Classification of torus manifolds with codimension one extended actions

Shintaro Kuroki

ABSTRACT. The purpose of this paper is to classify torus manifolds (M?™, T™) with codimension
one extended G-actions (M?2",G) up to essential isomorphism, where G is a compact, connected
Lie group whose maximal torus is T™. For technical reasons, we do not assume torus manifolds
are orientable. We prove that there are seven types of such manifolds. As a corollary, if a
non-singular toric variety or a quasitoric manifold has a codimension one extended action then
such manifold is a complex projective bundle over a product of complex projective spaces.

1. Introduction

This paper is a continuation of [Ku3] devoted to find the natural symmetries of torus man-
ifolds. A torus manifold, defined in [HaMa, Ma], is an even dimensional, oriented, compact,
connected manifold M?" acted on by a half-dimensional torus T" with non-empty fixed point set.
The class of torus manifolds provides a rich and interesting class of T-spaces, because this class
contains both of non-singular toric varieties studied by algebraic geometers (see [Fu, Od]) and qu-
asitoric manifolds studied by topologists (see [BuPa, DaJa]). As is well-known, the n-dimension
torus is a maximal compact abelian group which acts on 2n-dimensional manifolds effectively.
On the other hand, there exist torus manifolds whose torus actions are induced from non-abelian
group actions, e.g., complex projective spaces or even dimensional spheres (see [Ku3]). Namely,
the T™-action on torus manifold M?™ do not always become the maximal (compact) symmetry of
M?",

One of fundamental problems in geometry is to find the most natural symmetry on the given
space, i.e., the most natural group action on the given space. In order to find natural group
actions on torus manifolds, we have studied extended actions of T™-actions on torus manifolds. In
[Ku3], we classify torus manifolds with transitive extended G-actions (also see Theorem 2.4 in this
paper), where G is a compact, connected Lie group whose maximal torus is 7. In this case, the
principal orbit G/K is M itself. In other words, the codimension of principal orbit of transitive
actions is zero, i.e., dim M — dim G/K = 0. Therefore, we may regard the classification in [Ku3|
as the classification of torus manifolds induced from codimension zero extended actions. So we are
naturally led to study torus manifolds induced from codimension one extended G-actions, i.e., torus
manifolds with codimension one extended actions (or torus manifolds induced from cohomogeneity
one symmetries). The purpose of this paper is to classify all such torus manifolds up to essential
isomorphism. For technical reasons, we do not assume torus manifolds are orientable as we do
in [Ku3]. Namely, we classify more general class of T-manifolds with codimension one extended
actions.

Let us prepare to state our main theorem. We use the following notations: S(a,b) =
15—, S**t x H;?:l Sy G = [1j_, SU(l; +1) x H?Zl SO(2m; + 1); the symbol V,, repre-
sents the representation space with the scaler representation a of T% x A, where A C (Zs)? C
H?‘:l O(2m; + 1) generated by diagonal matrices, i.e., if V' is a complex (resp. real) space then
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a:T*x A— St (vesp. a: T* x A — Zsy); the symbol P(V & W) (resp. RP(V & W)) represents
the complex (resp. real) projective space of the complex (resp. real) vector space V @& W; and
S(V @& W) is the unit sphere in V @ W. The goal of this paper is to prove the following theorem
(see Propositions 9.4-9.10, 10.3 and 11.5 for detail):

THEOREM 1.1. Let (M, T) be a (possibly unoriented) torus manifold and (M, G) be its codi-
mension one extended action, where G is a compact connected Lie group whose mazimal torus is
T™. Then, (M,G) is essentially isomorphic to one of the followings:

L M | G |
(1) S(a,b) Xraxa P(CH @ CF) G" x S(U(ky) x U(kg)) (k1 + ko > 3)
(2) S(a,b) xraxa S(C & R,) G" x U(k)

(3) S(a;b) xraxa SR & R,) G" x SO(2k) (k > 2)

(4) ] S(a,b) xraxa S(Chr @ RZ>7T) G x U(ky) x SO(2ky — 1) (kg > 2)
(5) | S(a;b) xraxa SRET@RZF=T)) 1 G" x SO(2k1) x SO(2ky — 1) (k2 > 2)
(6) | S(a,b) xpaxa RP(CH @ R**27T) G" x U(ky) x SO(2ky — 1)

(7) | S(a;b) xraxa RP(RZF @ R%*27T)) G" x SO(2k;) x SO(2ky — 1)

for some subgroup A C (Z2)® and scaler representations p, €, p1, p2. Here, T*x A acts on S(a;b) C
[T, Clitt x H?:1 R?mi+1 naturally.
Furthermore, the following statements hold:
e the manifolds in (1) are orientable if and only if A C SO(Z?Zl 2m; +b);
e the manifolds in (2) and (3) are orientable if and only if {(a,€(a)) € H?’:l O(2m;+1) x
O(1) |ae A} € SO(X"_, 2m; +b+1);

j=1
e the manifolds in (4) and (5) are orientable if and only if {(a, p2(a)) € H?zl O(2m; +
1) x O(2ky — 1) | a € A} € SO(X0_, 2m; + b+ 2ky — 1);

j=1
o the manifolds in (6) and (7) are non-orientable.

By Theorem 1.1, we have the following corollary:

COROLLARY 1.2. Let (M,G) be a non-singular toric variety or a quasitoric manifold with
codimension one extended G-action. Then, (M, Q) is essentially isomorphic to

M = [[S%*" xqe P(Cfr @ CP2) = [T CHH x(coye P(CE @ CF2),

=1 =1

G = ﬁSU(li +1) x S(U(k1) x U(kz)),

i=1
where CLitl = Clitl — {0} and C* = C — {o}.

The organization of this paper and the method of classification are as follows. We first, in
Section 2 and 3, recall some basic notions needed later and give some examples of torus manifolds
with codimension one extended actions. In order to prove Theorem 1.1, we will combine the
methods introduced by Alekseevskii-Alekseevskii in [AlAl] and Uchida in [Uc], and use the main
results in [Ku3]. Due to [AlAl], if (M, G) has a codimension one orbit then M can be constructed
from a primitive (M;,G") with codimension one orbits; roughly speaking, M is equivariantly
diffeomorphic to the crossed product G’ x g M; for some G’ and its subgroup H’, where G =
G’ x G"” and an H'-action on M; commutes with the G”-action on M;. In Section 4, we recall
the definition of the primitive G-manifolds introduced in [Al1Al]. We also show that, for the non-
primitive torus manifold M 2 G’ X g» M, both of G'/H' and M, are also torus manifolds (Lemma
4.4). Note that in this case M is an M;-bundle over G'/H’. The main theorem in [Ku3] tells us
the possibilities of G’/H' (Theorem 4.5). We next, in Section 5, 6 and 7, classify primitive torus
manifolds (M7, G"”) by using the method of [Uc] (also see [Ku2] for details of this method). As a
result, we have that there exist seven types of primitive torus manifolds (Theorem 7.1). In order
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to construct G’ X g My from homogeneous torus manifold G’/H’ and primitive torus manifold
(M;,G"), we next, in Section 8, 9 and 10, analyze H’-actions on M; which commute with the
given G”-action on M;. Then, we get the classification table in Theorem 1.1 of torus manifolds
with codimension one extended actions up to essential isomorphism. Finally, in Section 11, we
give some relations with moment-angle manifolds introduced in [BuPa, DaJa] (also see [BoMe])
and prove the orientability of torus manifolds appearing in the table of Theorem 1.1.

2. Preliminary

In this section, we recall some basic notations and facts needed later. We refer the reader to
the following papers and books for further details: [HaMa, Mal] for toric topology; [MiTo] for
classical Lie theory; [Br, Ka] for transformation group theory; and the paper [Ku3].

2.1. General terminologies and notations. We first recall general terminologies and no-
tations.

Throughout of this paper, the symbol T™ represents an n-dimensional, compact, abelian group,
i.e., T™ is a product of n circles (S1)", we call it an n-dimensional torus or a torus. The symbol
(M, Q) represents the space M with G-action. If it is needed to indicate the action explicitly,
we shall write (M, G) as (M, G, ¢) with the action . In this paper, we assume all G-actions are
smooth.

The symbol G, represents the isotropy subgroup of x € M, G(x) represents the orbit of z,
and M /G represents the orbit space. We denote the set of fixed points of (M,G) by M“. A
maximal orbit in (M, G) is called a principal orbit. Let G(z) be a non-principal orbit in (M, G). If
the dimension of G(x) is strictly less than that of principal orbits, G(x) is called a singular orbit.
Otherwise, G(z) is called an exceptional orbit (see Example 3.10).

Two manifolds with group actions (M, G, ¢) and (M', G', ¢') are said to be weakly equivariantly
diffeomorphic if there exist an isomorphism v : G — G’ and a diffeomorphism f : M — M’ such
that f(p(g,2)) = ¢ (W(g), f(x)) for all (g9,2) € G x M; if the isomorphism % is identity, then
(M, G, ) and (M',G’, ") are said to be equivariantly diffeomorphic.

We call N = Ngep Gy the kernel of (M, G). A G-action (M, G) is said to be almost effective
(resp. effective) if the kernel of (M, G) is finite (resp. identity). Let N be the kernel of (M,G).
Then, the induced action (M, G/N) is always effective, and we call it the induced effective ac-
tion of (M,QG). If two induced effective actions of (M, G) and (M',G’) are weakly equivariantly
diffeomorphic, then (M, G) and (M’, G’) are said to be essentially isomorphic.

Let (X x Y, G) be the diagonal G-manifold of (X, G) and (Y, G). We denote its orbit space by
X Xg Y. If G acts on X freely, i.e., G, = {e} for all z € X where e € G is the identity element,
then we may regard X X¢ Y as the Y-bundle over X/G, i.e., there exists the following fibration:

Y —- X x¢YV — X/G.
2.2. Torus manifold. Let us define a torus manifold.

DEFINITION 2.1. Let M?" be a smooth, 2n-dimensional, compact manifold. We say (M?2",T™")
a torus manifold if an n-dimensional (half dimensional) torus action on M?" is almost effective
and there exists a fixed point.

In this paper, a torus manifold (M?",T™) is often denoted by (M,T) or M simply. By
definition, a torus manifold satisfies that M7 is finite and its principal orbit is 7™ itself.

A compact, connected, codimension two T-invariant submanifold of M without boundary is
called characteristic if it is a connected component of the set fixed pointwise by a certain circle
subgroup of T" and contains at least one T-fixed point. There exist only finitely many characteristic
submanifolds and they are orientable if M is orientable.

REMARK 2.2. The concept of a torus manifold is an ultimate (topological) generalization of
toric theory. However, in this paper we do not use this theory, i.e., we do not use a multi-fan.
Hence, our definition of torus manifold becomes rather briefer than that in [HaMa, Mal. For
example, we do not need to assume an omniorientation of the torus manifold and characteristic
submanifolds.



Furthermore, because we would like to classify torus manifolds with codimension one extended
actions up to essential isomorphism, we assume a T-action on M is almost effective. For technical
reasons, we do not assume M is orientable. Namely, torus manifold in this paper contains more
general T-manifolds than those in [HaMa, Ma].

2.3. Facts from classical Lie theory and the previous paper. In this paper, we will
classify (M, G) up to essential isomorphism. In this subsection, we recall the facts from classical
Lie theory and the paper [Ku3|.

For any compact, connected Lie group G, there exists a finite covering, homomorphism (see
[MiTo, Section 5]):

(1) G=Gix %G -G,

where G; is a compact, (simply) connected, simple Lie group, or a torus, for i =1, ... k. Let N
be the kernel of ¢. Then, N is a finite normal subgroup in G; X --- X Gg. Because c is a surjective
homomorphism, we have

G~ (Gy x -+ xGy)/N.

Therefore, we have the following commutative diagram:
GxM

s

Gx M- M

where Id : M — M is the identity map. Namely, there exists the lift (M,é,@) of (M,G,p).
Moreover, one can easily see that (M, G) of (M, G) are essentially isomorphic.

A rank of G is the dimension of a maximal torus subgroup of G. As is well known, the following
lemma holds for a maximal rank subgroup H® of G (see [MiTo, Theorem 7.2]).

LEMMA 2.3. LetG; (i =1, ..., k) be compact, connected Lie groups and let G be their product.
Assume H® is a compact, connected, mazimal rank subgroup in G. Then H° = Hy X --- x Hy,
where H; is a mazimal rank subgroup in G;.

We next recall the results of the paper [Ku3]. Let (M,T,¢) be a torus manifold. Suppose
T is a maximal torus subgroup of a compact, connected Lie group G. If there exists an action
®: G x M — M such that the restricted T-action ®|ry s is the given ¢, then we call (M, G, ®)
an extended G-action of (M, T, ).

Let (M, G) be an extended G-action of (M, T). If there is a principal G-orbit G(z) such that
dim G(z) = dim M?" — k = 2n — k, then we call (M?",G) a codimension k extended G-action
of (M, T), where an integer k satisfies 0 < k < n. In particular, if a torus manifold (M, T) has
a codimension 1 extended G-action, then we call (M,T) a torus manifold with codimension one
extended action (or torus manifold induced from cohomogeneity one action).

Let Zs be the subgroup

{IQm].+17 712m_,»+1} C O(?mj + ].),
where O(m) is the orthogonal group and I, is its identity element. Note that Zs acts on the
2m-dimensional sphere S2mi c R?™i*1 canonically (we call this action the antipodal action on
sphere). Let A be a subgroup of H?:1 Zs. Then A acts on H?.:l S2mi through the canonical

H§:1 Zo-action on H?:I 52m;i i.e., the product of antipodal actions. For codimension 0 extended
G-actions, we have the following classification results (see [Ku3, Theorem 1]):

THEOREM 2.4. Let (M?",T™) be a torus manifold, and G a compact, connected Lie group
whose mazimal torus is T™. Suppose (M?",T™) extends to a codimension 0 extended G-action.
Then (M?*",G) is essentially isomorphic to

a Hb'—l §2m; a b
[TcP) x FT, [[sv@ +1) =[] so@m;+1) |,
i=1 i=1 j=1
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where the above group acts on M>™ in the natural way, and Z?zl I + Z§=1 m; = n.

REMARK 2.5. In [Ku3, Theorem 1], we used PU(l + 1) instead of SU(l + 1) as the transfor-
mation group, where PU(l+ 1) is defined as the quotient of SU(I 4 1) by its center Z(SU(l 4 1)).
However, ([JCP(1), [[SU(l+1)) is essentially isomorphic to ([JCP(l), [[PU(I+1)) (see [Ku3,
Example 2.7]). So we may change PU(l + 1)’s into SU(l + 1)’s.

3. Structure of orbit space M /G and orbits of fixed points M7T

Henceforth, (M,T) represents a 2n-dimensional torus manifold and (M,G) represents its
codimension 1 extended action, where G is a compact connected Lie group with maximal torus 7.
In this section, we analyze the orbit space M/G of (M,G).

3.1. Structure of orbit space M/G. By the definition of torus manifold, there exist non-
empty isolated fixed points M7T. We first consider a G-orbit on a fixed point p € M. Because
p € M7 is fixed by the T-action, we have

(2) TcG,CG.

Therefore, we have rank G = rank G = n, where rank G represents the dimension of maximal
torus of G. Hence, as is well known (see e.g. [GHZ, Theorem 1.1 (2), (3)]), the dimension of
G/(Gp)° is even and

dimG/G, = dim G/(Gp)°.

It follows that there exists at least one singular orbit in (M, G). Hence, together with the fact from
transformation group theory (see e.g. [Br, 8.2 Theorem in Chapter IV] or [Uc, Lemma 1.2.1]),
we obtain the following lemma:

LEMMA 3.1. Suppose that (M?",T") extends to (M, G) with codimension 1 orbits. Then, the
orbit space M /G is homeomorphic to the interval [—1,1] such that orbits over the interior (—1,1)
are principal orbits G/ K and two orbits G/Ky and G/Ky over the boundary {—1,1} (respectively)
are singular or exceptional. (We may assume G/K; is a singular orbit.)

Furthermore, there exists a closed, invariant tubular neighborhood X (of G/ K, for s =1, 2)
such that

M=X;UXs
and
X1NXy=0X; =0X, 2G/K.
Figure 1 shows the structure of (M, G).

=

G/K G/K
/G

G/K

M/G

FIGURE 1. The orbit structure of (M, G) with codimension 1 orbits.

Once we have the orbits G/K; and G/K» in Lemma 3.1, their tubular neighborhoods X; and
X5 can be computed by using the following differentiable slice theorem, or the slice theorem for
short (see, e.g., [Br, Kal).



THEOREM 3.2 (differentiable slice theorem). Let G be a compact Lie group and M a smooth
G-manifold. Then, for all x € M, there is a closed G-invariant neighborhood X of the orbit
G(z) 2 G/G, such that X 2 G xg, D, as a G-diffeomorphism. Here, the Gy -action on G X D, is
defined as follows: G canonically acts on G as a subgroup of G; and on a closed disk D, through
an orthogonal representation o : G, — O(D,), where O(D,) is an orthogonal group of D, C RN
(N =dim D, = dim M — dim G(z)).

In Theorem 3.2, we call o a slice representation of G,. We identify a tubular neighborhood
X of G(z) with G x¢g, Dy.

3.2. G-orbits of T-fixed points. Let p € M. Using the slice theorem, the tangent space
T,(M) can be regarded as an orthogonal T-representation space. We call it a tangential repre-
sentation space, or simply a tangential representation on p. Let «; be a representation from T
to St ~ SO(2), i.e., a; : T — S ~ SO(2)(e Hom(T,S') ~ Z"), and let V(a;) ~ R? be the
irreducible representation space of «;. The following lemma tells us the structure of tangential
representations on fixed points in torus manifold (M, T).

LEMMA 3.3. Let (M, T) be a torus manifold and p € MT. Then, the tangential representation
on p decomposes into 1-dimensional representations as follows:

T,(M)~V(m)®- & V(ia)
such that {ay, ..., a,} spans a space Hom(T, S') ® R ~ R™.

PROOF. According to the definition of torus manifold, the T-action on M is almost effec-
tive. It follows that there is a non-degenerate representation p from 7" to the orthogonal group
O(T,(M)) ~ O(2n), i.e., the image of p is also an n-dimensional torus. Moreover, the image of p
is in the special orthogonal group SO(2n) because T™ is connected. Therefore, the image of p and
the diagonal maximal torus SO(2) x --- x SO(2) C SO(2n) are conjugate in SO(2n). This gives
an equivalence between p and ay @ -+ ® «, for some «; : T™ — SO(2). Moreover, {aq,...,a,}
spans a space Hom(T', S') ® R ~ R™ because p(T™) C SO(2n) is a maximal torus. O O

The following lemma is one of the key lemmas to classify (M, G).

LEMMA 3.4. Let G/K; be a singular orbit of (M,G) which contains a fized point of (M,T).
Then there exists a subtorus T' C T such that (G/K1,T") is a torus manifold.

PROOF. Let ¢ : G — G be the finite covering of G appearing in (1) in Section 2.2, and let
K (resp. T') be the identity component of ¢=1(K;) (resp. ¢}(T)). Using (2) in Section 3.1, we
also have T is a maximal torus subgroup of G and K 1. By Lemma 2.3, there exists the following
decomposition:

é:G’ x GY, I~(1:K{>< ‘8 JN“:T{XT{’,
where G} and GY are products of compact, simply connected, simple Lie groups and tori, and GY

is the same factor in G and K 1, i.e., the identity component of the kernel of the G-action on G / K.

Note that rank G} = rank K| = d1rn T] and rank GY = dimT’. Because Ky Cc HKy) C G, we
also have the following decomposition:

TNy = Hy < GY,
where K C H{ C G and the identity component of Hj is K{. Then, the projection ¢ induces
the diffeomorphism between G/Hj and G1/K;. Note that 77’ is the identity component of the
kernel of T-action on G /Hj.
Let us prove that (G} /Hj,Ty) is a torus manifold. Because T} is a maximal torus of G} and

K{ = (Hjp)°, as is well known, the Tj-action on G}/H] is almost effective and there exist fixed
points. Moreover, we have the following decomposition on the fixed point p € G/K; N M7T:

T,M = T,G/K, & N,G/K;,
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where T,G/K is the tangent space and N,G /K is its normal space on p. It follows from Lemma
3.3 that there exists a decomposition

TyM =V(a) @ - V(ay).

This implies that we may put

T,G/K1 = V() D @ V(ap—k);

NpG/Kl = V(n—p41) @@ V(aw),
for some k; € N. Because T} is the connected component of the kernel of T-action on G /H] =
G/K, the Lie algebra of Ty’ is spanned by {an_g,+1 @ - - - ® o, }. Therefore, we have

dim N,G/K1 = 2k = 2dim T/".
Because dim 7] + dim 7{" = n, we also have
dim G/K; =2(n — k1) = 2dim T}.
Hence, (G1/H1{,T]) = (G/K1,TY) is a torus manifold. O O
REMARK 3.5. In Lemma 3.4, if (M,T) is an oriented torus manifold then G/K; is also

oriented; moreover, G/K; is the connected component of the intersection of some characteristic
submanifolds (see [Ku4, Lemma 3.2]).

3.3. Examples. In this subsection, we recall quasitoric manifolds briefly, and give some
examples of torus manifolds with codimension one extended actions.

We first recall the definition of quasitoric manifold. Let P™ be a simple convex polytope, i.e.,
precisely n facets (codimension-1 faces) of P™ meet at each vertex.

DEFINITION 3.6. If the torus manifold (M?", T") satisfies the following two properties:
(1) T™-action is locally standard, i.e., locally looks like the standard torus representation in

C™;
(2) there is a projection map 7 : M?" — P" constant on T"-orbits which maps every
k-dimensional orbit to a point in the interior of k-dimensional face of P, k =0,...,n,

then (M?2" T") is said to be a quasitoric manifold.

REMARK 3.7. One can easily show that (M,T) satisfies the condition (1) in the definition of
the quasitoric manifolds if and only if {1, ..., a,} in Lemma 3.3 spans Hom(T, S*) ~ Z™ for each
fixed point.

Example 3.8 shows a quasitoric manifold with codimension one extended action.

ExAMPLE 3.8. Let (M,T) = (CP(2),T?) be the torus manifold defined by the standard
multiplication of T2 on the last two coordinates in [2g : 21 : 22] € CP(2) (also see [Ku3, Example
2.2]). This torus manifold has an extended G = PU(2) x T'-action as follows:

e PU(2) =U(2)/Z(U(2)) acts on the first two coordinates (zg, z1) by the standard mul-
tiplication, where Z(U(2)) is the center of U(2);
e T acts on the third coordinate z» by the standard multiplication.
Now we can easily check (M,T) is a quasitoric manifold (also see the left “triangle” in Figure
2), and (M, G) has codimension 1 orbits G([1 : 0 : 1]) 2 CP(1) x S and two singular orbits
G(1:0:0]) 2CP(1) and G([0:0: 1]) = {*} (one point).

On the other hand, Example 3.9 is not a quasitoric manifold. However, this is a torus manifold
with codimension one extended action.

EXAMPLE 3.9. Let (M, T) = (S*, T?) be the torus manifold defined by the standard mul-
tiplication of T? = SO(2) x SO(2) on S* N R*, where S* C R* @ R (also see [Ku3, Example
2.3]). Now we can check (M, T) is not a quasitoric manifold because its orbit space is not a convex
polytope (see the right “half-moon” in Figure 2, this half-moon is not a convex polytope).

Let (x,y) € S* C R?2 @ R3. This torus manifold has an extended G = T! x SO(3)-action as
follows:
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e T ~ SO(2) acts on = € R? standardly;
e SO(3) also acts on y € R? standardly.

One can easily see that (M,G) has codimension 1 orbits G(eq, f1) = S! x S? and two singular
orbits G(ey, 0) = St and G(0, f1) = S?, where e; = (1, 0) € R? and f; = (1, 0, 0) € R3.

Figure 2 shows the image of Examples 3.8 and 3.9.

int S
CP (1) poin g

l /6 l/e
o —o *—0

FIGURE 2. The left triangle shows the orbit space CP(2)/T?, the right half-
moon also shows the orbit space S*/T2, and interval shows the orbit space of
CP(2)/(PU(2) x T') and S*/(T* x SO(3)).

We also give the following example which has an exceptional orbit:

ExXAMPLE 3.10. Let (S*,72) be a torus manifold defined in Example 3.9. Then, we may
naturally define the product action of two copies (S* x §* T? x T?), and this is a torus manifold
with 4 fixed points. If N and S denote the 2 fixed points in (5%, 7?), then the 4 fixed points in
(8% x S%,T? x T?) can be denoted by (N, N), (N,S), (S,N) and (S, 5).

Let Zs be the group generated by (—I5, —I5), where —I5 is the antipodal involution on S* C R®
and Iy is the identity map on R°. We note that —I5 does not preserve an orientation on S*;
however, (—I5,—I5) preserves an orientation on S$* x S*. Now we may consider the following
manifold

(8% x §1) /7o = S* xz, S*.

Since (—TI5, —I5) preserves an orientation of S* x §4 and (—I5, —I5) commutes with T2 x T-action
on S x §* we have that §* xz, S* is an oriented manifold equipped with T2 x T?-action induced
from (S* x S§4,T? x T?). Moreover, there are 2 fixed points denoted by [N : N] = [S : S] and
[N :S] =[S : N]. Therefore, (S* xz, S* T? x T?) is an oriented torus manifold (also see Theorem
2.4).

This action extends to the canonical G = SO(5) x SO(4)-action on S* xz, S*. Then we
have the following three orbit types: G([e; : e1]) = (SO(5) x SO(4))/(SO(4) x SO(4)) = S%;
G([e1 : ea]) = (SO(5) x SO(4))/(SO(4) x SO(3) x Z3) =2 S* xz, S3; and G([e1 : e1 + e3]) =
(SO(5) x SO(4))/(SO(4) x SO(3)) = S* x S3. Here, ey,...,e5 are the canonical basis of R5.
Therefore, in this case there are one singular orbit S, principal orbits $* x 2, and the exceptional
orbit S* xz, 3.

4. Crossed product of (M;,G1) by G/H and Primitive manifolds

In this section, we introduce a primitive manifold. This notion, which was first introduced by
Alekseevskii-Alekseevskii in [A1Al], plays an important role in the classification of torus manifolds
with extended actions. In this paper, we slightly modify the original definition in [Al1Al].

In order to define it, we first define the following notion:

DEFINITION 4.1. Let M; be a compact connected manifold, G a Lie group, H a closed subgroup
of G. Then, the G-manifold M = G x g M, is said to be a crossed product of My by G/H, where
H acts on M by representation p : H — Diff (M) such that ker u does not contain any normal
subgroup of G.

Here, the symbol Diff (M;) represents the set of all diffeomorphisms on Mj.
8



REMARK 4.2. If M is a crossed product of M; by G/H, then M is a fibre bundle whose base
space is G/H and fibre is M; (see Section 2.1). Therefore, we may regard M; as a submanifold
of M. Furthermore, if (M7, H, 1) has a codimension one principal orbit H/J for some subgroup
J C H, then (M, G) also has a codimension one principal orbit G x g (H/J) =2 G/J.

Now we may define a primitive manifold.

DEFINITION 4.3. A G-manifold (M,G) is said to be primitive if there is no submanifold
M (# {*}) whose nontrivial crossed product by G/H for any H C G, i.e., G xg M; such that
w: H — Diff (M) is non-trivial, is G-diffeomorphic to M.

We call a torus manifold (M, T) with primitive extended G-action (M,G) a primitive torus
mamnifold in this paper.
Let us prove the following 2" key lemma

LEMMA 4.4. Let (M,T) be a non-primitive torus manifold, i.e., M = G xg My for some
non-trivial subgroup H of G, where H acts on My via non-trivial p : H — Diff(My). Then, there
exists the decomposition T ~T' xT" such that (G/H,T") and (My,T") are torus manifolds, where
T" C H acts on My via .

PrOOF. We first prove that T'C H C G. Let m : M — G/H be the projection. Because the
projection 7 is a T-equivariant map, we have m(M7T) C (G/H)7, i.e., there exists a fixed point in
(G/H,T). Therefore, there exists an element gH € G/H such that TgH = gH. Tt follows that
¢ 'Tg C H. Hence, we have that rank G = rank H. In particular, by taking conjugation, we may
assume ' C H C G.

It follows from the method similar to that demonstrated in Section 2.2 that we may assume

G = G xaG",

H = H xG”
where G’ is a product of connected, simple compact Lie groups, and H’ is its maximal rank
subgroup. Then, we may devide T into T” x T", where T’ is a maximal torus of G’ and T" is that
of G”. Because T" acts on G/H = G'/H' almost effectively, we have 2dim T’ < dim G/H. On the
other hand, T" also acts on M; almost effectively, because T" acts on G/H trivially and T acts
on M almost effectively.

Asume 2dim7” < dimG/H. Then, we have 2dimT"” > dim M; because (M,T) is a torus

manifold. However, this gives a contradiction to that 7" acts on M; almost effectively. Therefore,
we have that

2dim7" =dimG/H and 2dim7” = dim M;.

Hence, (G/H,T') is a torus manifold. If MT" = (), then we can easily see that M7 = (. This
gives a contradiction to that (M, T) is a torus manifold. Hence, (M7, T") is also a torus manifold.
This establishes the statement. g O

Using Remark 4.2 and Lemma 4.4 together with Theorem 2.4, we have the following theorem:

THEOREM 4.5. Let (M, T) be a torus manifold with codimension one extended G-action. As-
sume (M, G) is not primitive. Then, there exist the following two manifolds: the torus submanifold
(M1, T") with codimension one extended G"-action such that (My,G") is primitive; and the ho-
mogeneous torus manifold (G'/H',T"), and (M,G) is essential isomorphic to

M =G X(mrxgry M,

a b
G=G xG" ~][SU(l:+1)x [[S0@m; +1) x G,
i=1 j=1

where G acts on the G-factor in M naturally and

a a b
H' = H S(WU(L) xU1)) xS cC Hl SU(l; +1) x H SO(2m; + 1)
9



where

b b
[[s0@m;) c s c I] S(0@m;) x O(1)).
j=1 j=1
Here, in Theorem 4.5, the quotient space G' X (g« ¢y M1 is defined by the following (H' x G")-
actions: on G naturally; and on M; by the product of the G”-action on M; and an H’-action on
M defined by representation

I H — Diﬁg//(Ml),

where Diff g (M) is the set of all G”-equivariant diffeomorphisms on Mj.
Now we note the following lemma:

LEMMA 4.6. If (X,G) and (Y, H) are essentially isomorphic, then
Dift¢(X) ~ Diff (V).

PROOF. One can easily check that if (X, G) and (Y, H) are weakly equivariantly diffeomorphic
then Diffg(X) ~ Diff z(Y"). Therefore, it is enough to show that Diff¢(X) = Diff ¢,y (X), where
N is the kernel of (X, G, ) (see Section 2.1).

Let f € Diff ¢(X). By definition, the following diagram is commute:

GXXLX

<)

Gx X —2sx

Let oy : G/N x X — X be the induced effective action. By definition and the commutative
diagram above, for [g] € G/N, we have

flen(lgl,2)) = flelg,2)) = »(g, f(2)) = en(lg], f(2))-
It follows that Diffg(X) C Diffg/y(X). On the other hand, f € Diffg,n(X) satisfies that

flen(lgl2)) = en(lgl f(2)) = @(g, f(x)).

It follows from f(¢n([g],2)) = f(¢(g,)) that f € Diffg(X), i.e., Diff¢(X) D Diff5,/n(X). This
establishes Diff¢(X) = Diff /5 (X). O O

Due to Theorem 4.5 and Lemma 4.6, in order to classify (M, T) with codimension one extended
actions, it is enough to classify the followings:
(1) primitive manifolds (M;, G”), whose restricted maximal torus T"-action (My,T") is a
torus manifold, up to essential isomorphism;
(2) representations u : H' — Diff g (My).
Henceforth, we call a torus manifold (M;,T"”) whose codimension one extended action (M7, G")
is primitive a primitive torus manifold.
We first classify the primitive torus manifolds in Section 5 to 6. To ahieve this, we need to
use the following key lemma:

LEMMA 4.7. Let (M, G) be a codimension one extended action of torus manifold (M,T), and
K;, K5 be non-principal isotropy subgroups. Suppose that there exists a proper subgroup H in G
such that K1 UKs C H. Then, there exists a submanifold My with codimension one H-action and
M =G xg My, ie., (M,G) is not primitive.

In other words, if (M, Q) is a primitive manifold and there exists a subgroup H C G satisfies
KiUKy C H, then H=G.

Proor. Using Lemma 3.1 and Theorem 3.2, there exists a decomposition M = X; U X,
where X; = G X g, D;. Because of the assumption that H # G and K; C H, we have G X, D; =
G/H xg (H xg, D;). Put My = H xg, D1 UH Xk, Dy. Then, we may regard M; C M.
Moreover, M; has the cohomogeneity one H-action by restricting (M, G) to (M1, H). Hence, we
have M = G xg M;. O O
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5. Isotropy subgroups (K1, K) in (general) torus manifolds

In order to classify primitive torus manifolds (M, T"), in this section, we characterize (G, K1, K)
appearing in the general torus manifold (M, G) with codimension one extended G-actions (with
possibly representations K C K; C G). Here, we assume G/K; N M7 # .

5.1. Singular isotropy subgroup K;. We first classify the pair (G, K1) in the general case.
At first, we prepare the following lemma needed later (also see [Ku4, Corollary 5.4]):
LEMMA 5.1. The following two statements hold:

e if the connected subgroup H in O(2l) acts on S~ transitively and its rank is I, i.e.,
rank H =1, then H ~ U(l) or SO(2l) in O(2);

e if the connected subgroup H in O(2l —1) acts on S*~2 transitively, then H ~ SO(2l—1)
or H >~ Gy and | = 4, where Gy is the exceptional Lie group and Go/SU(3) = SS.

PRrROOF. Using the classification results of transitive actions on sphere (e.g. see [HsHs, Section
1] or [AlAl Table 1]), we can easily get the statement. O O

By Lemma 3.4, we may assume that the orbit G/K; is a torus manifold. Therefore, we
can put dimG/K; = 2n — 2k;, where 2n = dim M. Moreover, with the method similar to that
demonstrated in Section 2.3, there is the following decomposition:

(3) G=G xG{ DK DK{=(K))°xG{>T =T, xTY/,

where G} and GY are products of compact, connected, simple Lie groups and tori, and T} and T}’
are their maximal tori, respectively. Using the decomposition (3), we also have

Ky = K| x Q.

Together with Theorem 2.4, there are the following identifications up to conjugation:

a b
G = [[su:i+1) x [[so@m;+1);

i=1 j=1

a b
(4) (K1) = HS(U(l) x U(l)) x [T so@m;);

j=1
Ki = [[sw®)=vw)xs,
i=1
where S is a subgroup which satisfies that

b b
[I50@m;) c s c ] S©0) x 0@2m)).

=1 =1

REMARK 5.2. Note that SO(3) = SU(2), i.e., locally isomorphic, and the covering map
SU(2) — SO(3) preserves S(U(1) x U(1)) to SO(2). Therefore, we may regard SU(2) as SO(3)
up to essential isomorphism. Namely, we may assume that [; > 2, for alli =1, ..., a, up to
essential isomorphism in the identification (4) above.

To get G/, we analyze the slice representation of the tubular neighborhood X; = G x g, D%
(see Theorem 3.2), where D21 is the 2k;-dimensional disk. In our case, the slice representation
can be denoted by the following homomorphism:

o1: K1 = Ki X Gll/ — O(2]€1)

Due to the decomposition (3), GY is in the kernel of the G-action on G/K;. Hence, G} acts on
D%k N,G/K, almost effectively via o1, because G acts on M almost effectively. Note that
rank G} = rank K{ = n —k; and rank GY = k1, because G} /K] is a (2n — 2k; )-dimensional torus
manifold. Therefore, we have that

o1 (T)) = TF C O(2k).
11



We also have that o1(GY) acts on 9D*1 = §%1~1 transitively, because (M, G) has codimension
1 extended action. It follows from Lemma 5.1 that

Gy = o1(G))~U(ky) or SO(2ky).

Here, the symbol X ~ Y represents that X and Y are locally isomorphic, i.e., the surjective
homomorphism o7 : GY — 01(GY) induces the isomorphism of Lie algebras. If k; = 1, then we
may regard SO(2) as U(1). Hence, we have

/1/ = SU(/ﬂl) X T‘1
or
" — SO(2k1) and ky > 2,

up to essential isomorphism.
This establishes the following classification of all pairs of G and the singular isotropy subgroup
Klt

LEMMA 5.3. Let (M,G) be a codimension one extended action of the torus manifold (M, T).
Let G/K; be a singular orbit such that G/K; N M7T # (. Then, we may regard G and K, as
G =G x G| and K1 = K{ x GY such that

a b
G [Isv@+1) x [] so@m; +1),

i=1 =1

[[s@a) v <s,

H
|

K

and
G/ll = SU(kl) X Tl or SO(?kl) (and k‘l > 2)

5.2. Property of principal isotropy subgroup K. In this subsection, we classify the prin-
cipal isotropy subgroup K. Note that o7 }(O(2k; — 1)) = K because K, acts on S?*1~1 = K| /K
transitively via the slice representation 0. Therefore, we need to compute the slice representation
o1. To do this, we first define the natural projections of G = [[i_, SU(l; + 1) x H?Zl SO(2m; +
1) x GY as follows:

pi:G—=8SU(;+1) fori=1, ..., g
gj :G—SO(2m; +1) forj=1, ..., b

We also prepare the following notations for the sake of brevity. Put

. (( t(; jl ) (tg :a )) ef[lS(U(l)xU(li)L

where A; € U(l;) and det A;' = ¢; for i € I = {1,...,a}. By changing the order of {1, ..., b},
we may regard the first part Jy = {1, ..., b1} in {1, ..., b} as the set satsfing that m; =1 and
¢;(K) = SO(2m;) = SO(2). Now we may define the following two notations:
vp = (ula ceey ubl)
b1 b1
e []so@m;) c ] S©@)x0@m;))
j=1 j=1

where u; € SO(2m;) = SO(2); and



where X; € O(2m;) and det X; = z; for j € J, = {b1 +1,...,b}.
The following lemma tells us the oi-images of 77, v;, and vy,.

LEMMA 5.4. The following two statements hold:
o if G} = SU (k1) x T, then the following equations hold:

oi(rr) = et e Sh
o1(vy) = ui'oouy € Sh
O’1(VJ2) S {:I:Ile} C O(2k‘1),

for some r;,s; € Z.
e if G = SO(2ky), then the following equations hold:
oi(tr) = lok;
o1(vy) = o
O'1(VJ2> S {:l:[gkl} C O(2k1)

PRrROOF. Because o1(GY) = U(k1) or SO(2k;) by Section 5.1 and K is in the centralizer of
G/ in K; by Lemma 5.3, there are the following relations:

o1(K1) C Zogar,)(U(k1)) = Z(U (k1)) = S*  (if Gf = SU (k1) x T")
where S! is the center of U(ky), i.e., the diagonal subgroup whose all entries are the same; and
01(K1) C Zo(2k,)(SO(2k1)) = Z(SO(2k1)) = {£1or, } (if G = SO(2k1))

where I, is the identity element of O(2k;), Z¢(K) is the centralizer of K in G, and Z(K) is the
center of K. It follows from the above relations that one can easily check the statements for 7;
and vy, .

We will check the statements for vj,. If GY = SO(2k;), then the statement for oq(vy,) €
{x1ax, } is straightforward, because o1(K}) C Z(SO(2k1)) = {£ Lok, }-

Assume GY = SU(ky) x Tt. Because v, € S and S satisfies that

b b
II soem;)=s°csc J[ s©O@)xo@m,)),
j=bi+1 j=bi+1

it is enough to prove o1(v,,) = Ia, for vy, € §°. Let X; € S(O(1) x O(2m;)) be the j'h-factor
of vy, € §°. If m; > 2, then one can easily check o1(X;) € {£lor, } C U(k1) C O(2k1) because
o1(K1) c St

Therefore, we may assume there exists j € {b; +1,..., b} such that m; = 1. If § = §°,
then m; > 2 for all j = by +1, ..., b because of the definitions of J; and J,. Hence, we may
also assume S/S° # {e} when m; = 1. Then, by the the definition of J; and J3, the projection
g; 1 S(O(1)xO(2m;)) = S(O(1) x O(2)) is surjective. Let ¢; : S(O(1) x O(2)) — S be an inclusion
such that

We will prove that this inclusion ¢; satisfies 01 0¢;(S(O(1) x O(2))) C {£Iax, } C U(k1) C O(2k1).

Let
J:(? é)eO(Q).

Using J? = I, and o1 (K}) C S, we have the following relation:

5) o101 (( ‘01 3 )) € (£} C U(kr).

On the other hand, the following equation holds:

o100 (( (1) )?j )) = (X;)" € §* C U(ky) € O(2ky)
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for some r € Z where X; € SO(2), because SO(2) is the abelian group. Hence, by the relation
(5), we have that

ar = (3 4)
(3 3o
(382
e ((4 )

()
v 7))

= (X))
It follows that » = 0. This establishes o1 (S°) = {Ia, }. Therefore, it follows from S/S° C (Zz)*~"
that we have o1(vy,) € {12, } O O

It follows from Lemma 5.4 and o; *(O(2k; — 1)) = K that we have the following lemma:

LEMMA 5.5. Fiz the slice representation o1 : K1 — O(2k1). Then, the following two state-
ments hold:

o if G| = SU (k1) x T, then K is the following subgroup:

a O r r s sp -1
{(TI,VJl,I/J2<O A)vz)‘t11"'ﬁaauf"'UbllUl(VJz)ZV:a ’

where A € U(ky — 1) such that det A=a"', z € T and vy € Z;
o if G = SO(2ky), then K is the following subgroup:

0
{(TI,Z/JI,VJZ, < g X )) ‘ o1(vy,) € {£1ag, } such that o1(vy,)r = -|—1}7
where X € O(2k; — 1) such that det X = z.
Here, we regard o1(vy,) € {£1ak, } as 01(vy,) € {£1} C Z in the relations above.

This establishes the classification of the principal isotropy subgroups.

6. Isotropy subgroups (G, K;, Ko, K) in primitive torus manifolds

In this section, we characterize (G, K1, K2, K) (with possibly inclusions K C K, C G for
s =1,2) appearing in primitive manifolds.

6.1. Preliminary. As a preliminary to characterizing such (G, Ky, K», K), we show the de-
composition of Ky in this subsection (see Lemma 6.1).
Let H be one of the following proper subgroups in G:

b

HY = T] SU@+1) x SWUQ) x Ulk)) x [] S0@2m; +1) x GY;
i€I(k) ke

HY = HSUZ+1 [] S0@m; +1)x S(0(1) x O@2my)) x GY,
=1 jeI(k)

where I(k) = {1,...,a} \ {k} and J(k) = {1,...,b} \ {k}. Due to the classification of K; in
Section 5.1 (see Lemma 5.3), we have K; C H for all k.

Henceforth, we take an isotropy type K> as a subgroup of G such that K C K; N K5, where
K is the subgroup appearing in Lemma 5.5. Assume the projections of K5 satisfy one of the
following relations for some 7 or j:

pi(K2) € S(U(1) x U(L));

q;(K2) € S(O(1) x O(2m)).
14



Then, we can easily check that Ko C HY or Ky C Hjo. Because K1 C HY N HJO for all 4,5, we
have that Ky UKy C HY or HJO for some i or j. Therefore, by virtue of Lemma 4.7, we have that
(M, @) is not primitive. Hence, it follows from Lemma 5.5 that

SU(l;) Cpi(K) Cc S(UQ) xU(l,)) € pi(K2) € SU(I; +1);

SO(2m;) C ¢;(K) C S(O(1) x O(2m;)) € ¢;(K2) C SO(2m; + 1),
foralli=1, ..., aand j =1, ..., b. As is well known, subgroups above are p;(K3) = SU(l; +1)

for [; > 2 (see Remark 5.2) and ¢;(K2) = SO(2m;+1). Hence, the natural projection p’ : G — G
satisfies that

a b
P(K2) =Gy =[[sUi+1) x [[sO@m; +1).
i=1 j=1

Now we may prove the following lemma:

LEMMA 6.1. If (M, Q) is an extended action of a primitive torus manifold and G decomposes

into G| x G appearing in Lemma 5.3, then there exists the following decomposition:
Ky =G] x KY,

where KY is the image of Ko by the natural projection p” : G — GY. Furthermore, we have that
P induces the isomorphism G/Ky = G /K.

PROOF. By using p/(K3) = G, we have that the surjective map

G/Ky — GY/Ky
induced from p” is isomorphism. Moreover, K5(C G} x K satisfies that
dim Ky = dim G x K¥.

This implies that (G} x {e}) N Ky = H x {e} is a maximal rank subgroup of G} x {e} such that
G'/H is finite. Because G/ is a product of SU(l; + 1) and SO(2m; + 1), i.e., product of simple
Lie groups, by using the arguments demonstrated in Section 2, we have H = G}. Therefore,
G' x {e} C Ko. This implies Ky = G} x KJ. O O
Now there are the following two cases:

e G/K, contains a T-fixed point, i.e., G/Ky N M7T # ();

e otherwise, i.e., G/Ko N MT = 0.
From the next subsection, we will analyze each case.

6.2. The case when G/K;NM{ # (). Assume G/Kj contains a T-fixed point. Similarly to
the case of G/K7, we have that G/K3 is a torus manifold. Note that G/Ky = GY/K} by Lemma
6.1. Therefore, we can put dim G/Ky = 2n — 2ky for some ky € N. Now there are two cases:
G = SU(ky) x T* and SO(2k1) (k1 > 2) by Section 5.1.

6.2.1. The case when G = SU (k1) x T'. Suppose G7 = SU (k1) x T*. Because GY/KY is a
torus manifold, it follows from Lemma 5.5 and K C K> that we may put

Ky =S(U(1) x Uk — 1)) x T* (ko > 1)
or
Ky =GY = SU(k)) x T* (ky = ).

Assume K§ = S(U(1) x U(ky — 1)) x T*. In this case, the kernel of the G-action on G/K3 =
G /KY contains G} x T'. With the method similar to that demonstrated in Section 5.1, the kernel
of the G-action on G//Kj acts on Ko/K = S?k2~1 transitively and almost effectively via the slice
representation oo : Ky = G} X KY — O(2ky). Together with Lemma 5.1, we have that

JQ(G/l X Tl) = U(kg)
Moreover, we have that ker oo N (G x T'!) is finite, because the G-action on M; is almost effective.
Therefore, we may assume og({e} x T!) = S, where {e} is the identity element in G and S! is
the center of U(kz). Namely, o2 induces the representation o} : G — PU(kz) such that ker o)
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is finite, where PU(k2) = U(ks)/S'. Note that G is a product of Lie groups. Let us recall the
following well-known lemma ([MoSa, Theorem I']):

LEMMA 6.2. Let X and Y be two compact connected Lie groups and let G = X X Y where
N is a finite normal subgroup of X x Y. If G acts transitively on the n-dimensional sphere S™
then one of the two subgroups of G corresponding to X and Y acts transitively on S™.

Due to Lemma 6.2, there is the factor in G such that the restriction of o to this factor induces

the surjective homomorphism onto PU(ks). Together with the fact that ker o4 is finite, we have

1 =SU(; +1), SO(2m1 + 1) or {e} with ko = 1. Recall that if Spin(2m + 1) ~ SU(m + 1)
then m =1 and Spin(3) ~ SU(2) (see e.g. [MiTo]). Therefore, we may put

Here, we note the following two facts: if ko = 1 then Iy = 0; if ks = 2 then G} = SO(3), i.e.,
mq = 1 but this case can be regarded as G} = SU(2) up to essential isomorphism by Remark 5.2.
This establishes that
G = SU(ky) x SU(ky) x T,

K1 = S(UQ)xU(ks — 1)) x SU(k1) x T,

Ky = SU(k2) x S(UQ) x U(ky —1)) x TH,
and k1 + ko — 1 =n.

Assume K} = G = SU(k;) x T*. With the method similar to that demonstareted as above,

we have

o2(G) x G) = Ul(ky) = U(n)

such that ker o9 is finite. Similarly to the case above, o3({e} xT") = S! and there are the following
two cases:

05(GY) = PU(n);
and
o4 (SU (k1)) = PU(n),

where ol : G} x SU(k1) — PU(n) is the induced representation. Note that ker ¢} is finite in
the both cases. Therefore, if 05(G]) = PU(n) then we have k; = 1 and I3 +1 = n; and if
04(SU (k1)) = PU(n) then we have k1 = n and G} = {e}. This establishes that

G=Ky, = SU(n)xT",
Ki = SUQ)xUmn-1))xTrandk; =1, kp=n
or
G=Ky=K =SU(n) xT"and k; = ky = n.

Note that when G = Ky = SU(n) x T* and K; = S(U(1) x U(n — 1)) x T', we may regard this
case as the case when G = SU (kq) x SU (k1) x T, K1 = S(U(1) x U(ka — 1)) x SU (k1) x T* and
K2 = SU(k2) X S(U(l) X U(kl — 1)) X Tl with kl = 1, ]CQ =n.

6.2.2. The case when G = SO(2k1). Suppose that G = SO(2k;) (k1 > 2). Similarly to the
case when G = SU (k) x T, we have that

KY = Q" = SO(2k;)
and

and keroy is finite. Therefore, by using k1 > 2 and Lemma 6.2, we have that k1 = ko and
G = {e}. Note that n = ks because G/Ko = {x}. This establishes that

G:Kl :KQ :SO(QTL) and kl :kgin.

Consequently, we have the following proposition:
16



PROPOSITION 6.3. Suppose that (M?",G) is a primitive torus manifold and G/Ky contains
a T-fized point. Then, there are the following three cases:
(1) G = SU(k1) x SU (ko) x T, Ky = SU (k1) x S(U(1) x U(ky — 1)) x T, Ky = S(U(1) x
U(ky — 1)) x SU(kz) x T' and

_ a 0 b 0 —1p-1 _ -1 g1
K = {((o A)’(O B),a b )‘detA—a det B=b

where Ac U(ky — 1), BeU(ka —1) and ky + ka — 1 =mn;
(2) G=K;=Ky=S8U(n)xT" and

(5 2 s

where A € U(n — 1);
(3) G=K; =Ky =50(2n) and K = 5S0(2n —1).

PROOF. By the the argument before this proposition, we have the three possibilities of
(G, K1, K») appearing in the statement. So, it is enough to show the principal isotropy subgroups
K in each case.

For the 3'¢ case of (G, K1, Ks), by using Lemma 5.5, it is straightforward to get K.

For the 15 case of (G, K;, K3), by using Lemma 5.5, we have

(5 2G5 4) )

where A; € U(ky — 1) such that det A} =t7', A € U(k; — 1) such that det A = a~ ', z € T" and
1,7 € Z.

Then, the kernel of the G-action on M; contains the subgroup {e} x Z,|, where {e} C
SU(kg) x SU(ky) and Zj, is the cyclic group of order |y| > 1 or Zg = T* for v = 0. Because G
acts on M; almost effectively, the case where v = 0 does not occur. Moreover, it is easy to check
that all the cases where v # 0 are essentially isomorphic. Hence, we may regard v = 1 up to
essential isomorphism.

Moreover, in this case, we can also use Lemma 5.5 by interchanging the role of K; and K.
Therefore, by using the arguments above again, we also have

(5 2) G 4) o)

for some ro € Z. Hence, we can easily get r; = ro = 1 by using the two K’s above. This establishes
the 1%t case of the statement. Similarly, we can show the 2°¢ case. O O

6.3. The case when G/K;NM{ = (), I: preparations. We next assume G/Ko N M{ = .
Then, T' ¢ Ko, i.e., rank Ky < rank G = n. Because we have rank K = n — 1 by virtue of Lemma
5.5, we also have

rank Ko = n — 1 =rank K.

Therefore, we can put Ko/K = S2%2=2 ie. the (2ky — 2)-dimensional sphere, and dim G/K, =
2n — 2koy + 1 for ko > 1.

Recall Ky = G x KY such that G/K, = G /K% by Lemma 6.1. Moreover, G} = [[{_, SU(l;+
1) x ngl SO(2mj + 1) and K4 C SU (k1) x T* or SO(2k1)(= GY). Therefore,

rank Kg =ky— 1.

We also have that G} x K acts on Ko/K = S%2=2 transitively via oy : Ky = G} x K§ —
O(2ky —1).

Using Lemma 6.2, there are the following two cases:

e one of the factors in G acts transitively on S?+2=2;
e K acts transitively on S%%272.
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Moreover, using Lemma 5.1, we have that o2(K9) = SO(2ky — 1) or 02(K3) = G2 and ke = 4,
where K9 is the identity component and G2 is the exceptional Lie group. The purpose of this
subsection is to prove the following lemma:

LEMMA 6.4. If G/KoN M{ =0, then
Jg(Kg) = SO(2I€2 - 1),
for some ko > 1.

PROOF. Assume o9(K§) = G3. Note that Go is the simply connected, simple Lie group
and G is a product of simple Lie groups or {e}. Because there are no factors in G} which is
locally isomorphic to Gz, we have that oo((K%)°) = Ga. Then, we also see that the covering
group Ko = (K4)° in Section 2.3 of (K4)° has a Go-factor. Let Ko = G2 x X, where X is a
product of simply connected simple Lie groups and tori. Now there are the following two cases:
K4 C SU(k1) x T* or SO(2k1).

If KY C SU(ky) x T?, then (KJ)° contains the following group as a maximal rank subgroup
by Lemma 5.5:

K" — {(( - )z) € S(UW) x U(ks — 1)) x T'| a27:1}7

where we can take v as a non-zero integer because rank K5 = k; — 1. Note that the covering
group K” in Section 2.3 of K" is SU(k; — 1) x T'. Therefore, by Lemma 2.3, we have that
SU(ky —1) x Tt € K3 = Go x X. Hence, in this case, we have ky = 4 and X = T*.

Let p: G — SU(ky) = SU(4) C G} = SU(4) x T be the natural projection. Recall the
covering projection ¢ : Ko — (K4)° appearing in Section 2.3. Then, we have that

p(c(SU(3))) C p(c(G2)) C p((K3)°) € p(G) = SU(4).
Using Lemma 5.5 (also see K" above), we also have
p(c(SU(3))) = SUB) C p(c(Gz2)) C SU(4).

Therefore, p(c(G2)) is a non-trivial subgroup in SU(4). Since G5 is the simple Lie group, we also
have that

dimp(c(G2)) = dim G = 14.

It follows that there exists a subgroup H C SU(4) such that dim H = 14. However, this also
implies that there exists H C SU(4) such that SU(4)/H = S!, because SU(4) is compact and
dim SU(4) = 15. As is well known, SU(4) can not act on S! non-trivially (see e.g. [Ku4, Theorem
5.2, 5.3]). Therefore, this gives a contradiction.

If Ki) € SO(2k1), then SO(2k1 —1) C K by virtue of Lemma 5.5. Therefore, by Lemma 2.3,
we have that Spin(2k; — 1) C Ko = G2 x X. Note that SO(2k; — 1) C (K4)° is a maximal rank
subgroup because rank (K%)° = k; — 1, i.e., Spin(2k; — 1) C Ky = G2 x X is a maximal rank
subgroup. Using Lemma 2.3 again, it is easy to check that

Spin(2k; — 1) C Gs
and
X = {e}.

Hence, with the method similar to that demonstrated in the case KY C SU (k1) x T, we have
that k1 = 2 and K9 = G} x ¢(G2). This implies that there exists a subgroup H C SO(4) = G
such that ¢(G3) = H; however, this gives a contradiction because dim H = dim ¢(G3) = 14 and
dim SO(4) = 6.

This establishes the statement of this lemma. g g

In order to classify the case when G/Ko N M{ = (), we will decompose into the followng two
cases:
e (G/K> is an exceptional orbit;
e G/K> is a singular orbit.
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Before we will analyze for each case above, we remark the following:

REMARK 6.5. Because G/K» = G /K, we see that G is in the kernel of G-action on G/Ks.
Together with the assumption that G = G} x GY acts on M; almost effectively, this implies that
G acts on S?*2=2 almost effectively via o9 : Ko = G} x KY — O(2ka — 1). Namely, ker oo N G}
is a finite normal subgroup of Gj.

6.4. The case when G/K,NM{ = (), II: G/K; is an exceptional orbit. Assume ko = 1,
i.e., G/K5 is an exceptional orbit. Then, we have the following proposition:

PROPOSITION 6.6. Suppose that (M, G) is a primitive torus manifold and G/Ks does not
contain a T-fixed point. If ko = 1, then there are the following two cases:

(1) G =K, = SU(n) x T,

KQ{(< ‘ 2),2) € S(U () x Un = 1)) x T'| azjzl}

and
K:{(( 0 Sx >z> e SU(1) xU(n—l))le‘ az:l}.
(2) G=K; =50(2n), Ko =5(0(1) xO(2n —1)) and K = SO(2n —1).

PROOF. Because G is a product of connected, simple Lie groups and ker oo N G is finite (see
Remark 6.5) for o9 : Ko = G} x K§ — O(2ky — 1) = O(1) ~ Zo, we have G} = {e}, i.e.,

G=G{ =K.
Therefore, we have k1 = n. Moreover, Ky = KJ and o9(K}) = O(1) ~ Zy. This implies that
keroy = K and K4 /K ~ Z5. By Lemma 5.3, there are the following two cases:
G=G!=8U(n)xT"
or
G =GY{ =50(2n).
Assume G = K; = SU(n) x T'. Using Lemma 5.5, we have that

K{((S 2),,2) eS(U(1)xU(n1))xT1’az71},

where we can take v as a non-zero integer because rank K = n — 1. Moreover, we have that
K C Ky C Ng(K)=S(U(1) xU(n—1)) x T,

where N¢(K) is the normalizer of K in G. We denote an element in Ng(K) = S(U(1) x U(n —
1)) x T! by (a, 2) for the sake of brevity, i.e., K = {(a,2) | az? = 1}. Define the representation
a:S{U1)xUn—1))x Tt — St by

ala,z) = az’.

Then, by definition, ker &« = K. Therefore, together with Ko/K ~ Z, we have that K C Ks C
a~t({£1}). Tt follows that

K2:{<( ‘ Sl)z) € S(U (1) x Uln—1)) x T'| azv:ﬂ}.

It is easy to see that we may regard v = 1 up to essential isomorphism. This establishes the 15¢
case in the statement.
Assume G = K; = SO(2n). Then, by Lemma 5.5, we have that K = SO(2n — 1). Because
K C Ng(K) =5(0(1) x O2n —1)) and Ko/K ~ Zs, we have that Ko = S(O(1) x O(2n — 1)).
This establishes the 2" case in the statement. O O
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6.5. The case when G/K, N M{ = (), III: G/K, is a singular orbit. Assume ko > 1,
i.e., G/K, is a singular orbit. Because Ky = G} x K, there are the following two cases by using
Lemma 6.2 and 6.4:

e 05(GY) = SO(2ks — 1); or
o 03((KY)°) = SO(2ky — 1).

Suppose that oq((K%)°) = SO(2ky — 1). We first prove this case does not occur (see Lemma
6.7).

Because 02(GY) C Z(02((KY)°)) = Z(SO(2ky — 1)) = {£1} and G’ is connected, we have
G' C keroy. Because ker oy N G} is finite (see Remark 6.5), we see that G} = {e}. Therefore,
using Lemma 5.3, we have

G:KlzG/{:SU(kl)XTl
or
G =K, =G =S0(2k).

Moreover, we have that k1 = n, Ky = K (by Lemma 6.1) and rank K9 = rank K° =n — 1.
Because 02((K%)°) = 02(K9) = SO(2ke — 1), it is easy to check that the covering group
Ko = K$ in Section 2.3 of K9 can be decomposed into as follows:

ICQ = Spin(ng — 1) X L,

where L is a product of simply connected, simple Lie groups and tori. In other words, the covering
map

c:Spin(2ke —1) x L — K%
satisfies that o3 0c(Spin(2ke —1)) = SO(2ke — 1) and ¢(L) C ker o2. Because rank K° = rank K3,

it follows from Lemma 2.3 that K¢ = Spin(2ke — 2) x L and
K° = ¢(Spin(2ky — 2) x L).
We claim the following:
CramM 1. In the conditions above, we have G = Ky = GY = SO(2ky).

PROOF. Assume G} = SU(n) x T'. By Lemma 5.5, we have that

K":K:{((S 2)2’) eS(U(l)xU(n—l))le‘ Z'Y:al}

where v is a non-zero integer. Therefore, the covering group K in Section 2.3 of K can decompose
into SU(n — 1) x T'. Hence, in this case, there is an isomorphism between SU(n — 1) x T and
Spin(2ke — 2) x L. As is well known, SU(l;) ~ Spin(l2) if and only if (I1,l2) = (2,3) and (4,6)
(see [MiTo]). Together with the assumption ko > 1, there are just the following two cases:

e ko =2and L ~ SU(n—1);
o (n,kz) = (5,4) and L ~T".

If ko =2 and L ~ SU(n — 1), then Ky = Spin(3) x SU(n—1). Let ¢ : Ko — G = SU(n) x T*
be the natural inclusion. Then, there exists the representation

voc: Spin(3) x SU(n —1) — SU(n) x T*.
Because ¢ o ¢(Spin(2) x SU(n — 1)) = 10¢(SU(n—1) x T') = K C SU(n) x T*, we have that
toc(SU(n—1))=SU(n—1)C SU(n)
and

toc(Spin(2) x {e}) ~ S
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This also implies that ¢ o ¢(Spin(3)) C Zsym)yxr: (SU(n — 1)) € SU(n) x T*. By an easy com-
putation, we have that Zgyn)xr (SU(n — 1)) ~ T2. This implies that ¢ o ¢ provides a repre-
sentation from Spin(3) to T?. Because Spin(3) is the simple Lie group and T2 is the commu-
tative group, such representation is just the trivial representation. This gives a contradiction to
toc(Spin(2)) ~ S*.

Therefore, we have (n, ko) = (5,4) and L ~ T'. Then, Ko = Spin(7) x T' and there is the
the sequence

K C ¢(Spin(7) x T') = K§ ¢ G = SU(5) x T".

Let p: SU(5) x T' — SU(5) be the natural projection. Then, we have p(K) = S(U(1) x U(4))
because v # 0. Because we may regard p is the quotient representation by {e} x T, the dimension
of p(H) is dim H—1 or dim H for all subgroup H in G. Therefore, there is the following possibilities
of dimension of p(K§):
dim p(K$) = dimp o ¢(Spin(7) x T') = dim Spin(7) = 21
or
dim p(K$) = dimp o ¢(Spin(7) x T') = dim(Spin(7) x T*) = 22.

On the other hand, we have S(U(1)xU(4)) C p(K9) C SU(5). Asis well known, S(U(1)xU(4)) is
a maximal rank maximal subgroup of SU(5) (see e.g. [MiTo]). This implies that S(U(1)xU(4)) =
p(K9) or p(K3) = SU(5). However, because dim SU(5) = 24 and dim S(U(1) x U(4)) = 16, this
gives a contradiction to the possibilities of dimension of p(K$) as mentioned above.

The argument above establishes that G = K; = GY = SO(2n) O O

Therefore, by this claim,
G =K, =G =S50(2n).
By Lemma 5.5, we have that
K°=K = SO(2n - 1).
Using K C Ky C G, Ko/K = 5?0272 dim G/Ky = 2n — 2ky + 1 and ky > 1, we also have that
SO(2n —1) € Ky C SO(2n).
Now we have o9(Kg) = SO(2ky — 1). In particular, we have o, ' (SO(2ky —2)) = K° = K =
SO(2n — 1). This implies that there is a surjective homomorphism from SO(2n — 1) to SO(2ks —
2). Let us prove there is no such homomorphism. If there exists a surjective homomorphism
from SO(2n — 1) to SO(2ky — 2), there exists a transitive SO(2n — 1)-action on S?¥2~3 via this
homomorphism. However, by using the classification of transitive actions of spheres (see [HsHs,
Section 1] or [A1Al, Table 1]), the transitive SO(I)-action on S?*2=3 is just | = 2ky — 2. Therefore,
there is no such homomorphism. This gives a contradiction. Consequently, we have
UQ((KQI)O) 75 50(2]{32 - 1).
In summary, we have the following lemma:
LEMMA 6.7. If G/KoN M{ =0 and G/K> is a singular orbit, i.e., k1 > 1, then
Ky, =G} x K}
and
o2(GY) = SO(2ky — 1).

By Lemma 6.7, we have o9(G}) = SO(2ks — 1). Because G} is a product of simple Lie
group, we may assume o3(SU(l; + 1)) = SO(2ks — 1) or 02(SO(2m; + 1)) = SO(2ky — 1) by
Lemma 5.3 and 6.2. As is well known, if oo(SU(l; + 1)) = SO(2ke — 1) then Iy = 1 and ky = 2.
However, this is a contradiction to the assumption I; > 2 (see Remark 5.2). Therefore, we have
that JQ(SO(le + 1)) = 50(2162 — ].)

Because ker oo N G is finite (see Remark 6.5) and G is connected (see Lemma 5.3), we get

G =S02my +1) = SO(2ks — 1),
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iie, a=0,b=1and m; = ks — 1. Now we may prove the following proposition:

PROPOSITION 6.8. Suppose that (M, G) is a primitive torus manifold and G/Ks does not
contain a T-fixed point. If ke > 1, then there are the following four cases:

(1) G =SO(2ky — 1) x SU(ky) x T, Ky = SO(2ky —2) x SU (k1) x T,

K2:50(2k2—1)><{<<g g>7z>‘z:a1}
K:SO(2k2—2)x{(<g 2),z>‘z:a‘1};

(2) G =S0(2ky — 1) x SU(ky) x T, K1 = S(O(1) x O(2ky — 2)) x SU (k1) x T?,

K250<zk21>x{((8 21)Z)‘ izal}
(5 )5 )

(3) G = SO(2I€2—1)XSO(2]€1), K1 = SO(2]€2—2)XSO(2]€1), K2 = SO(QkQ—l)XSO(le—].)
and K = SO(2ky — 2) x SO(2k; — 1);

(4) G = SO(2k2 — 1) X SO(2]€1), K, = S(O(l) X O(ng — 2)) X 50(2]{31>, Ky = 50(21{32 —
1) x S(O(1) x O(2k; — 1)) and

_ z 0 y 0 _ _ _
K_{<<O X)’(O Y))’detX—m,detY—y, xy—l},

where k1 > 2.
Here, in both of the cases above, K C K1 N K.

and

and

PRrOOF. Using the argument before this proposition and Lemma 5.3, we have that
G =S0(2ky —1) x GY
and
K; = SO(2ks —2) x GY
or
K1 = S(0(1) x O(2ke — 2)) x GY,
where G = SU (k1) x T or SO(2k1). Moreover, by Lemma 6.1 (also see Lemma 6.7), we have
Ky = SO(2ky — 1) x KY.

Assume K = SO(2ky —2) x GY. If GY = SU (k1) x T*, then it follows from Lemma 5.5 that
we may regard K as follows up to essential isomorphism:

(6) K:SO(2k2—2)x{<(8 g),z)‘z:a_l}.

If G = SO(2ky), then it follows from Lemma 5.5 that
(7) K = 80(2ky —2) x SO(2ky — 1).

Recall that Ko/K =2 S§?%272 and G} = SO(2ky — 1) acts on Ky/K transitively. Let p” : Ko =

G x KY — K be the natural projection. Then, one can easily show that p”(K) = KY (e.g. see

[Ku2, Lemma 8.0.2]). Together with (6) and (7), we have the 15¢ and 3'® cases in the statement.
Assume K; = S(O(1) x O(2ke — 2)) x G{. If G} = SU (k1) x T, by Lemma 5.5, we have

e (2 9)(8 %)) =),
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Note that o1(z) € {£1}. With the method similar to that demonstrated as above, we also have
o1(x) =x==1

K2250(2k2—1)x{<<8 2)2)‘ :i:z:al}.

This establishes the 2°¢ case in the statement. Similarly, we have the 4*" case in the statement.
O O

and

REMARK 6.9. Propositions 6.3, 6.6 and 6.8 also say that if we determine the slice representa-
tion o7 then another slice representation oo is determined automatically. Moreover, oy is uniquely
determined once we choose (G, K1, Ky, K) up to essential isomorphism.

7. Classification of primitive torus manifolds

In this section, we claasify the primitive torus manifolds. The goal of this section is to prove
the following theorem:

THEOREM 7.1. Let (My,T) be a primitive torus manifold. Then, a codimension one extended
action (M, Q) is essentially isomorphic to one of the followings:

[ | M, | G | ki ko |
(1) P(CFr @ C*2) S(U(ky) x U(ky)) kiko >1, ki + ko >3
2) S(C* @ R) U(k) k=Fk =ky>1
(3) S(R?* @ R) SO(2k) k=k =ky>1
(4) | S(CF @R?*="T) U(ky) x SO(2ky — 1) ky>1, ko >2
(5) | S(R*+ @ R?*2=1) | SO(2k;) x SO(2ky — 1) ki >1, ko >2
(6) RP((Ckl @RQkQ_l) U(Iﬁ) X SO(2]€2 — 1) ki >1,k>1
(7) | RP(R?* @ R?F2=1) | SO(2k1) x SO(2ky — 1) ky > 1, kg > 1

Here, each G in the table acts on each My standardly.

7.1. Attaching maps. We have already seen (G, K1, K3, K) and two slice representations
o1, 02 in Section 5 and 6. Moreover, by the slice theorem (Theorem 3.2), we also get the tubular
neighborhoods X; and X3 of G/K; and G/ Ks, respectively. Due to Lemma 3.1, a primitive torus
manifold M; decomposes into XU X5 equivariantly. Therefore, in order to show Theorem 7.1, it is
enough to classify the attaching map f : 9X; — 90X, and construct a G-manifold M (f) = X1U; X>
attached by f. Note that 0X; & X5 = G/K; therefore, we may regard 0X; and 90X, as G/K.
Moreover, the attaching map f must be a G-equivariant diffeomorphism because G-actions on
X, and X, extends to the G-action on M(f) = X; Uy X5. This implies that the attaching map
f:G/K — G/K may be regarded as an element in

Autg(G/K) ~ Ng(K)/K,

where Ng(K) is the normalizer of K in G (see [Ka]).
Let f and f’ be two attaching maps. In order to check whether M(f) and M(f’) are equiv-
ariantly diffeomorphic, the following lemma is useful (see [Uc, Lemma 5.3.1]).

LEMMA 7.2 (Uchida’s criterion). Let f, f' : 0X1 — 0Xa be G-equivariant diffeomorphisms.
Then M(f) is equivariantly diffeomorphic to M(f') as G-manifolds, if one of the following con-
ditions are satisfied:

(1) f is G-diffeotopic to f’;
(2) f71f" is extendable to a G-equivariant diffeomorphism on Xi;
(3) f'f~ 1 is extendable to a G-equivariant diffeomorphism on Xo.

As in [Ga], we call this lemma the Uchida’s criterion. Note that this criterion also holds for
non-orientable manifolds.
Because of the Uchida’s criterion (1), it is sufficient to compute
N = Nea(K)/Ng(K)
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instead of dealing with the whole N (K)/K, where N&(K) is a connected component of Ng(K).

7.2. Construction of primitive torus manifolds. In this subsection, we compute Ng(K)/N&(K)
and consturuct the primitive torus manifold (M7, G) with codimension one extended G-action. Re-
call that (G, K1, K2, K) are classified as in Proposition 6.3 (1), (2), (3), Proposition 6.6 (1), (2)
and Proposition 6.8 (1), (2), (3), (4). We call each case CASE I-(1), (2), (3), CASE II-(1), (2)
and CASE II1-(1), (2), (3), (4), respectively. It is easy to check the following lemma:

LEMMA 7.3. The following statements hold for each N' = Ng(K)/N&(K):

e if (G,K) is one of the pairs in CASE I-(1), (2) and CASE II-(1), then N = {e};
e if (G, K) is one of the pairs in CASE I-(3) and CASE II-(2), then N ~ C;
e if (G,K) is the pair in CASE III-(1), (2), then N ~ F;
e if (G,K) is the pair in CASE III-(3), (4), then N ~ F x C,
where
F ~5(0(1) x O(21))/S0(21)
and

C~{£ly} =5S(0(1) x 020 —1))/SO(2l — 1),
i.e., C is the center of G.
We next prove the following lemma:
LEMMA 7.4. Let f be an element of N in Lemma 7.3. Then,
M(f) = M(e),
where M(g) = X1 Uy Xo (9 =e, f) and e € N is the identity element.

ProOF. We will check Uchida’s criterion (2) (Lemma 7.2), i.e., for all f: G/K — G/K € N,
f = eo f extends to a G-equivariant diffeomorphism X; — Xi, where X; = G x, D?*1. Note
that the attaching map f € N can be regarded as f : G/K — G/K by f(¢K) = gfK, i.e., the
multiplication from the right-hand side.

We first consider the case where f € C C N, ie., f € N can be taken as an element in the
center of G. Because fg = gf for all g € G, the following map is well-defined and commute:

G xg, Ki/K — == G/K

foldl fl

G xg, Ki/K — == G/K

where 0X1 = G xk, K1/K, n([g, kK]) = gkK and (L; x Id)([g, kK]) = [fg, kK]. Note
that all maps in the diagram above are G-equivariantly diffeomorphic. The diffeomorphism Id :
Ki/K = 82—l 5 §2ki—1 =~ [ /I obviously extends to Id : D** — D?* as the K;-equivariant
diffeomorphism. Therefore, we have that Ly x Id extends to the G-equivariant diffeomorphism
G xg, D**' = X; — X| = G xg, D***. Hence, M(f) = M(e) by Uchida’s criterion (2).

We next consider the case where f € F C N, i.e., CASE III. By Proposition 6.8, f € F can
be taken as an element (A,I) in G} x GY such that ASO(2ky — 2)A~! = SO(2ky — 2), where
A € G} = SO(2ky — 1) and I € GY is the identity element. Moreover, using Lemma 5.4 and
Proposition 6.8, there are the following three cases:

o if K{ = SO(2ky —2), then G/K = G xg; (K1 /K) = §?%272 x §(V) and X; = §%k272 x
D(V);
e if K{ = S(O(1) xO(2ky—2)) and oy is tirvial, then G/K = G x g1 (K1 /K) = RP?*272 x
S(V) and X; 2 RP?#2=2 x D(V);
o if K1 = S(O(1) x O(2k2 — 2)) and oy is non-tirvial, then G/K = G} X (K1/K) =
S2k2=2 5, S(V) and Xy =2 §%F272 x5, D(V),
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where, in the final case above, Zy acts on S?*2=2 and on D(V), S(V) via the representation to
{£1}. Here, V = C* or R?*1 §(V) = K, /K is its unit sphere, D(V) is its unit disk. Let
N xr S(V) be the manifolds appearing above which are diffeomorphic to G/K, i.e., N = §2k2—2
or RP?*2-2 and I' = {e} or Zy. Therefore, f = (A,I) : G/K — G/K may be regarded as the
induced equivariant map from

(A,1d) : N xp S(V) — N xp S(V),

where A is an equivariant involution on N and Id is the identity map on S(V). Namely, there
exists the following commutative diagram:

N xp S(V) —> G4 xg; K1/K —"~G/K

(E,Id)i Ra xldl fl

N xp S(V) —> G4 xg; K1/K "~ G/K

where (R4 x Id)([g, kK]) = [gA, kK]. Now Id : S(V) — S(V) extends to Id : D(V) = D(V)

equivariantly. Hence, (A, ) extends to the G-equivariant diffeomorphism on X; = N xp D(V).
This establishes M(f) = M (e) by Uchida’s criterion. O O

Remark 6.9 and Lemma 7.4 say that the primitive torus manifold (M7, G) is uniquely deter-
mined by (G, K1, K3, K) up to essential isomorphism. Hence, in order to classify the primitive
torus manifolds, it is enough to find G-manifolds with isotropy groups Ki, K3, K appearing in
CASE I-(1) to CASE III-(4).

Let us find the manifold with G-action for each case.

7.2.1. CASE I-(1). Set (G,K;, K>, K) as in Proposition 6.3 (1). Namely, we may find a
manifold with G = SU (k1) x SU (k2) x T*-action whose isotropy subgroups are K, K2, K appearing
in Proposition 6.3. Let M; = P(C* @ C*2) be the complex projectivization of C** @ Ck2, i.e.,
P(Ck @ Ck2) = CPM+*2~1 Now we define the G-action on M; as follows: SU(k;) acts on
the CF-factor standardly; SU(ky) acts on the CF2-factor by w ~ Bw, where w € CF? and
B € SU(ky) is the complex conjugation of B € SU(ks); and T acts on C*¥* @ C*2 diagonally
except the first coordinate of C*2. Then, the isotropy subgroups are Glo,e;) = K1 Gley o) = Ko
and G|, ,) = K appearing in Proposition 6.3 (1), where (e;,0) represents the first coordinate of
C*1, (0, e;) represents the first coordinate of C*2 and [z, y] represents the projective coordinate in
P(Ck @ Ck2). By using the surjective homomorphism

SU (k1) x SU(ko) x T' —  S(U(k1) x U(ks))
W

w
Ath> 0
(A7 B7 t) — ( 0 Etikl ) ’

we have that the G-action defined above is essentially isomorphic to the natural action of S(U (k1) x
U(ks)) on P(Ckt @ C*2), where

S(U (k1) x Ulky)) = {( 61 g ) € SU(ky + k'Q)‘ AcU(k),B¢€ U(/@)} .

This implies that (M7, G) of CASE I-(1) is essentially isomorphic to
(P(C* @ C*2), S(U (k1) x U(ks))),

where k1, ko > 1 and ky + k2 — 1 = n. This establishes Theorem 7.1 (1) if n > 2.

If n =1, ie, ki = ko = 1, then we easily obtain that (P(C & C),S(U(1) x U(1))) and
(S(C®R),U(1)) are essentially isomorphic. So we may regard n > 2, i.e., k1 + ko > 3, in this
case. We shall discuss (S(C @ R),U(1)) in the next CASE I-(2).
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7.2.2. CASE I-(2). Set (G, K1, Ks, K) as in Proposition 6.3 (2). Let M; = S(C" & R) be
the unit sphere in C" @ R, i.e., S(C" ® R) & S$?". Then, M; has the natural G = SU(n) x T"-
action on the coordinate of C"* (where T acts on it by the scaler multiplication) and its isotropy
subgroups are G(o,1) = K1 G(o,—1) = K> and G, oy = K appearing in Proposition 6.3 (2), where
(z,7) € C™ @ R. Moreover, it is easy to check that this action is essentially isomorphic to the
natural action of U(n) on S(C™ @ R). This implies that (M;,G) of CASE I-(2) is essentially
isomorphic to

(S(C" ®R),U(n)),

where k1 = ko = n. This establishes Theorem 7.1 (2).

7.2.3. CASE I-(3). Set (G, K1, K3, K) as in Proposition 6.3 (3). Let M; = S(R** ®R) be the
unit sphere in R?” @ R, i.e., S(R?® @ R) = S?". Then, M; has the natural G = SO(2n)-action on
the coordinate of R?" and its isotropy subgroups are G, = K1 Go,—1) = Ko and G, o) = K
appearing in Proposition 6.3 (3). This implies that (M7, G) of CASE I-(3) is essentially isomorphic
to

(S(R*™ @ R), SO(2n)),

where k1 = ko = n. This establishes Theorem 7.1 (3).

7.2.4. CASE II-(1). Set (G, K1, K5, K) as in Proposition 6.6 (1). Note that (G, K, K) of
this case coincides with that of CASE I-(2). Moreover, K> of this case is the double covering of
K. These facts imply that the manifold M; of CASE II-(1) can be obtained by a Zs-quotient
of S(C™ @ R) in CASE I-(2). Let M; = RP(C" @ R) be the quotient of S(C™ & R) by the
antipodal Zs-action, i.e., RP(C™ @ R) is the 2n-dimensional real projective space. Then, M; has
the natural G = SU(n) x T*-action (where T acts on C" diagonally) and its isotropy subgroups
are Go,1) = K1 Gy, o) = K2 and G|, 1) = K appearing in Proposition 6.6 (1), where [z, 7] (2 € C",
r € R) represents the projective coordinate in RP(C"™ & R). Moreover, this action is essentially
isomorphic to the natural action of U(n) on RP(C™ @ R). This implies that (M7, G) of CASE
II-(1) is essentially isomorphic to

(RP(C" @ R),U(n)),
where k1 = n and ko = 1. This establishes Theorem 7.1 (6) with kg = 1.
7.2.5. CASE II-(2). Set (G, K1, K>, K) as in Proposition 6.6 (2). With the method similar

to that demonstrated in the CASE II-(1), we have that (M;,G) of CASE II-(2) is essentially
isomorphic to

(RP(R*" @& R), SO(2n)),
where k1 = n and ko = 1. This establishes Theorem 7.1 (7) with ky = 1.
7.2.6. CASE III-(1). Set (G, K1, Ko, K) as in Proposition 6.8 (1). Let M; = S(C* @ R2?*2~1)
be the unit sphere of C** @ R**2~1, Then, M; has the natural G = SU (k1) x T x SO(2ky — 1)-
action, and its isotropy subgroups are G, 0) = K1 G(g,e,) = K2 and G(¢, ¢,) = K appearing
in Proposition 6.8 (1), where (e1,0) is the first coordinate in C** and (0,e;) is that in R?*2—1,

Moreover, this action is essentially isomorphic to the natural action of U(k;) x SO(2ke — 1) on
S(Ck+ @ R?*2~1). This implies that (M, G) of CASE III-(1) is essentially isomorphic to

(S(Ck @ R?* 271 U(ky) x SO(2ky — 1)),
where k1 > 1 and ko > 2. This establishes Theorem 7.1 (4).

7.2.7. CASE III-(2). Set (G, K, K>, K) as in Proposition 6.8 (2). Let M; = RP(C* @
R?*2=1) be the real projective space of C¥* @ R?*2=1, Then, M; has the natural G = SU (k) x
T! x SO(2ky —1)-action, and its isotropy subgroups are Gle,0 = K1 Gloe,) = K2 and G, o) = K
appearing in Proposition 6.8 (2), where [z, z] is the projective coordinate in C** @R?*2~1. With the
method similar to that demonstrated as above, we have that (M7, G) of CASE III-(2) is essentially
isomorphic to

(RP(CF @ R**271) U (k) x SO(2ky — 1)),

where k1 > 1 and ko > 2. This establishes Theorem 7.1 (5).
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7.2.8. CASE III-(3). Set (G, K1, K2, K) as in Proposition 6.8 (3). Let M; = S(R?k1 R2k2—1)
be the unit sphere of R?** @ R?*2~1. Then, M; has the natural G = SO(2k;) x SO(2ky — 1)-
action, and its isotropy subgroups are G, o) = K1 G(g,e,) = K2 and G(c, .,) = K appearing in
Proposition 6.8 (3). With the method similar to that demonstrated as above, this establishes that
(My,G) of CASE III-(3) is essentially isomorphic to
(S(R**1 @ R?*2~1) SO(2k;) x SO(2ky — 1)),

where k1 > 1 and ko > 2. This establishes Theorem 7.1 (6) with ko > 2.

7.2.9. CASE III-(4). Set (G, K, K»,K) as in Proposition 6.8 (4). Let M; = RP(R?** @
R2F2~1) be the real projective space. Then, M; has the natural G = SO(2k;) x SO(2ky — 1)-
action, and its isotropy subgroups are G|, o) = K1 Gjge,) = K2 and G, ;) = K appearing in
Proposition 6.8 (4). With the method similar to that demonstrated as above, this establishes that
(My,G) of CASE III-(4) is essentially isomorphic to

(RP(R* g R?**271) SO(2k;) x SO(2ky — 1)),
where k1 > 1 and ko > 2. This establishes Theorem 7.1 (7) with ks > 2.
Consequently, we have Theorem 7.1.

8. Preliminary to classifying non-primitive torus manifolds

In this section, we consider the general structures of non-primitive torus manifolds. Let
(M?",T™) be a non-primitive torus manifold with codimension one extended action (M, G). Due
to Theorem 4.5, such (M, G) is essentially isomorphic to the following manifolds:

MgG/ Xy Ml;
G~G xG",

where (M7, G") is one of the primitive torus manifolds in Theorem 7.1 and

a b
G ~[[su:+1) x [[ SO0@m; +1);

i=1 j=1

H ~ ﬁS(U(l) x U(l;)) x S

for some subgroup S such that §° = H;’-Zl SO@2m;) C S C H?Zl S(0O(1) x O(2m;)). Note that
S/S° ~ A C (Zy)°.
Here, M is the quotient of the H'-action on G’ x M7 defined by the product of the natural action
on the G’-factor and on the M;-factor via
J73 H — DiffG//(Ml),
where Diff (M) represents the set of all G"’-equivariant diffeomorphisms on M;. By the defini-
tion of M, we can define the G = G’ x G"-action on it naturally.
Note that there exists the natural surjective homomorphism
s:H —=Tx A,
because T x A~ H'/(T];_, SU(l;) x 8°). We also note the following remark.

REMARK 8.1. Let ¢; : G — SO(2m; + 1) be the natural projection. If ¢;(H') = SO(2), i.e.,
SO(2m;+1)NA = {e} and m; = 1, then we may regard the SO(2m;+1)-factor as the SU (l44+1+1)-
factor (l4+1 = 1) up to essential isomorphism, because (SO(3), SO(2)) and (SU(2), S(U(1)xU(1)))
are locally isomorphic. Hence, we assume if m; = 1 then ¢;(H') = S(O(1) x O(2)).

As we mentioned in Section 4, in order to classify all the torus manifolds with codimension

one extended actions, we need to analyze the representation

J73 H — Diﬁgl/(Ml).
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We first analyze the general property of the representation u. Because the H'-action on M
commutes with the G'’-action on M7, we have that

h(G"(x)) = G" (hx),
for all h € H and G"-orbit G”(x) of x € M;. Thus, G’ (hx) = G”(x). This implies that if G"(z)
is a principal orbit then G”(hz) is also a principal orbit. On the other hand, if G"(z) = G”/K; is a
non-principal orbit then G” (hx) = G" /K, or G” /K5, where K; and K, are non-principal isotropy
subgroups of (M;,G"). Therefore, we can define the induced H’-action on My /G" = [—1,1] via a
homomorphism

,LL[,LH : Hl — O(l),
where O(1) acts on [~1,1] C R naturally. Note that if y4[_; 1) is non-trivial then G"/K; = G/ K>.
Thus, there are the following two cases:

® ji_1,) is trivial;
® [i[—1,1] is non-trivial and G"/K; = G" /K.
In Section 9 and 10, we classify all torus manifolds with codimension one extended actions.

9. The case when p_; j) is trivial

Let (Mi,G") be a primitive torus manifolds appearing in Theorem 7.1. Assume p_; j) is
trivial. Let K; and K> be non-principal isotropy subgroups of (M;,G"”). We first analyze the
H'-action on tubular neighborhoods of two non-principal orbits of (M;,G").

9.1. Two tubular neighborhoods )?Z Because p_1,1) is trivial, we see that H' acts on
G"/K; and G" /K> via G"-equivariant automorphisms. Namely, using the argument in Section
7.1, the representation p : H — Diff g (M7) induces the representations

Mt H/ — Aut(;//(G”/Ki) ~ N(;// (Kl)/K“

for i = 1,2. Let K; and K, be non-principal isotropy subgroups of (M,G). Then, two non-
principal orbits G/K; of (M, G) are denoted by
(8) G' xp (G"/K)
such that H" acts on G”/K; via u; (i = 1,2). Therefore, we have the following lemma:

LEMMA 9.1. Two singular isotropy subgroups I/(\'Z-, i = 1,2, of (M,QG) is isomorphic to the
following group:

Ki =~ {(h,k) € H' x Ngn(K;) | pi(h) = [k] € Now(K;)/ K}

for some representation p; : H — Ngv (K;)/K; (i =1,2).
In particular, if p; is the trivial representation, then we have

-[?i = Hl X Kz
Moreover, tubular neighborhoods of two non-principal orbits of (M, G) can be denoted by
G XI?- Dli = G/ Xy Xz = G/ Xy (GH XK; Dli)

for i = 1,2. We now analyze how H’ acts on X; = G" x g, D".
Using (8) and the slice theorem, we have that the H’-action on X; preserves the bundle
structure of X;. Therefore, it follows from 0X; = G” /K that the following commutative diagram:

G///K M G///K
l wi(h) l

G”/Kl R G”/Kl

fori=1,2 and h € H’, where j1;(h) € Ng»(K)/K is the induced automorphism on the principal
orbit G /K from p : H — Diffg(Mj). This implies that u;(h) € Ng«(K;)/K; is induced from
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ii(h) € Ngv(K)/K. Namely, we may regard fi;(h) as an element of the following subgroup of
Ngr(K)/K:

(N (Ki) N Nev (K))/ K,
and p;(h) as the image of jz;(h) of the natural projection
p: Naw(K;)/K — Ngn(K;)/K;
where (Ng» (K;) N Ngv (K))/K C Ngv(K;)/K, ie.,
p(ai(h)) = pi(h).
Let M; be a manifold appearing in Theorem 7.1. If M; = P(Ck* @ C*2), then
N (K)N Nen(K;) =SU1) xU(ky — 1) xU1) x U(ke — 1)) C K;.

Therefore, in this case, p;(h) is the identity element in Ng« (K;)/K; for i = 1,2. Otherwise, i.e.,
if My # P(CF @ Ck2), it is easy to check that

Ngn(K) C N (K5)
for ¢ = 1,2. Moreover, by using this relation, we have that the following homomorphism

NG//(K)/K — NG//(Kj)/Kj,
W W
[9] — [9]
is well-defined and surjective when M; # P(C* @ CF2). This implies that y;(h) can be taken as
any element in Ngv (K;)/K;. Hence, we have the following lemma:

LEMMA 9.2. The induced automorphism p;(h): G"/K; — G"/K; for h € H' can be regarded
as an element of the following groups:

’ \ My | pa(h) [ pe(h) |
CASFE (1) P(CF & CF2) {e} {e}
CASE (2) S(CF o R) {e} {e}
CASE (3) S(R?* o R) {e} {e}
CASE (4) | S(CF @R?*==1) | F~7, St
CASE (5) | SR @R?* 2~ | F~7Zy | C~12Zs
CASE (6) | RP(CFr @ R?F==T) [ {e} | ST/{£1}
CASE (7) | RP(R* o R*2-1) | {e} {e}

where St is the diagonal subgroup of U(k1), F = Ngo(ak,—1)(SO(2ks — 2))/SO(2ky — 2) and
C = Nso(2k,)(SO(2ky — 1))/ SO(2k1 — 1). Here, the numbers of CASE (1)—~(7) in the list coincide
with those of Theorem 7.1.

Now we may prove the following lemma which tells us how H' acts on X;:

LEMMA 9.3. Let )/(:Z be a tubular neighborhood of non-principal orbit in (M,G). Then, )/(:1 18
equivariantly diffeomorphic to

G’ xm (G" xg, DY)
such that h € H' acts on [¢", 2] € G” x g, D' by
lg" @] = (9" ui(h) ™", si(h)a],
where ; is the representation appearing in Lemma 9.2 and
si H 5T x A LS Z(0i(K;); O(1))

for some representation p;. Here, A is a subgroup of (Z3)® appearing in Section 8 and the repre-
sentation s : H' — T x A is the natural surjective homomorphism defined in Section 8.
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PrROOF. We first assume that (M, G"”) is one of CASE (1)-(3) in Lemma 9.2. In this case,
l; = 2k; and p;(h) is identity. Therefore, by Lemma 9.1, the isotropy subgroup is H' x K;. This
implies that an element of H' commutes with that of K;. Hence, there exists a representation
si =04l H — Z(0;(K;); O(2k;)) such that its slice representation is denoted by
Ei : H/ X Kz ﬂ) 0(21471),

where o; : K; — O(2k;) is the slice representation of K; in (M7, G"”). By the arguments in Sections
5 and 6, we already know how to embed o;(K;) into O(2k;); by using this, it is easy to check that
Z(0:(K;); O(1;)) is a commutative group for all CASE (1)—(7). Using the notations in Section 5.2

together with Remark 8.1, we can put the elements of H' = [[{_; S(U(1) x U(m;)) x S as follows:

"o ((tol 121)7...’(% Xa >)GQS(U(1)XU(Q)),

v, = (( m )?1> (f%b )?b >>63cjf[15(0(1)xo(2mj)).

Recall $/8° = A C (Z)?. Now we can define the natural surjective homomorphism s : H' —
T¢ x A as follows:

$(1,0) = (b1, ta)s (@1, o)) € T% x A CT® X (Zo)".

By abuse of notation, we often denote (({1,...,ts), (z1,...,2p)) by (77,v;) simply. Because
Z(0:(K;); O(2k;)) is a commutative group, there exists the following decomposition:

sic H 5T x AL Z(0i(K;); O(2k;:)),

for some p;. Now recall that H' acts on G”/K; trivially in CASE (1)—(3). Therefore, one can
easily check that the map

(G’ x G") X (mrxiyy D" — G xg (G" xg, D)

/! U’ﬁ/ / UJ//
[(g',9"), =] — 9, 19", =]
induces the equivariant diffeomorphism from the tubular neighborhood
)?i =G X[?i Dli = (G/ X G/I) X(H'xK;) Dli
to
G' xmg X; 2 G xpr (G x g, DY),
where h € H' acts on [¢",x] € G" xg, D" by
[g”7 x] — [9/17 S,(h)(ﬂi)]
We next assume that (M, G”) is one of CASE (4)—(7) in Lemma 9.2. In this case, I; = 2k;
and ly = 2ky — 1. Moreover, by Theorem 7.1, we may put
G"' =G| x GY;
(9) K, = G| x keroy;
KQ = kerog X GIQ/,
where o; : K; — O(l;) is the slice representation of K; in (M7, G"); for example, if (M;,G") is
the manifold in CASE (4), then G” = U(k1) x SO(2ky — 1) = GY x GY, K1 = G/ x ker o1 (where
keroy = SO(2ky — 2)), and Ky = kerog x Gj (where keroo = U(k; — 1)). This implies that
kero; C G and

(10) NG(r( (ker ai)/ker g; = NGH ([(Z)/I(Z
where (i,7) = (1,2) or (2,1). Now we may regard K; C K; as the subset

{(e,k) € K; | k € K;},
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where e € G’ is the identity element. Then, it is easy to check that o;|x, = 0;, where d; : I?l —

O(l;) is the slice representation of K; in (M, ). Hence, kero; can be regarded as the normal
subgroup of K;. Therefore, it follows from the relations above (9), (10) that

Ki/kero; = {(h, A, pi(h)) € H' x G x Ngn(K;)/K;}.
This also implies that
K;/kero; ~ H x G!.

Hence, the slice representation &; can be decomposed into as the following diagram:

K

S; X0O;

H x G —=0(l;)
for some representation s; : H — Z(0;(K;); O(l;)). With the method similar to that demonstrated
as above in CASE (1)—(3), there exists a representation
pi : T x A— Z(0;(K;); O(ly))
such that
8; = p; O 8.
Therefore, by using Lemma 9.1, we have that the following map is well-defined:

(G, X G”) Xl?i D — & X g’ (G// XK, Dll)

/ UJ” / U‘i/
(g, 9"), ] — 9" 9", 2]l
where h € H' acts on [¢”, 2] € G" x, D' by
9", ] = [g"pa(h) ™", si(h) ()]
It is easy to check that this map gives the equivariant diffeomorphism. This establishes Lemma

9.3. 0 O

9.2. Torus manifolds with trivial p_; ;. In this subsection, we classify (M, @) with
trivial pu_y 1). Let M = G’ x g+ M be a torus manifold with codimension one extended G’ x G"-
action and the H'-action on M; preserves the orbits of (My,G"), i.e., py_1,1 is trivial. We will
analyze in each case; CASE (1)—(7).

9.2.1. CASE (1). Let (M1, G") be CASE (1), i.e.,

(P(Ck @ C*2), S(U (k1) x U(ka))).

Because G” acts on M7 by the standard multiplication, its two non-principal orbits are
G" /K, {[0: w] € P(CF @ C*2)},
G"/Ky = {[z:0] € P(C" @ C")},

1%

and two tubular neighborhoods are
G" xg, D = X, ={[z:w] € P(CH @& C*)|w+#0, € D* c CM},
G" xg, D2 = X, ={[z:w] € P(CH @ C*) | 2+#0, we D* c C*}.
Using Lemma 9.2 and 9.3, we may define H'-action on X; as follows:
[z,w] = [s1(h)z,w] for Xy;
[z, w] = [z, 82(R)w] for X,
where h € H' and s; : H' — Z(0;(K;); O(2k;)) ~ S (scaler multiplication). Due to Lemma 7.4,

we may regard the attaching map between X; and Xs in M; as the identity map. Therefore, the
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restricted H'-action on X; to 0X; coincides with that of 9X5. This implies that the following
relation:

Sl(h) = Sg(h)il.
Hence, M is equivariantly diffeomorphic to
G' xp P(CEr @ CF2),

where H' acts on C’;ll by the scaler multiplication via a representation s; : H' — S' and on C*2
trivially.
Put

a b
S(a;b) = [+ x [ s*™.

i=1 j=1
. . s P .
Because there exists a decomposition s; : H' = T% x A & S! for some representation p (see

Section 9.1), we have the follow proposition:

PROPOSITION 9.4. Let M = G’ xy' My be a non-principal torus manifold with the trivial
1) If My = P(Ck @ C*2), then there exists a representation p : T% x A — S* such that
(M G) is essentially isomorphic to the following manifold:

M = S8(a;b) Xgaxa P(CE & CP),

a b
G =[]SU+1) x [] SO@m; +1) x S(U (k1) x U(kz)),
i=1 j=1
where G acts on M standardly and M is defined by the following T* x A quotient: T® x A C
T x (Z2)® acts on S(a;b) via the natural action; on C’;l by the scaler multiplication via p; and
on CF2 trivially.

9.2.2. CASE (2). Let (M1,G") be CASE (2), i.e
(S(CF & R),U(k)).
Then, its two tubular neighborhoods are
G" x, D* X1={(zr)eS(CraR) |0<r <1}
G" xp, D* = X,={(z,7) € S(C*®R) | —1<r <0},

where z € C* and r € R such that |2|? + 72 = 1. Using Lemma 9.2 and 9.3, we may define
H'-action on X; as follows:

1%

(z,7) = (s1(h)z,r) for Xy;
(z,7) = (s2(h)z,r) for Xo,
where h € H' and s; : H — Z(0;(K;); O(2k)) ~ St (scaler multiplication). With the method
similar to that demonstrated in the proof of Proposition 9.4, we have that
s1(h) = s2(h)
and the follow proposition:
PROPOSITION 9.5. Let M = G’ xg My be a non-principal torus manifold with the trivial

_1,1)- If My = S(C* @ R), then there exists a representation p : T* x A — S* such that (M, G)
zs essentmlly isomorphic to the following manifold:

M = S(a;b) xrexa S(CE B R),

a b
G=][sv(+1) =[] SO@m;+1) x U(k),

i=1 j=1
where T® x A acts on (Cﬁ by the scaler multiplication via p and on R trivially.
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9.2.3. CASE (3). Let (My,G") be CASE (3), i.e
(S(R?** @ R), SO(2k)).
Similarly as in CASE (2), its two tubular neighborhoods are
G" xg, D* = X, ={(z,r) € SR*BR) |0<r <1}
G" x g, D* Xy ={(z,7) e S(R* @®R) | —1<r <0},

where © € R?* and r € R such that |2 + 72 = 1. Using Lemma 9.2 and 9.3, we may define
H'-action on X; as follows:

1%

(z,7) — (s1(h)x,r) for Xq;
(z,7) = (sa(h)x,r) for Xs,
where h € H' and s; : H — Z(0;(K;); O(2k)) ~ Z2 (scaler multiplication). Similarly as in CASE
(2), we also have that
s1(h) = sa(h)
and the follow proposition:

PROPOSITION 9.6. Let M = G’ xg My be a non-principal torus manifold with the trivial
_11)- If My = S(R®** & R), then there exists a representation p : T* x A — Zy such that (M, G)
zs essentmlly isomorphic to the following manifold:

M = S(a;b) Xroxa S(RZF @ R),

a b
G =[]svu+1)x [] SO2m; +1) x SO(k),

i=1 j=1
where T* x A acts on R%k by the scaler multiplication via p and on R trivially.

Note that in Proposition 9.6 M is equivariantly diffeomorphic to the following manifold:

a b
[TcrPu) < [ ]S> xaS®RF &R) |,
) P

because the restricted representation p|ra is trivial.
9.2.4. CASE (4). Let (M1,G") be CASE (4), i.e

(S(C* @R 271 U(k;) x SO(2ky — 1)).
Similarly as in CASE (1), its two tubular neighborhoods are
G" xg, D*1 = X| ={(z,x) € S(CM @R?*271) | 0 < |z < 1/V2};
G xg, D271 = X, ={(z,2) € S(CH @ R* 1) | 0 < |2 < 1/V2},

where z € C¥* and z € R?*27! guch that |2|> + |z|> = 1. Using Lemma 9.2 and 9.3, we may define
H'-action on X; as follows:

(z,2) — (sl(h)z,,ul(h)_lx) for Xy;
(z,2) = (pa(h) 'z, s2(R)x)  for Xo,

for some scaler representations

s1: H — Z(01(K1);0(2k1)) ~ S*,
so: H' — Z(02(K2); O(2ke — 1)) ~ Za,
pr: H — NG”(Kl)/Kl L,
po : H — Ngn(Ky)/Ky ~ St
With the method similar to that demonstrated in the proof of Proposition 9.4, we have that
si(h) = pa(h)~" € S,
s2(h) = pa(h) ™! € Zo,
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and the follow proposition:

PROPOSITION 9.7. Let M = G’ xy My be a non-principal torus manifold with the trivial
p—1,1)- If My = S(CF @ R*271), then there emist representations p1 : T x A — S' and
p2 : T* x A — Zsy such that (M, G) is essentially isomorphic to the following manifold:

M = S(a;b) xraxa S(CE @ R2F71),
a b
G=[]SUl:+1) x [] SO@m; + 1) x U(k) x SO(2k — 1),
i=1 j=1

where T x A acts on (C’;} by the scaler multiplication via p1 and on R%’;?_l by the scaler multi-
plication via ps.

9.2.5. CASE (5). Let (M1,G") be CASE (5), i.e
(S(R%*1 @ R?*2~1) SO(2k;) x SO(2ky — 1)).
Similarly, its two tubular neighborhoods are
G" xg, DM 2 Xy ={(z,y) € SR @R [0 < Jy| < 1/v2);
G X, D*271 =~ Xy = {(x,y) € S(RP @ R*=271) | 0 < |2 < 1/V2},

where z € R%1 and y € R?2~1 guch that |z|? + |y|> = 1. Using Lemma 9.2 and 9.3, we may
define H'-action on X; as follows:

(z,y) = (s1(h)z, pa(h)~'y) for Xy;
(2,y) = (u2(h) '@, s2(h)y) for Xo,

for some scaler representations

S1 I ( 1(K1) (le)) ~ ZQ,
S9 H ( Q(KQ), (2]{32 — 1)) ~ Zg,
i H —)NGH(K1>/ 1~ 2o,

pz : H — Ngn(K3) /Ky ~ Zs.
With the method similar to that demonstrated in the proof of Proposition 9.4, we have that
s1(h) = pa(h) ™" € Zo,
s2(h) = p1(h) ™" € Zo,
and the follow proposition:

PROPOSITION 9.8. Let M = G’ xg: My be a non-principal torus manifold with the trivial
Mi—11]- If My = S(R?kv @ R2k2=1) " then there ewist representations p; : T® x A — Zy and
p2: T* x A — Zsy such that (M, G) is essentially isomorphic to the following manifold:

M = S(a;b) Xaxa S(R%l Ri’;z—l),

G= H SU(l; +1) x H S50(2mj +1) x SO(2k1) x SO(2kq — 1),

i=1 j=1
where T® x A acts on Rf)’fl by the scaler multiplication via p; and on Rf}frl by the scaler multi-
plication via ps.

Note that in Proposition 9.8 M is equivariantly diffeomorphic to the following manifold:

a b
2m;+1 2k 2ky—1
[TcrPu) < | []57™* xa S® o R2E=1) |,
. =1
because the restricted representation pq|r. is trivial.
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9.2.6. CASE (6). Let (M;,G") be CASE (6), i.c.,
(RP(CF @ R*271) U (k) x SO(2ky — 1)).

Then, its two tubular neighborhoods are

J

GH X K, D2k1 o~ Xl = {[z . Z‘] c ]RP((CIH @Rka—l) | T 75 0’ = D2k1 c Ckl};
G" xg, D*!271 = Xy, ={[z:2] € RP(CM @ R?**271) | 2 #£0, 2 € D271 c R*271],

Using Lemma 9.2 and 9.3, we may define H'-action on X; as follows:

[z:2] = [s1(h)z:a] for Xy;
[z 2] = [ua(h) "tz so(h)x] for Xo,

for some scaler representations

s1: H — Z(01(K1); O(2k1)) ~ S*,
S9 - H — Z(UQ(KQ);O(2k2 — 1)) ~ 7o,
Mo : H — NGH(KQ)/KQ ~ Sl.

With the method similar to that demonstrated in the proof of Proposition 9.4, we have that
s1(h) = sa(h)pa(h) ™" € S,
where sy(h) € Zy = {£1} C S!. Therefore, we have the follow proposition:

PROPOSITION 9.9. Let M = G’ xg My be a non-principal torus manifold with the trivial
p—11]- If My = RP(CF @ R?*271) | then there exists a representation p: T* x A — S such that
(M, Q) is essentially isomorphic to the following manifold:

M = 8(a;b) Xraxa RP(C) @ R*271),
a b
G=]]SU:+1) x [] SO@2m; +1) x U(kr) x SO(2kz — 1),
i=1 j=1
where T* x A acts on C’;l by the scaler multiplication via p and on R?*2~1 trivially.
9.2.7. CASE (7). Let (M1,G") be CASE (7), i.e.,
(RP(R* g R?**271) SO(2k;) x SO(2ky — 1)).

Similarly, its two tubular neighborhoods are

2

G xx, D™ = X;={[z:y] e RP(R* o R>*>1) | y#£0, 2 € D* c R%*1};
G/l XKZ D2k2—1 o~ X2 _ {[J? . y] c RP(R2k1 @R2k2_1) I T ;é 07 y c D2k2—l I RZkg—l}.

Using Lemma 9.2 and 9.3, we may define H'-action on X; as follows:

[z:y]— [si(h)z:y] for Xi;
[z :y]— [x:s2(h)y] for Xs,

for some scaler representations

S1 H — Z(O’l(Kl),O(le)) ~ ZQ,
So & H — Z(O’Q(KQ);O(QICQ — 1)) ~ Zs.

With the method similar to that demonstrated in the proof of Proposition 9.4, we have that
Sl(h) = Sg(h)_l € Zs,

and the follow proposition:
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PROPOSITION 9.10. Let M = G’ x g My be a non-principal torus manifold with the trivial
Mi—11)- If My = RP(R?*t ¢y R2F2=1) | then there exists a representation p : T® x A — Zy such that
(M, Q) is essentially isomorphic to the following manifold:

M = 8(a;b) X1ax s RP(RZF @ R2F271),

a b
G =][]SU+1) x [] SO@2m; + 1) x SO(2k1) x SO(2k; — 1),

i=1 j=1
where T* x A acts on Rf)kl by the scaler multiplication via p and on R**2~1 trivially.

Note that in Proposition 9.10 M is equivariantly diffeomorphic to the following manifold:
a b
[IcP@) x [ [] S+ xaRP(R2™ @ R*271) | |
i=1 j=1

because the restricted representation p|ra is trivial.

10. The case when p[_; 1) is non-trivial

Assume ju_y 1) is non-trivial. In this case, K; ~ K3 (isomorphism), i.e., ky = ka. Therefore,
there exist three possibilities; Theorem 7.1 (1), (2), (3). We first prove that the case when Theorem
7.1 (1) does not occur.

LEMMA 10.1. Let (My,G") be (P(C* & C*),S(U(k) x U(k))) with k > 2. Then, p_1,1) is
trivial.

PROOF. Let 7 : M; — M;/G"” = [—1,1] be the projection to the orbit space. Put 7=1(—1) =
G" /K, and 7=(1) = G /K5. Because (P(CF @ C*), S(U(k) x U(k))) is the standard action, we
may put that G /K; = {[z: 0] € P(C*®C¥) | 2 € C*} and G" /K, = {[0 : w] € P(Ck®CF) |w €
C*}.

Assume there exists a G”-involution f on M; induced from the non-trivial p_; ;). Because
Im p_11) = O(1) acts non-trivially on M;/G"” = [~1,1], such f induces the G"-equivariant
diffeomorphism between G /K, and G” /K. Put f([z:0]) = [0 : w] for some z,w € C*. Because
f is G"-equivariant, we have the following equations:

f([Az:0)) = (A, B)f([z : 0]) = (A, B)[0: w] = [0 : Bu]

for all (A,B) € S(U(k) x U(k)). However, this also implies that [0 : w] = [0 : Bw] for all
(Ix,B) € S(U(k) x U(k)), where I, is the identity element of U(k). This gives a contradiction
to that G” /Ky is 2k-dimensional orbit and k > 2. Therefore, there is no G”-involution f on M;
induced from the non-trivial g1 1j. O O

By Lemma 10.1, we may assume that (M7, G") is one of the followings:
(S(C* ®R),U(K));
(S(R** & R), SO(2k)),
where k € N. We often denote these manifolds by S(V @ R), where V represents the complex
k-dimensional manifold or the real 2k-dimensional manifold.
We first analyze the induced H'-action on M; by non-trivial pj_y ) : H — O(1). Now we
may regard the orbit projection 7 : My — M, /G" as follows:
SVeR) 5 [-1,1]
w w
(z,7) — r
where z € V and r € R such that |z|? + 72 = 1. Therefore, the non-trivial p_q,1)(h) acts on the
element (z,r) € S(V @ R) as follows:

(2,7)

H[71,1](h)
— (w, —7)
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for some w € V such that |z| = |w|. It follows from |z| = |w| that there is an element X € G”
such that

_ h
(Z,T‘) K[ 1,1]( ) (XZ,—’I“).

Because juj_1 1)(h) is G"-equivariant, we see that X € Z(G"), i.e., the center of G". Therefore, it
follows from gu_1 1j(h)? =1 that

X =41.
Hence, we have the following lemma:

LEMMA 10.2. Let h € H' be an element such that pu_q1(h) € O(1) is non-trivial. Then,

pi—1,1](h) induces one of the following maps on S(V & R):
(z,7) — (2,—7)
or
(z,7) = (—2z,—1).
Let H” C H' be the kernel of p_1 1) : H" — O(1). Then, there exists the double covering
G xgr My — G’ x g My,
and G’ xg» My becomes a torus manifold with the trivial p_; ). Because M; is S(V @ R), it
follows from Proposition 9.5 and 9.6 that
G' xpgr My = 8(a;b) Xraxa S(V,y ®R)

where V), is the vector space V' with a scaler representation p’ and A" C (Z2)®. Here, we note
that A’ is a proper subgroup of (Z3)®, because H" is the kernel of p—1,1]- It follows from Lemma
10.2 that there exists the subgroup A C (Z3)® such that A’ € A and A/ A" ~ O(1) ~ Z, and
G’ x g+ M7 is equivariantly diffeomorphic to

S(a;b) Xpaxa S(V, ®R,),

where p is a scaler representation whose restricted representation to A’ coincides with p’ and
€ : A — O(1) is the surjective homomorphism whose kernel coincides with A’. This establishes
the following proposition:

PROPOSITION 10.3. Let (M, G) be the torus manifold such that M = G x g My. If py_y 1) is
non-trivial, then there exist the following two cases up to essential isomorphism:

| M | G ]
S(a;b) xraxa S(CE®R,) | G x U(k)
S(a;6) x7axa S(RZFGR,) | G x SO(2k)

where G' =]}, SU(l; + 1) x H?:l SO(2m; + 1), and G acts on M naturally.

Here, in Proposition 10.3, M is defined by the following quotient manifold: 7% x A C T%x (Z3)®
acts on the product of spheres S(a; b) naturally, on (C’; by the representation p : 7% x A — S', and
on R%’“ by the representation p : T x A — {£1}; furthermore, A acts on R, by some surjective
homomorphism € : A — O(1).

Consequently, by Propositions 9.4-9.10 and 10.3, we have the classification list in Theorem
1.1. Note that in Theorem 1.1 the representation € might be trivial, i.e., the case when € is trivial
corresponds to Propositions 9.5 and 9.6, the case when € is non-trivial corresponds to Proposition
10.3. As a corollary of the list in Theorem 1.1, we have Corollary 1.2.

11. Moment-angle manifolds and the orientability

In closing this paper, we prove the orientability of our manifolds in Proposition 9.4-9.10 and
10.3 by using similar objects with moment-angle manifolds. We first recall the moment-angle
manifold (see [BoMe, BuPa, DaJa] for detail).
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11.1. Moment-angle manifolds. Let P be a simple convex polytope with the set of facets
F ={F1,...,Fy}. For each facet F; € F, the 1-dimensional coordinate subgroup of the m-torus
T ~ T™ corresponding to F; is denoted by TF,, i.e.,
Tr, ={(1,...,1,t;,1...,1) €T™ | t; € S},

where t; is the i*" coordinate in 7". Then assign to every face L the coordinate subtorus
Ty = [ Tr c T
FiDL
For every point ¢ € P, L(q) denotes the unique face containing ¢ in its relative interior. Then a
moment-angle manifold Zp over P is defined by the identification space

Zp=(T7 x P)/ ~,

such that (t1,p) ~ (t2,q) if and only if p = g and t; ', € Tr(p)- Note that moment-angle manifolds
Zp have natural T™-actions on their 77 factors.

Moreover, we have the following relations between quasitoric manifolds M over P and the
moment-angle manifold Zp over P (see [BuPa, Proposition 6.5]):

PROPOSITION 11.1. Let M be the quasitoric manifold whose orbit space is a simple polytope
P. Let m be the number of facets of P, and n be the dimension of P. Then, there is the subtorus
H C T7 such that H ~T™ "™ and H acts freely on Zp. Furthermore, this freely H-action induces
the principal T™~"-bundle Zp — M as the orbit projection.

Next we shall show the moment-angle manifold over the quasitoric manifold in Corollary 1.2,
ie., M =TI, S?*! X par P(CE* @C*). The orbit space of M becomes the product of simplices
[T, Al x AkiFh2=1 Recall the following two formulas:

(1].) Zplxp2 :Zpl XZPQ;
(12) Zan = 2L
Here, the formula for the product of polytopes (11) is due to [BuPa, Proposition 6.4] and the

moment-angle manifold over the simplex (12) is due to [BuPa, Example 6.7]. By using these
formulas (11) and (12), the moment-angle manifold over P = [[;_, Ali x Akitk2=1 ig a5 follows:
Zp =[] 8% x 5(Ck & Ch),
i=1
where S(Cht @ Ck2) == G2k +2ha—1,
Note that the number of facets of [[_; Ali x AF+F2=1 and its dimension are

a a
m=Y (li+1)+k+k and n=Y Li+k+k—1,
i=1 =1
respectively. Therefore, by using Corollary 1.2 or Proposition 9.4, the subgroup which acts on Zp
freely is
H=T"xS"
By definitions of M and Zp, this group H = T® x S' acts on Zp as follows:
(1) T* C H acts naturally on the []{_, S?!*! factor, and acts on the S((C;ﬁl @ Ck2) N (C’;1
factor via the representation p : T% — S*;
(2) S C H acts only on the S(C’;l @ Ch2) = §2ki+2k2—1 C’;l @ C*2 factor naturally as the
scaler multiplication.

One can easily show that Zp has the natural action of G = [[}_, SU(l;+1)x S(U (k1) x U (k2)),
with codimension one principal orbits [}, S%iT1 x §2—1 x §2k2=1 " and two singular orbits
[T, S2htt x §2ka=1 and T]7_, S24F! x §2k2=1 Furthermore, this G-action on Zp commutes
with the H = T® x S'-action and induces the codimension one action on M. Similarly, we have
this fact for quasitoric manifolds with codimension 0 extended G-actions (such quasitoric manifolds
are only products of complex projective spaces, see [Ku3]), i.e., all transitive actions on quasitoric
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manifolds can be induced from transitive actions on moment-angle manifolds. Hence, we have the
following theorem by using the argument as above and our classification results.

THEOREM 11.2. Assume a (quasi)toric manifold M*"* has a codimension 0 or 1 extended
G-actions. Then, there exists the principal T -bundle

a+1
ZP _ H S2li+1 N MQn

i=1

such that we can lift the codimension 0 (resp. 1) extended G-actions on M to the G-action on Zp
with codimension 0 (resp. 1) principal orbits. In other wards, all of codimension 0 and 1 extended
G-actions on M are induced from G-actions on Zp with codimension 0 and 1 principal orbits,
respectively.

REMARK 11.3. We can easily show that two singular orbits of (Zp,G) are moment-angle
manifolds of two singular orbits of (M, G), respectively.

11.2. Orientability. We next analyze orientabilities of torus manifolds with codimension
one extended actions. We first show the following general property:

PROPOSITION 11.4. Let E be the total space of fibre bundle, and F its fibre. If the manifold
F is non-orientable, then the manifold E is also non-orientable.

PROOF. Assume F is non-orientable. As is well known, the 15¢ Stiefel-Whitney class w; (M) =
0 if and only if the manifold M is orientable (see e.g. [MiSt]). Therefore, wy(F) # 0.

Let « be an embedding of F into E. Then, its pull-back of the tangent bundle ¢*75 can be
decomposed into 7z @ vp, where 7 is the tangent bundle of F' and v is its normal bundle in E.
Because of the local triviality condition of the fibre bundle, we see that v is the trivial bundle.
This implies that the total Stiefel-Whitney class satisfies

Cw(E) =w(tr ®vr) = w(F)wvr) = w(F).
It follows from wy (F') # 0 that wy(E) # 0. This establishes the statement of proposition. 0O O

It follows from Proposition 11.4 that manifolds appearing in Proposition 9.9 and 9.10 never
become orientable.

Due to Proposition 9.4-9.8 and 10.3, we can easily show that there is a similar principal
(T* x A)-bundle such as the moment-angle manifold in Theorem 11.2, i.e., we can define the
following principal (7'* x A)-bundle such as Theorem 11.2:

Z=8(a;b) x S(V,, ®W,,, ) — M

where M is a torus manifold with codimension one extended action, the symbols V,,, W,,,
represent the representation spaces appearing in Proposition 9.4-9.8 and 10.3, and py, pw rep-
resent the scaler representation of 7% x A. Here, T* x A acts on S(a;b)-factor naturally and on
S(V,, @ W, )-factor by the representation py @ pw. By definition, the T*-action on Z preserves
its orientation. Hence, M is orientable if and only if A preserves the orientation of Z.

We analyze when A-action preserves the orientation. Because of the definition of A-action,
we have that this action is induced from the following representation:

b
X 2 A EER (7,)042 < TT O2m; +1) x O(dim V,,, ) x O(dim W,,,, )
j=1
b
c O 2m; +b+dimV,, +dimW,,,),

j=1
where H?:1 O(2m;+1)xO(dim V,, ) x O(dim W, ) acts naturally on H?:1 S2mi x S(Vyy, W),

the group (Z2)"*2 is the diagonal group {£7}*2 and ¢ : A — (Z)® is the embedding. Therefore,
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one can easily show that the determinant of all elements in x(.A) is 1 if and only if 4-action
preserves the orientation of Z. Because V), is an even dimensional vector space, we have

pv(A) = x(A) NO(dimV,,) C SO(dimV,,).
Hence, it is easy to check the following proposition:

PROPOSITION 11.5. Let M be a torus manifolds with codimension one extended action. Then,
for the orientability of M, the following statements hold:
(1) if M is one of manifolds appearing in Proposition 9.4-9.6, then M is orientable if and
only if

b
AC SO0 2m; +b);
j=1
(2) if M is one of manifolds appearing in Proposition 9.7 and 9.8, then M is orientable if
and only if
b
{(ap2() € [J O2m; +1) x O(2ks = 1) | a € A}
j=1
b
C SO 2m; + b+ 2ky — 1);
j=1
(3) if M is one of manifolds appearing in Proposition 9.9 and 9.10, then M is non-orientable;
(4) if M is one of manifolds appearing in Proposition 10.3, then M is orientable if and only

if
b
{(a,e(a)) € [TO@m; +1) x O(1) | a € A}
j=1
b
C SO 2m;+b+1).

Using Proposition 9.4-9.10, 10.3 and 11.5, we get Theorem 1.1.
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