of dimension n is complete if
∪

I∈Σ ∠bI = Rn and
non-singular if v̄i’s for i ∈ I form a part of a basis of (Z/2)n whenever I ∈ Σ.

The argument in Sections 5 and 6 works with C replaced by R and that in Section 7
works with S1 replaced by S0. Therefore the results in Section 8 hold for real
topological toric manifolds with suitable modification. One big difference between
topological toric manifold and real topological toric manifolds is that a topological
toric manifold is simply connected (Proposition 3.2) while a real topological toric
manifold is not simply connected.

The real analogue of a quasitoric manifold is the following.

Definition (Davis-Januszkiewicz [5]). A closed smooth manifold N of dimension n
with a smooth action of (S0)n is called a small cover over a simple polytope Q if

(1) the action of (S0)n on N is locally standard, and
(2) the orbit space N/(S0)n is the simple polytope Q.

As is developed in [5], almost all arguments for quasitoric manifold work for small
covers with S1 and Z replaced by S0 and Z/2 respectively, and Proposition 10.1
holds for small covers with suitable modification. Thus the analogous theorem to
Theorem 10.2 holds for real topological toric manifolds and small covers.

A quasitoric manifold M of dimension 2n admits an involution called conjugation
(see [5]) and its fixed point set is a small cover. However, it is not always the
case that a topological toric manifold admits such a conjugation. We say that a
topological fan ∆ = (Σ, β) where βi = (bi +

√
−1ci, vi) is involutive if ci = 0 for

all i ∈ Σ(1). Accordingly, we say that a topological toric manifold X is involutive
if the topological fan associated with X is involutive. Note that any toric manifold
is involutive. Suppose that our topological toric manifold X is involutive. Since we
may assumeX = X(∆) by Theorem 8.1, X has an involution (called the conjugation
on X) induced from the complex conjugation on Cn by Lemma 5.3. The fixed point
set of the conjugation onX, denoted RX, is a real topological toric manifold. Clearly
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∆(RX) = (Σ(X), β̄(X)) where β̄(X) = (b(X), v̄(X)) ∈ Rn × (Z/2)n and v̄(X)
denotes the mod 2 reduction of v(X). The authors do not know whether any real
topological toric manifold can be realized as the fixed point set of the conjugation
in some involutive topological toric manifold.

Appendix

In this appendix, we collect a few results on underlying simplicial complexes of
(topological) toric manifolds.

Proposition A.1. If n ≤ 3, then any simplicial (n−1)-sphere can be the underlying
simplicial complex of a topological toric manifold. However, if n ≥ 4, then there are
infinitely many simplicial (n− 1)-spheres which cannot be the underlying simplicial
complex of a topological toric manifold.

Proof. The proof is essentially same as in [5]. The proposition is clear when n ≤ 2.
Let Σ be any simplicial 2-sphere. It is isomorphic to the boundary complex of some
simplicial 3-polytope P by a theorem of Steinitz. We put P in R3 in such a way
that P contains the origin of R3 in its interior. Let x1, . . . , xm be the vertices of
P . We take bi in the definition of a topological fan to be the position vector of xi

in R3. On the other hand, the four color theorem ensures that one can assign one
of four vectors e1, e2, e3, e1 + e2 + e3, where e1, e2, e3 denote the standard basis of
R3, to each vertex of P in such a way that different vectors are assigned to any two
vertices joined by an edge in P . We take vi to be the integral vector assigned to
the vertex xi. Then a pair (Σ, β) with βi = (bi, vi) defines a complete non-singular
topological fan of dimension 3, so that the Σ is the underlying simplicial complex of
a topological toric manifold by Theorem 8.1.

The latter statement in the proposition follows from [5, Nonexample 1.22]. We
shall reproduce the argument for the reader’s convenience. For any integers m >
n(≥ 2), there is an n-dimensional simplicial polytope with m vertices denoted by
Cn(m) and called a cyclic polytope. Then the boundary complex of Cn(m) cannot
be the underlying simplicial complex of a topological toric manifold if n ≥ 4 and
m ≥ 2n. The reason is as follows. Since n ≥ 4, the 1-skeleton of Cn(m) is known to
be a complete graph (i.e. any two vertices in Cn(m) are joined by an edge), and since
m ≥ 2n, any integral vectors assigned to the m vertices must have the same mod 2
reduction at some two vertices; so it is impossible to assign integral vectors vi to the
m vertices in such a way that they satisfy the non-singular condition over Z in the
definition of a non-singular topological fan, see Section 3. Therefore, the boundary
complex of Cn(m) cannot be the underlying simplicial complex of a topological toric
manifold if n ≥ 4 and m ≥ 2m, proving the latter statement in the proposition. �

Let σ be a simplex of maximal dimension in Σ. We remove σ from Σ and add
a new vertex, say x, and all cones in the join x ∗ ∂σ to Σ, where ∂σ denotes the
boundary complex of σ. This operation produces a new simplicial complex and is
called a stellar subdivision.
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Lemma A.2. If a simplicial complex Σ is the underlying simplicial complex of
a topological toric manifold, then any simplicial complex obtained from Σ by per-
forming a stellar subdivision on Σ can be the underlying simplicial complex of some
topological toric manifold, and the same statement holds for toric manifolds.

Proof. This lemma is well-known for toric manifolds and the same argument works
for topological toric manifolds. The argument is as follows. Let ∆ = (Σ, β) be a
topological fan associated with a topological toric manifold. Let σ be a simplex in
Σ of maximal dimension and let Σ′ be the simplicial complex obtained from Σ by
performing the stellar subdivision of Σ on σ. We define β′ : Σ′(1) →Rn by

β′(i) :=

{
β(i) if i ∈ Σ(1) ⊂ Σ′(1),∑

j∈σ(1) β(j) if i is the new vertex in Σ′(1),

where σ(1) denotes the set of vertices of σ. Then (Σ′, β′) is again a complete non-
singular topological fan so that Σ′ is the underlying simplicial complex of the topo-
logical toric manifold associated with (Σ′, β′), proving the lemma. �
Lemma A.3. A simplicial complex Σ is the underlying simplicial complex of a topo-
logical toric manifold if and only if so is its suspension SΣ, and the same statement
holds for a toric manifold.

Proof. We shall prove the lemma for topological toric manifolds. The reader will
find that the same argument will work for toric manifolds.

Suppose that Σ is the underlying simplicial complex of a topological toric manifold
X. Then the suspension SΣ is the underlying simplicial complex of the product
CP 1×X which is again a topological toric manifold with the product action, proving
the “only if” part. Conversely, suppose that the suspension SΣ is the underlying
simplicial complex of a topological toric manifold Y . Let x be a vertex of SΣ
created by the suspension, so the link of the x is Σ. The vertex x corresponds to
some characteristic submanifold Y0 of Y . The Y0 is again a topological toric manifold
and the underlying simplicial complex Σ(Y0) agress with the link of the vertex x in
SΣ which is Σ, proving the “if” part. �
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