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Abstract. The purpose of this paper is to classify torus manifolds (M2n, Tn) with codimension

one extended G-actions (M2n, G) up to essential isomorphism, where G is a compact, connected
Lie group whose maximal torus is Tn. For technical reasons, we do not assume torus manifolds
are orientable. We prove that there are seven types of such manifolds. As a corollary, if a
non-singular toric variety or a quasitoric manifold has a codimension one extended action then

such manifold is a complex projective bundle over a product of complex projective spaces.

1. Introduction

This paper is a continuation of [Ku3] devoted to find the natural symmetries of torus man-
ifolds. A torus manifold, defined in [HaMa, Ma], is an even dimensional, oriented, compact,
connected manifold M2n acted on by a half-dimensional torus Tn with non-empty fixed point set.
The class of torus manifolds provides a rich and interesting class of T -spaces, because this class
contains both of non-singular toric varieties studied by algebraic geometers (see [Fu, Od]) and qu-
asitoric manifolds studied by topologists (see [BuPa, DaJa]). As is well-known, the n-dimension
torus is a maximal compact abelian group which acts on 2n-dimensional manifolds effectively.
On the other hand, there exist torus manifolds whose torus actions are induced from non-abelian
group actions, e.g., complex projective spaces or even dimensional spheres (see [Ku3]). Namely,
the Tn-action on torus manifold M2n do not always become the maximal (compact) symmetry of
M2n.

One of fundamental problems in geometry is to find the most natural symmetry on the given
space, i.e., the most natural group action on the given space. In order to find natural group
actions on torus manifolds, we have studied extended actions of Tn-actions on torus manifolds. In
[Ku3], we classify torus manifolds with transitive extended G-actions (also see Theorem 2.4 in this
paper), where G is a compact, connected Lie group whose maximal torus is Tn. In this case, the
principal orbit G/K is M itself. In other words, the codimension of principal orbit of transitive
actions is zero, i.e., dimM − dimG/K = 0. Therefore, we may regard the classification in [Ku3]
as the classification of torus manifolds induced from codimension zero extended actions. So we are
naturally led to study torus manifolds induced from codimension one extendedG-actions, i.e., torus
manifolds with codimension one extended actions (or torus manifolds induced from cohomogeneity
one symmetries). The purpose of this paper is to classify all such torus manifolds up to essential
isomorphism. For technical reasons, we do not assume torus manifolds are orientable as we do
in [Ku3]. Namely, we classify more general class of T -manifolds with codimension one extended
actions.

Let us prepare to state our main theorem. We use the following notations: S(a, b) =∏a
j=1 S

2li+1 ×
∏b

j=1 S
2mj ; G′ =

∏a
j=1 SU(li + 1) ×

∏b
j=1 SO(2mj + 1); the symbol Vα repre-

sents the representation space with the scaler representation α of T a × A, where A ⊂ (Z2)
b ⊂∏b

j=1O(2mj + 1) generated by diagonal matrices, i.e., if V is a complex (resp. real) space then
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α : T a ×A → S1 (resp. α : T a ×A → Z2); the symbol P (V ⊕W ) (resp. RP (V ⊕W )) represents
the complex (resp. real) projective space of the complex (resp. real) vector space V ⊕ W ; and
S(V ⊕W ) is the unit sphere in V ⊕W . The goal of this paper is to prove the following theorem
(see Propositions 9.4–9.10, 10.3 and 11.5 for detail):

Theorem 1.1. Let (M,T ) be a (possibly unoriented) torus manifold and (M,G) be its codi-
mension one extended action, where G is a compact connected Lie group whose maximal torus is
Tn. Then, (M,G) is essentially isomorphic to one of the followings:

M G

(1) S(a, b)×Ta×A P (Ck1
ρ ⊕ Ck2) G′ × S(U(k1)× U(k2)) (k1 + k2 ≥ 3)

(2) S(a, b)×Ta×A S(Ck
ρ ⊕ Rϵ) G′ × U(k)

(3) S(a; b)×Ta×A S(R2k
ρ ⊕ Rϵ) G′ × SO(2k) (k ≥ 2)

(4) S(a, b)×Ta×A S(Ck1
ρ1

⊕ R2k2−1
ρ2

) G′ × U(k1)× SO(2k2 − 1) (k2 ≥ 2)

(5) S(a; b)×Ta×A S(R2k1
ρ1

⊕ R2k2−1
ρ2

)) G′ × SO(2k1)× SO(2k2 − 1) (k2 ≥ 2)

(6) S(a, b)×Ta×A RP (Ck1
ρ ⊕ R2k2−1) G′ × U(k1)× SO(2k2 − 1)

(7) S(a; b)×Ta×A RP (R2k1
ρ ⊕ R2k2−1)) G′ × SO(2k1)× SO(2k2 − 1)

for some subgroup A ⊂ (Z2)
b and scaler representations ρ, ϵ, ρ1, ρ2. Here, T

a×A acts on S(a; b) ⊂∏a
i=1 Cli+1 ×

∏b
j=1 R2mj+1 naturally.

Furthermore, the following statements hold:

• the manifolds in (1) are orientable if and only if A ⊂ SO(
∑b

j=1 2mj + b);

• the manifolds in (2) and (3) are orientable if and only if {(a, ϵ(a)) ∈
∏b

j=1O(2mj +1)×
O(1) | a ∈ A} ⊂ SO(

∑b
j=1 2mj + b+ 1);

• the manifolds in (4) and (5) are orientable if and only if {(a, ρ2(a)) ∈
∏b

j=1O(2mj +

1)×O(2k2 − 1) | a ∈ A} ⊂ SO(
∑b

j=1 2mj + b+ 2k2 − 1);

• the manifolds in (6) and (7) are non-orientable.

By Theorem 1.1, we have the following corollary:

Corollary 1.2. Let (M,G) be a non-singular toric variety or a quasitoric manifold with
codimension one extended G-action. Then, (M,G) is essentially isomorphic to

M =
a∏

i=1

S2li+1 ×Ta P (Ck1
ρ ⊕ Ck2) ∼=

a∏
i=1

Cli+1
o ×(C∗)a P (Ck1

ρ ⊕ Ck2),

G =
a∏

i=1

SU(li + 1)× S(U(k1)× U(k2)),

where Cli+1
o = Cli+1 − {o} and C∗ = C− {o}.

The organization of this paper and the method of classification are as follows. We first, in
Section 2 and 3, recall some basic notions needed later and give some examples of torus manifolds
with codimension one extended actions. In order to prove Theorem 1.1, we will combine the
methods introduced by Alekseevskii-Alekseevskii in [AlAl] and Uchida in [Uc], and use the main
results in [Ku3]. Due to [AlAl], if (M,G) has a codimension one orbit thenM can be constructed
from a primitive (M1, G

′′) with codimension one orbits; roughly speaking, M is equivariantly
diffeomorphic to the crossed product G′ ×H′ M1 for some G′ and its subgroup H ′, where G =
G′ × G′′ and an H ′-action on M1 commutes with the G′′-action on M1. In Section 4, we recall
the definition of the primitive G-manifolds introduced in [AlAl]. We also show that, for the non-
primitive torus manifoldM ∼= G′×H′M1, both of G′/H ′ andM1 are also torus manifolds (Lemma
4.4). Note that in this case M is an M1-bundle over G′/H ′. The main theorem in [Ku3] tells us
the possibilities of G′/H ′ (Theorem 4.5). We next, in Section 5, 6 and 7, classify primitive torus
manifolds (M1, G

′′) by using the method of [Uc] (also see [Ku2] for details of this method). As a
result, we have that there exist seven types of primitive torus manifolds (Theorem 7.1). In order
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to construct G′ ×H′ M1 from homogeneous torus manifold G′/H ′ and primitive torus manifold
(M1, G

′′), we next, in Section 8, 9 and 10, analyze H ′-actions on M1 which commute with the
given G′′-action on M1. Then, we get the classification table in Theorem 1.1 of torus manifolds
with codimension one extended actions up to essential isomorphism. Finally, in Section 11, we
give some relations with moment-angle manifolds introduced in [BuPa, DaJa] (also see [BoMe])
and prove the orientability of torus manifolds appearing in the table of Theorem 1.1.

2. Preliminary

In this section, we recall some basic notations and facts needed later. We refer the reader to
the following papers and books for further details: [HaMa, Ma] for toric topology; [MiTo] for
classical Lie theory; [Br, Ka] for transformation group theory; and the paper [Ku3].

2.1. General terminologies and notations. We first recall general terminologies and no-
tations.

Throughout of this paper, the symbol Tn represents an n-dimensional, compact, abelian group,
i.e., Tn is a product of n circles (S1)n, we call it an n-dimensional torus or a torus. The symbol
(M,G) represents the space M with G-action. If it is needed to indicate the action explicitly,
we shall write (M,G) as (M,G,φ) with the action φ. In this paper, we assume all G-actions are
smooth.

The symbol Gx represents the isotropy subgroup of x ∈ M , G(x) represents the orbit of x,
and M/G represents the orbit space. We denote the set of fixed points of (M,G) by MG. A
maximal orbit in (M,G) is called a principal orbit. Let G(x) be a non-principal orbit in (M,G). If
the dimension of G(x) is strictly less than that of principal orbits, G(x) is called a singular orbit.
Otherwise, G(x) is called an exceptional orbit (see Example 3.10).

Two manifolds with group actions (M,G,φ) and (M ′, G′, φ′) are said to be weakly equivariantly
diffeomorphic if there exist an isomorphism ψ : G → G′ and a diffeomorphism f : M → M ′ such
that f(φ(g, x)) = φ′(ψ(g), f(x)) for all (g, x) ∈ G ×M ; if the isomorphism ψ is identity, then
(M,G,φ) and (M ′, G′, φ′) are said to be equivariantly diffeomorphic.

We call N = ∩x∈MGx the kernel of (M,G). A G-action (M,G) is said to be almost effective
(resp. effective) if the kernel of (M,G) is finite (resp. identity). Let N be the kernel of (M,G).
Then, the induced action (M,G/N) is always effective, and we call it the induced effective ac-
tion of (M,G). If two induced effective actions of (M,G) and (M ′, G′) are weakly equivariantly
diffeomorphic, then (M,G) and (M ′, G′) are said to be essentially isomorphic.

Let (X×Y,G) be the diagonal G-manifold of (X,G) and (Y,G). We denote its orbit space by
X ×G Y . If G acts on X freely, i.e., Gx = {e} for all x ∈ X where e ∈ G is the identity element,
then we may regard X ×G Y as the Y -bundle over X/G, i.e., there exists the following fibration:

Y −→ X ×G Y −→ X/G.

2.2. Torus manifold. Let us define a torus manifold.

Definition 2.1. LetM2n be a smooth, 2n-dimensional, compact manifold. We say (M2n, Tn)
a torus manifold if an n-dimensional (half dimensional) torus action on M2n is almost effective
and there exists a fixed point.

In this paper, a torus manifold (M2n, Tn) is often denoted by (M,T ) or M simply. By
definition, a torus manifold satisfies that MT is finite and its principal orbit is Tn itself.

A compact, connected, codimension two T -invariant submanifold of M without boundary is
called characteristic if it is a connected component of the set fixed pointwise by a certain circle
subgroup of T and contains at least one T -fixed point. There exist only finitely many characteristic
submanifolds and they are orientable if M is orientable.

Remark 2.2. The concept of a torus manifold is an ultimate (topological) generalization of
toric theory. However, in this paper we do not use this theory, i.e., we do not use a multi-fan.
Hence, our definition of torus manifold becomes rather briefer than that in [HaMa, Ma]. For
example, we do not need to assume an omniorientation of the torus manifold and characteristic
submanifolds.
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Furthermore, because we would like to classify torus manifolds with codimension one extended
actions up to essential isomorphism, we assume a T -action on M is almost effective. For technical
reasons, we do not assume M is orientable. Namely, torus manifold in this paper contains more
general T -manifolds than those in [HaMa, Ma].

2.3. Facts from classical Lie theory and the previous paper. In this paper, we will
classify (M,G) up to essential isomorphism. In this subsection, we recall the facts from classical
Lie theory and the paper [Ku3].

For any compact, connected Lie group G, there exists a finite covering, homomorphism (see
[MiTo, Section 5]):

G̃ = G1 × · · · ×Gk
c−→ G,(1)

where Gi is a compact, (simply) connected, simple Lie group, or a torus, for i = 1, . . . , k. Let N
be the kernel of c. Then, N is a finite normal subgroup in G1 × · · ·×Gk. Because c is a surjective
homomorphism, we have

G ≃ (G1 × · · · ×Gk)/N.

Therefore, we have the following commutative diagram:

G̃×M

c×Id

��

φ̃

##FF
FF

FF
FF

F

G×M
φ // M

where Id : M → M is the identity map. Namely, there exists the lift (M, G̃, φ̃) of (M,G,φ).

Moreover, one can easily see that (M, G̃) of (M,G) are essentially isomorphic.
A rank of G is the dimension of a maximal torus subgroup of G. As is well known, the following

lemma holds for a maximal rank subgroup Ho of G (see [MiTo, Theorem 7.2]).

Lemma 2.3. Let Gi (i = 1, . . . , k) be compact, connected Lie groups and let G be their product.
Assume Ho is a compact, connected, maximal rank subgroup in G. Then Ho = H1 × · · · × Hk,
where Hi is a maximal rank subgroup in Gi.

We next recall the results of the paper [Ku3]. Let (M,T, φ) be a torus manifold. Suppose
T is a maximal torus subgroup of a compact, connected Lie group G. If there exists an action
Φ : G ×M → M such that the restricted T -action Φ|T×M is the given φ, then we call (M,G,Φ)
an extended G-action of (M,T, φ).

Let (M,G) be an extended G-action of (M,T ). If there is a principal G-orbit G(x) such that
dimG(x) = dimM2n − k = 2n − k, then we call (M2n, G) a codimension k extended G-action
of (M,T ), where an integer k satisfies 0 ≤ k ≤ n. In particular, if a torus manifold (M,T ) has
a codimension 1 extended G-action, then we call (M,T ) a torus manifold with codimension one
extended action (or torus manifold induced from cohomogeneity one action).

Let Z2 be the subgroup

{I2mj+1, −I2mj+1} ⊂ O(2mj + 1),

where O(m) is the orthogonal group and Im is its identity element. Note that Z2 acts on the
2mj-dimensional sphere S2mj ⊂ R2mj+1 canonically (we call this action the antipodal action on

sphere). Let A be a subgroup of
∏b

j=1 Z2. Then A acts on
∏b

j=1 S
2mj through the canonical∏b

j=1 Z2-action on
∏b

j=1 S
2mj , i.e., the product of antipodal actions. For codimension 0 extended

G-actions, we have the following classification results (see [Ku3, Theorem 1]):

Theorem 2.4. Let (M2n, Tn) be a torus manifold, and G a compact, connected Lie group
whose maximal torus is Tn. Suppose (M2n, Tn) extends to a codimension 0 extended G-action.
Then (M2n, G) is essentially isomorphic to a∏

i=1

CP (li)×
∏b

j=1 S
2mj

A
,

a∏
i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)

 ,
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where the above group acts on M2n in the natural way, and
∑a

i=1 li +
∑b

j=1mj = n.

Remark 2.5. In [Ku3, Theorem 1], we used PU(l + 1) instead of SU(l + 1) as the transfor-
mation group, where PU(l+1) is defined as the quotient of SU(l+1) by its center Z(SU(l+1)).
However, (

∏
CP (l),

∏
SU(l+1)) is essentially isomorphic to (

∏
CP (l),

∏
PU(l+1)) (see [Ku3,

Example 2.7]). So we may change PU(l + 1)’s into SU(l + 1)’s.

3. Structure of orbit space M/G and orbits of fixed points MT

Henceforth, (M,T ) represents a 2n-dimensional torus manifold and (M,G) represents its
codimension 1 extended action, where G is a compact connected Lie group with maximal torus T .

In this section, we analyze the orbit space M/G of (M,G).

3.1. Structure of orbit space M/G. By the definition of torus manifold, there exist non-
empty isolated fixed points MT . We first consider a G-orbit on a fixed point p ∈ MT . Because
p ∈MT is fixed by the T -action, we have

T ⊂ Gp ⊂ G.(2)

Therefore, we have rank Go
p = rank G = n, where rank G represents the dimension of maximal

torus of G. Hence, as is well known (see e.g. [GHZ, Theorem 1.1 (2), (3)]), the dimension of
G/(Gp)

o is even and

dimG/Gp = dimG/(Gp)
o.

It follows that there exists at least one singular orbit in (M,G). Hence, together with the fact from
transformation group theory (see e.g. [Br, 8.2 Theorem in Chapter IV] or [Uc, Lemma 1.2.1]),
we obtain the following lemma:

Lemma 3.1. Suppose that (M2n, Tn) extends to (M,G) with codimension 1 orbits. Then, the
orbit space M/G is homeomorphic to the interval [−1, 1] such that orbits over the interior (−1, 1)
are principal orbits G/K and two orbits G/K1 and G/K2 over the boundary {−1, 1} (respectively)
are singular or exceptional. (We may assume G/K1 is a singular orbit.)

Furthermore, there exists a closed, invariant tubular neighborhood Xs (of G/Ks for s = 1, 2)
such that

M = X1 ∪X2

and

X1 ∩X2 = ∂X1 = ∂X2
∼= G/K.

Figure 1 shows the structure of (M,G).

Figure 1. The orbit structure of (M, G) with codimension 1 orbits.

Once we have the orbits G/K1 and G/K2 in Lemma 3.1, their tubular neighborhoods X1 and
X2 can be computed by using the following differentiable slice theorem, or the slice theorem for
short (see, e.g., [Br, Ka]).
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Theorem 3.2 (differentiable slice theorem). Let G be a compact Lie group and M a smooth
G-manifold. Then, for all x ∈ M , there is a closed G-invariant neighborhood X of the orbit
G(x) ∼= G/Gx such that X ∼= G×GxDx as a G-diffeomorphism. Here, the Gx-action on G×Dx is
defined as follows: Gx canonically acts on G as a subgroup of G; and on a closed disk Dx through
an orthogonal representation σ : Gx → O(Dx), where O(Dx) is an orthogonal group of Dx ⊂ RN

(N = dimDx = dimM − dimG(x)).

In Theorem 3.2, we call σ a slice representation of Gx. We identify a tubular neighborhood
X of G(x) with G×Gx Dx.

3.2. G-orbits of T -fixed points. Let p ∈ MT . Using the slice theorem, the tangent space
Tp(M) can be regarded as an orthogonal T -representation space. We call it a tangential repre-
sentation space, or simply a tangential representation on p. Let αi be a representation from T
to S1 ≃ SO(2), i.e., αi : T → S1 ≃ SO(2)(∈ Hom(T, S1) ≃ Zn), and let V (αi) ≃ R2 be the
irreducible representation space of αi. The following lemma tells us the structure of tangential
representations on fixed points in torus manifold (M,T ).

Lemma 3.3. Let (M,T ) be a torus manifold and p ∈MT . Then, the tangential representation
on p decomposes into 1-dimensional representations as follows:

Tp(M) ≃ V (α1)⊕ · · · ⊕ V (αn)

such that {α1, . . . , αn} spans a space Hom(T, S1)⊗ R ≃ Rn.

Proof. According to the definition of torus manifold, the T -action on M is almost effec-
tive. It follows that there is a non-degenerate representation ρ from Tn to the orthogonal group
O(Tp(M)) ≃ O(2n), i.e., the image of ρ is also an n-dimensional torus. Moreover, the image of ρ
is in the special orthogonal group SO(2n) because Tn is connected. Therefore, the image of ρ and
the diagonal maximal torus SO(2)× · · · × SO(2) ⊂ SO(2n) are conjugate in SO(2n). This gives
an equivalence between ρ and α1 ⊕ · · · ⊕ αn for some αi : T

n → SO(2). Moreover, {α1, . . . , αn}
spans a space Hom(T, S1)⊗ R ≃ Rn because ρ(Tn) ⊂ SO(2n) is a maximal torus. � �

The following lemma is one of the key lemmas to classify (M,G).

Lemma 3.4. Let G/K1 be a singular orbit of (M,G) which contains a fixed point of (M,T ).
Then there exists a subtorus T ′ ⊂ T such that (G/K1, T

′) is a torus manifold.

Proof. Let c : G̃ → G be the finite covering of G appearing in (1) in Section 2.2, and let

K̃1 (resp. T̃ ) be the identity component of c−1(K1) (resp. c−1(T )). Using (2) in Section 3.1, we

also have T̃ is a maximal torus subgroup of G̃ and K̃1. By Lemma 2.3, there exists the following
decomposition:

G̃ = G′
1 ×G′′

1 , K̃1 = K ′
1 ×G′′

1 , T̃ = T ′
1 × T ′′

1 ,

where G′
1 and G′′

1 are products of compact, simply connected, simple Lie groups and tori, and G′′
1

is the same factor in G̃ and K̃1, i.e., the identity component of the kernel of the G̃-action on G/K1.

Note that rank G′
1 = rank K ′

1 = dimT ′
1 and rank G′′

1 = dimT ′′
1 . Because K̃1 ⊂ c−1(K1) ⊂ G̃, we

also have the following decomposition:

c−1(K1) = H ′
1 ×G′′

1 ,

where K ′
1 ⊂ H ′

1 ⊂ G′
1 and the identity component of H ′

1 is K ′
1. Then, the projection c induces

the diffeomorphism between G′
1/H

′
1 and G1/K1. Note that T ′′

1 is the identity component of the

kernel of T̃ -action on G′
1/H

′
1.

Let us prove that (G′
1/H

′
1, T

′
1) is a torus manifold. Because T ′

1 is a maximal torus of G′
1 and

K ′
1 = (H ′

1)
o, as is well known, the T ′

1-action on G′
1/H

′
1 is almost effective and there exist fixed

points. Moreover, we have the following decomposition on the fixed point p ∈ G/K1 ∩MT :

TpM = TpG/K1 ⊕NpG/K1,
6



where TpG/K1 is the tangent space and NpG/K1 is its normal space on p. It follows from Lemma
3.3 that there exists a decomposition

TpM = V (α1)⊕ · · · ⊕ V (αn).

This implies that we may put

TpG/K1 = V (α1)⊕ · · · ⊕ V (αn−k1);

NpG/K1 = V (αn−k1+1)⊕ · · · ⊕ V (αn),

for some k1 ∈ N. Because T ′′
1 is the connected component of the kernel of T̃ -action on G′

1/H
′
1
∼=

G/K1, the Lie algebra of T ′′
1 is spanned by {αn−k1+1 ⊕ · · · ⊕ αn}. Therefore, we have

dimNpG/K1 = 2k1 = 2dimT ′′
1 .

Because dimT ′
1 + dimT ′′

1 = n, we also have

dimG/K1 = 2(n− k1) = 2 dimT ′
1.

Hence, (G′
1/H

′
1, T

′
1)

∼= (G/K1, T
′
1) is a torus manifold. � �

Remark 3.5. In Lemma 3.4, if (M,T ) is an oriented torus manifold then G/K1 is also
oriented; moreover, G/K1 is the connected component of the intersection of some characteristic
submanifolds (see [Ku4, Lemma 3.2]).

3.3. Examples. In this subsection, we recall quasitoric manifolds briefly, and give some
examples of torus manifolds with codimension one extended actions.

We first recall the definition of quasitoric manifold. Let Pn be a simple convex polytope, i.e.,
precisely n facets (codimension-1 faces) of Pn meet at each vertex.

Definition 3.6. If the torus manifold (M2n, Tn) satisfies the following two properties:

(1) Tn-action is locally standard, i.e., locally looks like the standard torus representation in
Cn;

(2) there is a projection map π : M2n → Pn constant on Tn-orbits which maps every
k-dimensional orbit to a point in the interior of k-dimensional face of Pn, k = 0, . . . , n,

then (M2n, Tn) is said to be a quasitoric manifold.

Remark 3.7. One can easily show that (M,T ) satisfies the condition (1) in the definition of
the quasitoric manifolds if and only if {α1, . . . , αn} in Lemma 3.3 spans Hom(T, S1) ≃ Zn for each
fixed point.

Example 3.8 shows a quasitoric manifold with codimension one extended action.

Example 3.8. Let (M,T ) = (CP (2), T 2) be the torus manifold defined by the standard
multiplication of T 2 on the last two coordinates in [z0 : z1 : z2] ∈ CP (2) (also see [Ku3, Example
2.2]). This torus manifold has an extended G = PU(2)× T 1-action as follows:

• PU(2) = U(2)/Z(U(2)) acts on the first two coordinates (z0, z1) by the standard mul-
tiplication, where Z(U(2)) is the center of U(2);

• T 1 acts on the third coordinate z2 by the standard multiplication.

Now we can easily check (M,T ) is a quasitoric manifold (also see the left “triangle” in Figure
2), and (M,G) has codimension 1 orbits G([1 : 0 : 1]) ∼= CP (1) × S1 and two singular orbits
G([1 : 0 : 0]) ∼= CP (1) and G([0 : 0 : 1]) ∼= {∗} (one point).

On the other hand, Example 3.9 is not a quasitoric manifold. However, this is a torus manifold
with codimension one extended action.

Example 3.9. Let (M, T ) = (S4, T 2) be the torus manifold defined by the standard mul-
tiplication of T 2 = SO(2) × SO(2) on S4 ∩ R4, where S4 ⊂ R4 ⊕ R (also see [Ku3, Example
2.3]). Now we can check (M,T ) is not a quasitoric manifold because its orbit space is not a convex
polytope (see the right “half-moon” in Figure 2, this half-moon is not a convex polytope).

Let (x, y) ∈ S4 ⊂ R2 ⊕ R3. This torus manifold has an extended G = T 1 × SO(3)-action as
follows:

7



• T 1 ≃ SO(2) acts on x ∈ R2 standardly;
• SO(3) also acts on y ∈ R3 standardly.

One can easily see that (M,G) has codimension 1 orbits G(e1, f1) ∼= S1 × S2 and two singular
orbits G(e1, 0) ∼= S1 and G(0, f1) ∼= S2, where e1 = (1, 0) ∈ R2 and f1 = (1, 0, 0) ∈ R3.

Figure 2 shows the image of Examples 3.8 and 3.9.

Figure 2. The left triangle shows the orbit space CP (2)/T 2, the right half-
moon also shows the orbit space S4/T 2, and interval shows the orbit space of
CP (2)/(PU(2)× T 1) and S4/(T 1 × SO(3)).

We also give the following example which has an exceptional orbit:

Example 3.10. Let (S4, T 2) be a torus manifold defined in Example 3.9. Then, we may
naturally define the product action of two copies (S4 × S4, T 2 × T 2), and this is a torus manifold
with 4 fixed points. If N and S denote the 2 fixed points in (S4, T 2), then the 4 fixed points in
(S4 × S4, T 2 × T 2) can be denoted by (N,N), (N,S), (S,N) and (S, S).

Let Z2 be the group generated by (−I5,−I5), where −I5 is the antipodal involution on S4 ⊂ R5

and I5 is the identity map on R5. We note that −I5 does not preserve an orientation on S4;
however, (−I5,−I5) preserves an orientation on S4 × S4. Now we may consider the following
manifold

(S4 × S4)/Z2 = S4 ×Z2 S
4.

Since (−I5,−I5) preserves an orientation of S4×S4 and (−I5,−I5) commutes with T 2×T 2-action
on S4×S4, we have that S4×Z2 S

4 is an oriented manifold equipped with T 2×T 2-action induced
from (S4 × S4, T 2 × T 2). Moreover, there are 2 fixed points denoted by [N : N ] = [S : S] and
[N : S] = [S : N ]. Therefore, (S4×Z2 S

4, T 2×T 2) is an oriented torus manifold (also see Theorem
2.4).

This action extends to the canonical G = SO(5) × SO(4)-action on S4 ×Z2 S
4. Then we

have the following three orbit types: G([e1 : e1]) = (SO(5) × SO(4))/(SO(4) × SO(4)) = S4;
G([e1 : e2]) ∼= (SO(5) × SO(4))/(SO(4) × SO(3) × Z2) ∼= S4 ×Z2 S

3; and G([e1 : e1 + e2]) =
(SO(5) × SO(4))/(SO(4) × SO(3)) = S4 × S3. Here, e1, . . . , e5 are the canonical basis of R5.
Therefore, in this case there are one singular orbit S4, principal orbits S4×S3, and the exceptional
orbit S4 ×Z2

S3.

4. Crossed product of (M1, G1) by G/H and Primitive manifolds

In this section, we introduce a primitive manifold. This notion, which was first introduced by
Alekseevskii-Alekseevskii in [AlAl], plays an important role in the classification of torus manifolds
with extended actions. In this paper, we slightly modify the original definition in [AlAl].

In order to define it, we first define the following notion:

Definition 4.1. LetM1 be a compact connected manifold, G a Lie group,H a closed subgroup
of G. Then, the G-manifold M = G×H M1 is said to be a crossed product of M1 by G/H, where
H acts on M1 by representation µ : H → Diff(M1) such that kerµ does not contain any normal
subgroup of G.

Here, the symbol Diff(M1) represents the set of all diffeomorphisms on M1.
8



Remark 4.2. If M is a crossed product of M1 by G/H, then M is a fibre bundle whose base
space is G/H and fibre is M1 (see Section 2.1). Therefore, we may regard M1 as a submanifold
of M . Furthermore, if (M1,H, µ) has a codimension one principal orbit H/J for some subgroup
J ⊂ H, then (M,G) also has a codimension one principal orbit G×H (H/J) ∼= G/J .

Now we may define a primitive manifold.

Definition 4.3. A G-manifold (M,G) is said to be primitive if there is no submanifold
M1( ̸= {∗}) whose nontrivial crossed product by G/H for any H ⊂ G, i.e., G ×H M1 such that
µ : H → Diff(M1) is non-trivial, is G-diffeomorphic to M .

We call a torus manifold (M,T ) with primitive extended G-action (M,G) a primitive torus
manifold in this paper.

Let us prove the following 2nd key lemma

Lemma 4.4. Let (M,T ) be a non-primitive torus manifold, i.e., M ∼= G ×H M1 for some
non-trivial subgroup H of G, where H acts on M1 via non-trivial µ : H → Diff(M1). Then, there
exists the decomposition T ≃ T ′×T ′′ such that (G/H, T ′) and (M1, T

′′) are torus manifolds, where
T ′′ ⊂ H acts on M1 via µ.

Proof. We first prove that T ⊂ H ⊂ G. Let π : M → G/H be the projection. Because the
projection π is a T -equivariant map, we have π(MT ) ⊂ (G/H)T , i.e., there exists a fixed point in
(G/H, T ). Therefore, there exists an element gH ∈ G/H such that TgH = gH. It follows that
g−1Tg ⊂ H. Hence, we have that rank G = rank H. In particular, by taking conjugation, we may
assume T ⊂ H ⊂ G.

It follows from the method similar to that demonstrated in Section 2.2 that we may assume

G = G′ ×G′′,

H = H ′ ×G′′

where G′ is a product of connected, simple compact Lie groups, and H ′ is its maximal rank
subgroup. Then, we may devide T into T ′×T ′′, where T ′ is a maximal torus of G′ and T ′′ is that
of G′′. Because T ′ acts on G/H ∼= G′/H ′ almost effectively, we have 2 dimT ′ ≤ dimG/H. On the
other hand, T ′′ also acts on M1 almost effectively, because T ′′ acts on G/H trivially and T acts
on M almost effectively.

Asume 2 dimT ′ < dimG/H. Then, we have 2 dimT ′′ > dimM1 because (M,T ) is a torus
manifold. However, this gives a contradiction to that T ′′ acts on M1 almost effectively. Therefore,
we have that

2 dimT ′ = dimG/H and 2 dimT ′′ = dimM1.

Hence, (G/H, T ′) is a torus manifold. If MT ′′

1 = ∅, then we can easily see that MT = ∅. This
gives a contradiction to that (M,T ) is a torus manifold. Hence, (M1, T

′′) is also a torus manifold.
This establishes the statement. � �

Using Remark 4.2 and Lemma 4.4 together with Theorem 2.4, we have the following theorem:

Theorem 4.5. Let (M,T ) be a torus manifold with codimension one extended G-action. As-
sume (M,G) is not primitive. Then, there exist the following two manifolds: the torus submanifold
(M1, T

′′) with codimension one extended G′′-action such that (M1, G
′′) is primitive; and the ho-

mogeneous torus manifold (G′/H ′, T ′), and (M,G) is essential isomorphic to

M ∼= G×(H′×G′′) M1,

G = G′ ×G′′ ≃
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)×G′′,

where G acts on the G-factor in M naturally and

H ′ =
a∏

i=1

S(U(li)× U(1))× S ⊂
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)
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where
b∏

j=1

SO(2mj) ⊂ S ⊂
b∏

j=1

S(O(2mj)×O(1)).

Here, in Theorem 4.5, the quotient space G×(H′×G′′)M1 is defined by the following (H ′×G′′)-
actions: on G naturally; and on M1 by the product of the G′′-action on M1 and an H ′-action on
M1 defined by representation

µ : H ′ → DiffG′′(M1),

where DiffG′′(M1) is the set of all G′′-equivariant diffeomorphisms on M1.
Now we note the following lemma:

Lemma 4.6. If (X,G) and (Y,H) are essentially isomorphic, then

DiffG(X) ≃ DiffH(Y ).

Proof. One can easily check that if (X,G) and (Y,H) are weakly equivariantly diffeomorphic
then DiffG(X) ≃ DiffH(Y ). Therefore, it is enough to show that DiffG(X) = DiffG/N (X), where
N is the kernel of (X,G,φ) (see Section 2.1).

Let f ∈ DiffG(X). By definition, the following diagram is commute:

G×X

Id×f

��

φ // X

f

��
G×X

φ // X

Let φN : G/N × X → X be the induced effective action. By definition and the commutative
diagram above, for [g] ∈ G/N , we have

f(φN ([g], x)) = f(φ(g, x)) = φ(g, f(x)) = φN ([g], f(x)).

It follows that DiffG(X) ⊂ DiffG/N (X). On the other hand, f ∈ DiffG/N (X) satisfies that

f(φN ([g], x)) = φN ([g], f(x)) = φ(g, f(x)).

It follows from f(φN ([g], x)) = f(φ(g, x)) that f ∈ DiffG(X), i.e., DiffG(X) ⊃ DiffG/N (X). This
establishes DiffG(X) = DiffG/N (X). � �

Due to Theorem 4.5 and Lemma 4.6, in order to classify (M,T ) with codimension one extended
actions, it is enough to classify the followings:

(1) primitive manifolds (M1, G
′′), whose restricted maximal torus T ′′-action (M1, T

′′) is a
torus manifold, up to essential isomorphism;

(2) representations µ : H ′ → DiffG′′(M1).

Henceforth, we call a torus manifold (M1, T
′′) whose codimension one extended action (M1, G

′′)
is primitive a primitive torus manifold.

We first classify the primitive torus manifolds in Section 5 to 6. To ahieve this, we need to
use the following key lemma:

Lemma 4.7. Let (M,G) be a codimension one extended action of torus manifold (M,T ), and
K1, K2 be non-principal isotropy subgroups. Suppose that there exists a proper subgroup H in G
such that K1∪K2 ⊂ H. Then, there exists a submanifold M1 with codimension one H-action and
M ∼= G×H M1, i.e., (M,G) is not primitive.

In other words, if (M,G) is a primitive manifold and there exists a subgroup H ⊂ G satisfies
K1 ∪K2 ⊂ H, then H = G.

Proof. Using Lemma 3.1 and Theorem 3.2, there exists a decomposition M ∼= X1 ∪ X2

where Xi
∼= G×K1

Di. Because of the assumption that H ̸= G and Ki ⊂ H, we have G×K1
Di

∼=
G/H ×H (H ×Ki Di). Put M1 = H ×K1 D1 ∪ H ×K2 D2. Then, we may regard M1 ⊂ M .
Moreover, M1 has the cohomogeneity one H-action by restricting (M,G) to (M1,H). Hence, we
have M ∼= G×H M1. � �
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5. Isotropy subgroups (K1,K) in (general) torus manifolds

In order to classify primitive torus manifolds (M1, T
′′), in this section, we characterize (G,K1,K)

appearing in the general torus manifold (M,G) with codimension one extended G-actions (with
possibly representations K ⊂ K1 ⊂ G). Here, we assume G/K1 ∩MT ̸= ∅.

5.1. Singular isotropy subgroup K1. We first classify the pair (G,K1) in the general case.
At first, we prepare the following lemma needed later (also see [Ku4, Corollary 5.4]):

Lemma 5.1. The following two statements hold:

• if the connected subgroup H in O(2l) acts on S2l−1 transitively and its rank is l, i.e.,
rank H = l, then H ≃ U(l) or SO(2l) in O(2l);

• if the connected subgroup H in O(2l−1) acts on S2l−2 transitively, then H ≃ SO(2l−1)
or H ≃ G2 and l = 4, where G2 is the exceptional Lie group and G2/SU(3) ∼= S6.

Proof. Using the classification results of transitive actions on sphere (e.g. see [HsHs, Section
1] or [AlAl, Table 1]), we can easily get the statement. � �

By Lemma 3.4, we may assume that the orbit G/K1 is a torus manifold. Therefore, we
can put dimG/K1 = 2n − 2k1, where 2n = dimM . Moreover, with the method similar to that
demonstrated in Section 2.3, there is the following decomposition:

G = G′
1 ×G′′

1 ⊃ K1 ⊃ Ko
1 = (K ′

1)
o ×G′′

1 ⊃ T = T ′
1 × T ′′

1 ,(3)

where G′
1 and G′′

1 are products of compact, connected, simple Lie groups and tori, and T ′
1 and T ′′

1

are their maximal tori, respectively. Using the decomposition (3), we also have

K1 = K ′
1 ×G′′

1 .

Together with Theorem 2.4, there are the following identifications up to conjugation:

G′
1 =

a∏
i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1);

(K ′
1)

o =
a∏

i=1

S(U(1)× U(li))×
b∏

j=1

SO(2mj);(4)

K ′
1 =

a∏
i=1

S(U(1)× U(li))× S,

where S is a subgroup which satisfies that

b∏
j=1

SO(2mj) ⊂ S ⊂
b∏

j=1

S(O(1)×O(2mj)).

Remark 5.2. Note that SO(3) ≈ SU(2), i.e., locally isomorphic, and the covering map
SU(2) → SO(3) preserves S(U(1) × U(1)) to SO(2). Therefore, we may regard SU(2) as SO(3)
up to essential isomorphism. Namely, we may assume that li ≥ 2, for all i = 1, . . . , a, up to
essential isomorphism in the identification (4) above.

To get G′′
1 , we analyze the slice representation of the tubular neighborhood X1 = G×K1 D

2k1

(see Theorem 3.2), where D2k1 is the 2k1-dimensional disk. In our case, the slice representation
can be denoted by the following homomorphism:

σ1 : K1 = K ′
1 ×G′′

1 → O(2k1).

Due to the decomposition (3), G′′
1 is in the kernel of the G-action on G/K1. Hence, G′′

1 acts on
D2k1 ⊂ NpG/K1 almost effectively via σ1, because G acts on M almost effectively. Note that
rank G′

1 = rank K ′
1 = n− k1 and rank G′′

1 = k1, because G
′
1/K

′
1 is a (2n− 2k1)-dimensional torus

manifold. Therefore, we have that

σ1(T
′′
1 ) = T k1 ⊂ O(2k1).
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We also have that σ1(G
′′
1) acts on ∂D2k1 = S2k1−1 transitively, because (M,G) has codimension

1 extended action. It follows from Lemma 5.1 that

G′′
1 ≈ σ1(G

′′
1) ≃ U(k1) or SO(2k1).

Here, the symbol X ≈ Y represents that X and Y are locally isomorphic, i.e., the surjective
homomorphism σ1 : G′′

1 → σ1(G
′′
1) induces the isomorphism of Lie algebras. If k1 = 1, then we

may regard SO(2) as U(1). Hence, we have

G′′
1 = SU(k1)× T 1

or

G′′
1 = SO(2k1) and k1 ≥ 2,

up to essential isomorphism.
This establishes the following classification of all pairs of G and the singular isotropy subgroup

K1:

Lemma 5.3. Let (M,G) be a codimension one extended action of the torus manifold (M,T ).
Let G/K1 be a singular orbit such that G/K1 ∩MT ̸= ∅. Then, we may regard G and K1 as
G = G′

1 ×G′′
1 and K1 = K ′

1 ×G′′
1 such that

G′
1 =

a∏
i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

K ′
1 =

a∏
i=1

S(U(1)× U(li))× S,

and

G′′
1 = SU(k1)× T 1 or SO(2k1) (and k1 ≥ 2).

5.2. Property of principal isotropy subgroup K. In this subsection, we classify the prin-
cipal isotropy subgroup K. Note that σ−1

1 (O(2k1 − 1)) = K because K1 acts on S2k1−1 ∼= K1/K
transitively via the slice representation σ1. Therefore, we need to compute the slice representation

σ1. To do this, we first define the natural projections of G =
∏a

i=1 SU(li + 1)×
∏b

j=1 SO(2mj +

1)×G′′
1 as follows:

pi : G→ SU(li + 1) for i = 1, . . . , a;

qj : G→ SO(2mj + 1) for j = 1, . . . , b.

We also prepare the following notations for the sake of brevity. Put

τI =

((
t1 0
0 A1

)
, · · · ,

(
ta 0
0 Aa

))
∈

a∏
i=1

S(U(1)× U(li)),

where Ai ∈ U(li) and detA−1
i = ti for i ∈ I = {1, . . . , a}. By changing the order of {1, . . . , b},

we may regard the first part J1 = {1, . . . , b1} in {1, . . . , b} as the set satsfing that mj = 1 and
qj(K) = SO(2mj) = SO(2). Now we may define the following two notations:

νJ1 = (u1, . . . , ub1)

∈
b1∏
j=1

SO(2mj) ⊂
b1∏
j=1

S(O(1)×O(2mj))

where uj ∈ SO(2mj) = SO(2); and

νJ2 =

((
xb1+1 0
0 Xb1+1

)
, · · · ,

(
xb 0
0 Xb

))
∈ S ⊂

b∏
j=b1+1

S(O(1)×O(2mj)),
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where Xj ∈ O(2mj) and detXj = xj for j ∈ J2 = {b1 + 1, . . . , b}.
The following lemma tells us the σ1-images of τI , νJ1 and νJ2 .

Lemma 5.4. The following two statements hold:

• if G′′
1 = SU(k1)× T 1, then the following equations hold:

σ1(τI) = tr11 · · · traa ∈ S1;

σ1(νJ1) = us11 · · ·usb1b1
∈ S1;

σ1(νJ2) ∈ {±I2k1} ⊂ O(2k1),

for some ri, sj ∈ Z.
• if G′′

1 = SO(2k1), then the following equations hold:

σ1(τI) = I2k1 ;

σ1(νJ1) = I2k1 ;

σ1(νJ2) ∈ {±I2k1} ⊂ O(2k1).

Proof. Because σ1(G
′′
1) = U(k1) or SO(2k1) by Section 5.1 and K ′

1 is in the centralizer of
G′′

1 in K1 by Lemma 5.3, there are the following relations:

σ1(K
′
1) ⊂ ZO(2k1)(U(k1)) = Z(U(k1)) = S1 (if G′′

1 = SU(k1)× T 1)

where S1 is the center of U(k1), i.e., the diagonal subgroup whose all entries are the same; and

σ1(K
′
1) ⊂ ZO(2k1)(SO(2k1)) = Z(SO(2k1)) = {±I2k1} (if G′′

1 = SO(2k1))

where I2k1 is the identity element of O(2k1), ZG(K) is the centralizer of K in G, and Z(K) is the
center of K. It follows from the above relations that one can easily check the statements for τI
and νJ1 .

We will check the statements for νJ2 . If G′′
1 = SO(2k1), then the statement for σ1(νJ2) ∈

{±I2k1} is straightforward, because σ1(K
′
1) ⊂ Z(SO(2k1)) = {±I2k1}.

Assume G′′
1 = SU(k1)× T 1. Because νJ2 ∈ S and S satisfies that

b∏
j=b1+1

SO(2mj) = So ⊂ S ⊂
b∏

j=b1+1

S(O(1)×O(2mj)),

it is enough to prove σ1(νJ2) = I2k1 for νJ2 ∈ So. Let Xj ∈ S(O(1) × O(2mj)) be the jth-factor
of νJ2 ∈ So. If mj ≥ 2, then one can easily check σ1(Xj) ∈ {±I2k1} ⊂ U(k1) ⊂ O(2k1) because
σ1(K

′
1) ⊂ S1.
Therefore, we may assume there exists j ∈ {b1 + 1, . . . , b} such that mj = 1. If S = So,

then mj ≥ 2 for all j = b1 + 1, . . . , b because of the definitions of J1 and J2. Hence, we may
also assume S/So ̸= {e} when mj = 1. Then, by the the definition of J1 and J2, the projection
qj : S(O(1)×O(2mj)) → S(O(1)×O(2)) is surjective. Let ιj : S(O(1)×O(2)) → S be an inclusion
such that

Im ιj ∩ SO(2mj) = SO(2mj) = SO(2).

We will prove that this inclusion ιj satisfies σ1 ◦ ιj(S(O(1)×O(2))) ⊂ {±I2k1} ⊂ U(k1) ⊂ O(2k1).
Let

J =

(
0 1
1 0

)
∈ O(2).

Using J2 = I2 and σ1(K
′
1) ⊂ S1, we have the following relation:

σ1 ◦ ιj
((

−1 0
0 J

))
∈ {±I2k1} ⊂ U(k1).(5)

On the other hand, the following equation holds:

σ1 ◦ ιj
((

1 0
0 Xj

))
= (Xj)

r ∈ S1 ⊂ U(k1) ⊂ O(2k1)
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for some r ∈ Z where Xj ∈ SO(2), because SO(2) is the abelian group. Hence, by the relation
(5), we have that

(Xj)
r = σ1 ◦ ιj

((
1 0
0 Xj

))
= σ1 ◦ ιj

((
−1 0
0 J

))
σ1 ◦ ιj

((
1 0
0 Xj

))
σ1 ◦ ιj

((
−1 0
0 J

))
= σ1 ◦ ιj

((
−1 0
0 J

)(
1 0
0 Xj

)(
−1 0
0 J

))
= σ1 ◦ ιj

((
1 0
0 (Xj)

−1

))
= (Xj)

−r.

It follows that r = 0. This establishes σ1(So) = {I2k1}. Therefore, it follows from S/So ⊂ (Z2)
b−b1

that we have σ1(νJ2) ∈ {±I2k1}. � �

It follows from Lemma 5.4 and σ−1
1 (O(2k1 − 1)) = K that we have the following lemma:

Lemma 5.5. Fix the slice representation σ1 : K1 → O(2k1). Then, the following two state-
ments hold:

• if G′′
1 = SU(k1)× T 1, then K is the following subgroup:{(
τI , νJ1 , νJ2

(
a 0
0 A

)
, z

) ∣∣∣ tr11 · · · traa u
s1
1 · · ·usb1b1

σ1(νJ2)z
γ = a−1

}
,

where A ∈ U(k1 − 1) such that detA = a−1, z ∈ T 1 and γ ∈ Z;
• if G′′

1 = SO(2k1), then K is the following subgroup:{(
τI , νJ1 , νJ2 ,

(
x 0
0 X

)) ∣∣∣ σ1(νJ2) ∈ {±I2k1} such that σ1(νJ2)x = +1

}
,

where X ∈ O(2k1 − 1) such that detX = x.

Here, we regard σ1(νJ2) ∈ {±I2k1} as σ1(νJ2) ∈ {±1} ⊂ Z in the relations above.

This establishes the classification of the principal isotropy subgroups.

6. Isotropy subgroups (G,K1,K2,K) in primitive torus manifolds

In this section, we characterize (G,K1,K2,K) (with possibly inclusions K ⊂ Ks ⊂ G for
s = 1, 2) appearing in primitive manifolds.

6.1. Preliminary. As a preliminary to characterizing such (G,K1,K2,K), we show the de-
composition of K2 in this subsection (see Lemma 6.1).

Let H be one of the following proper subgroups in G:

HU
k =

∏
i∈I(k)

SU(li + 1)× S(U(1)× U(lk))×
b∏

j=1

SO(2mj + 1)×G′′
1 ;

HO
k =

a∏
i=1

SU(li + 1)×
∏

j∈J(k)

SO(2mj + 1)× S(O(1)×O(2mk))×G′′
1 ,

where I(k) = {1, . . . , a} \ {k} and J(k) = {1, . . . , b} \ {k}. Due to the classification of K1 in
Section 5.1 (see Lemma 5.3), we have K1 ⊂ H for all k.

Henceforth, we take an isotropy type K2 as a subgroup of G such that K ⊂ K1 ∩K2, where
K is the subgroup appearing in Lemma 5.5. Assume the projections of K2 satisfy one of the
following relations for some i or j:

pi(K2) ⊂ S(U(1)× U(li));

qj(K2) ⊂ S(O(1)×O(2mj)).
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Then, we can easily check that K2 ⊂ HU
i or K2 ⊂ HO

j . Because K1 ⊂ HU
i ∩HO

j for all i, j, we

have that K1 ∪K2 ⊂ HU
i or HO

j for some i or j. Therefore, by virtue of Lemma 4.7, we have that
(M,G) is not primitive. Hence, it follows from Lemma 5.5 that

SU(li) ⊂ pi(K) ⊂ S(U(1)× U(li)) ( pi(K2) ⊂ SU(li + 1);

SO(2mj) ⊂ qj(K) ⊂ S(O(1)×O(2mj)) ( qj(K2) ⊂ SO(2mj + 1),

for all i = 1, . . . , a and j = 1, . . . , b. As is well known, subgroups above are pi(K2) = SU(li+1)
for li ≥ 2 (see Remark 5.2) and qj(K2) = SO(2mj+1). Hence, the natural projection p′ : G→ G′

1

satisfies that

p′(K2) = G′
1 =

a∏
i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1).

Now we may prove the following lemma:

Lemma 6.1. If (M1, G) is an extended action of a primitive torus manifold and G decomposes
into G′

1 ×G′′
1 appearing in Lemma 5.3, then there exists the following decomposition:

K2 = G′
1 ×K ′′

2 ,

where K ′′
2 is the image of K2 by the natural projection p′′ : G → G′′

1 . Furthermore, we have that
p′′ induces the isomorphism G/K2

∼= G′′
1/K

′′
2 .

Proof. By using p′(K2) = G′
1, we have that the surjective map

G/K2 −→ G′′
1/K

′′
2

induced from p′′ is isomorphism. Moreover, K2(⊂ G′
1 ×K ′′

2 ) satisfies that

dimK2 = dimG′
1 ×K ′′

2 .

This implies that (G′
1 × {e}) ∩K2 = H × {e} is a maximal rank subgroup of G′

1 × {e} such that
G′

1/H is finite. Because G′
1 is a product of SU(li + 1) and SO(2mj + 1), i.e., product of simple

Lie groups, by using the arguments demonstrated in Section 2, we have H = G′
1. Therefore,

G′
1 × {e} ⊂ K2. This implies K2 = G′

1 ×K ′′
2 . � �

Now there are the following two cases:

• G/K2 contains a T -fixed point, i.e., G/K2 ∩MT ̸= ∅;
• otherwise, i.e., G/K2 ∩MT = ∅.

From the next subsection, we will analyze each case.

6.2. The case when G/K2∩MT
1 ̸= ∅. Assume G/K2 contains a T -fixed point. Similarly to

the case of G/K1, we have that G/K2 is a torus manifold. Note that G/K2
∼= G′′

1/K
′′
2 by Lemma

6.1. Therefore, we can put dimG/K2 = 2n − 2k2 for some k2 ∈ N. Now there are two cases:
G′′

1 = SU(k1)× T 1 and SO(2k1) (k1 ≥ 2) by Section 5.1.
6.2.1. The case when G′′

1 = SU(k1)× T 1. Suppose G′′
1 = SU(k1)× T 1. Because G′′

1/K
′′
2 is a

torus manifold, it follows from Lemma 5.5 and K ⊂ K2 that we may put

K ′′
2 = S(U(1)× U(k1 − 1))× T 1 (k2 ≥ 1)

or

K ′′
2 = G′′

1 = SU(k1)× T 1 (k2 = n).

Assume K ′′
2 = S(U(1)×U(k1 − 1))× T 1. In this case, the kernel of the G-action on G/K2

∼=
G′′

1/K
′′
2 contains G′

1×T 1. With the method similar to that demonstrated in Section 5.1, the kernel
of the G-action on G/K2 acts on K2/K ∼= S2k2−1 transitively and almost effectively via the slice
representation σ2 : K2 = G′

1 ×K ′′
2 → O(2k2). Together with Lemma 5.1, we have that

σ2(G
′
1 × T 1) = U(k2).

Moreover, we have that kerσ2∩ (G′
1×T 1) is finite, because the G-action onM1 is almost effective.

Therefore, we may assume σ2({e} × T 1) = S1, where {e} is the identity element in G′′
1 and S1 is

the center of U(k2). Namely, σ2 induces the representation σ′
2 : G′

1 → PU(k2) such that kerσ′
2
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is finite, where PU(k2) = U(k2)/S
1. Note that G′

1 is a product of Lie groups. Let us recall the
following well-known lemma ([MoSa, Theorem I’]):

Lemma 6.2. Let X and Y be two compact connected Lie groups and let G = X ×N Y where
N is a finite normal subgroup of X × Y . If G acts transitively on the n-dimensional sphere Sn

then one of the two subgroups of G corresponding to X and Y acts transitively on Sn.

Due to Lemma 6.2, there is the factor in G′
1 such that the restriction of σ′

2 to this factor induces
the surjective homomorphism onto PU(k2). Together with the fact that kerσ′

2 is finite, we have
G′

1 = SU(l1 + 1), SO(2m1 + 1) or {e} with k2 = 1. Recall that if Spin(2m + 1) ≃ SU(m + 1)
then m = 1 and Spin(3) ≃ SU(2) (see e.g. [MiTo]). Therefore, we may put

G′
1 = SU(l1 + 1) and k2 = l1 + 1(≥ 1).

Here, we note the following two facts: if k2 = 1 then l1 = 0; if k2 = 2 then G′
1 = SO(3), i.e.,

m1 = 1 but this case can be regarded as G′
1 = SU(2) up to essential isomorphism by Remark 5.2.

This establishes that

G = SU(k2)× SU(k1)× T 1,

K1 = S(U(1)× U(k2 − 1))× SU(k1)× T 1,

K2 = SU(k2)× S(U(1)× U(k1 − 1))× T 1,

and k1 + k2 − 1 = n.
Assume K ′′

2 = G′′
1 = SU(k1)× T 1. With the method similar to that demonstareted as above,

we have

σ2(G
′
1 ×G′′

1) = U(k2) = U(n)

such that kerσ2 is finite. Similarly to the case above, σ2({e}×T 1) = S1 and there are the following
two cases:

σ′
2(G

′
1) = PU(n);

and

σ′
2(SU(k1)) = PU(n),

where σ′
2 : G′

1 × SU(k1) → PU(n) is the induced representation. Note that kerσ′
2 is finite in

the both cases. Therefore, if σ′
2(G

′
1) = PU(n) then we have k1 = 1 and l1 + 1 = n; and if

σ′
2(SU(k1)) = PU(n) then we have k1 = n and G′

1 = {e}. This establishes that
G = K2 = SU(n)× T 1,

K1 = S(U(1)× U(n− 1))× T 1 and k1 = 1, k2 = n

or

G = K2 = K1 = SU(n)× T 1 and k1 = k2 = n.

Note that when G = K2 = SU(n)× T 1 and K1 = S(U(1)× U(n− 1))× T 1, we may regard this
case as the case when G = SU(k2)× SU(k1)× T 1, K1 = S(U(1)×U(k2 − 1))× SU(k1)× T 1 and
K2 = SU(k2)× S(U(1)× U(k1 − 1))× T 1 with k1 = 1, k2 = n.

6.2.2. The case when G′′
1 = SO(2k1). Suppose that G′′

1 = SO(2k1) (k1 ≥ 2). Similarly to the
case when G′′

1 = SU(k1)× T 1, we have that

K ′′
2 = G′′

1 = SO(2k1)

and

σ2(G
′
1 × SO(2k1)) = SO(2k2)

and kerσ2 is finite. Therefore, by using k1 ≥ 2 and Lemma 6.2, we have that k1 = k2 and
G′

1 = {e}. Note that n = k2 because G/K2 = {∗}. This establishes that
G = K1 = K2 = SO(2n) and k1 = k2 = n.

Consequently, we have the following proposition:
16



Proposition 6.3. Suppose that (M2n
1 , G) is a primitive torus manifold and G/K2 contains

a T -fixed point. Then, there are the following three cases:

(1) G = SU(k1)× SU(k2)× T 1, K1 = SU(k1)× S(U(1)×U(k2 − 1))× T 1, K2 = S(U(1)×
U(k1 − 1))× SU(k2)× T 1 and

K =

{((
a 0
0 A

)
,

(
b 0
0 B

)
, a−1b−1

) ∣∣∣ detA = a−1,detB = b−1

}
where A ∈ U(k1 − 1), B ∈ U(k2 − 1) and k1 + k2 − 1 = n;

(2) G = K1 = K2 = SU(n)× T 1 and

K =

{((
a 0
0 A

)
, a−1

) ∣∣∣ detA = a−1

}
where A ∈ U(n− 1);

(3) G = K1 = K2 = SO(2n) and K = SO(2n− 1).

Proof. By the the argument before this proposition, we have the three possibilities of
(G,K1,K2) appearing in the statement. So, it is enough to show the principal isotropy subgroups
K in each case.

For the 3rd case of (G,K1,K2), by using Lemma 5.5, it is straightforward to get K.
For the 1st case of (G,K1,K2), by using Lemma 5.5, we have

K =

{((
t1 0
0 A1

)
,

(
a 0
0 A

)
, z

) ∣∣∣ tr11 zγ = a−1

}
,

where A1 ∈ U(k2 − 1) such that detA1 = t−1
1 , A ∈ U(k1 − 1) such that detA = a−1, z ∈ T 1 and

r1, γ ∈ Z.
Then, the kernel of the G-action on M1 contains the subgroup {e} × Z|γ|, where {e} ⊂

SU(k2) × SU(k1) and Z|γ| is the cyclic group of order |γ| ≥ 1 or Z0 = T 1 for γ = 0. Because G
acts on M1 almost effectively, the case where γ = 0 does not occur. Moreover, it is easy to check
that all the cases where γ ̸= 0 are essentially isomorphic. Hence, we may regard γ = 1 up to
essential isomorphism.

Moreover, in this case, we can also use Lemma 5.5 by interchanging the role of K1 and K2.
Therefore, by using the arguments above again, we also have

K =

{((
t1 0
0 A1

)
,

(
a 0
0 A

)
, z

) ∣∣∣ ar2z = t−1
1

}
,

for some r2 ∈ Z. Hence, we can easily get r1 = r2 = 1 by using the two K’s above. This establishes
the 1st case of the statement. Similarly, we can show the 2nd case. � �

6.3. The case when G/K2∩MT
1 = ∅, I: preparations. We next assume G/K2∩MT

1 = ∅.
Then, T ̸⊂ K2, i.e., rank K2 < rank G = n. Because we have rank K = n− 1 by virtue of Lemma
5.5, we also have

rank K2 = n− 1 = rank K.

Therefore, we can put K2/K ∼= S2k2−2, i.e., the (2k2 − 2)-dimensional sphere, and dimG/K2 =
2n− 2k2 + 1 for k2 ≥ 1.

RecallK2 = G′
1×K ′′

2 such that G/K2
∼= G′′

1/K
′′
2 by Lemma 6.1. Moreover, G′

1 =
∏a

i=1 SU(li+

1)×
∏b

j=1 SO(2mj + 1) and K ′′
2 ⊂ SU(k1)× T 1 or SO(2k1)(= G′′

1). Therefore,

rank K ′′
2 = k1 − 1.

We also have that G′
1 × K ′′

2 acts on K2/K ∼= S2k2−2 transitively via σ2 : K2 = G′
1 × K ′′

2 →
O(2k2 − 1).

Using Lemma 6.2, there are the following two cases:

• one of the factors in G′
1 acts transitively on S2k2−2;

• K ′′
2 acts transitively on S2k2−2.

17



Moreover, using Lemma 5.1, we have that σ2(K
o
2 ) = SO(2k2 − 1) or σ2(K

o
2 ) = G2 and k2 = 4,

where Ko
2 is the identity component and G2 is the exceptional Lie group. The purpose of this

subsection is to prove the following lemma:

Lemma 6.4. If G/K2 ∩MT
1 = ∅, then

σ2(K
o
2 ) = SO(2k2 − 1),

for some k2 ≥ 1.

Proof. Assume σ2(K
o
2 ) = G2. Note that G2 is the simply connected, simple Lie group

and G′
1 is a product of simple Lie groups or {e}. Because there are no factors in G′

1 which is
locally isomorphic to G2, we have that σ2((K

′′
2 )

o) = G2. Then, we also see that the covering

group K2 = (̃K ′′
2 )

o in Section 2.3 of (K ′′
2 )

o has a G2-factor. Let K2 = G2 × X, where X is a
product of simply connected simple Lie groups and tori. Now there are the following two cases:
K ′′

2 ⊂ SU(k1)× T 1 or SO(2k1).
If K ′′

2 ⊂ SU(k1)× T 1, then (K ′′
2 )

o contains the following group as a maximal rank subgroup
by Lemma 5.5:

K ′′ =

{((
a 0
0 A

)
, z

)
∈ S(U(1)× U(k1 − 1))× T 1

∣∣∣ azγ = 1

}
,

where we can take γ as a non-zero integer because rank K ′′
2 = k1 − 1. Note that the covering

group K̃ ′′ in Section 2.3 of K ′′ is SU(k1 − 1) × T 1. Therefore, by Lemma 2.3, we have that
SU(k1 − 1)× T 1 ⊂ K2 = G2 ×X. Hence, in this case, we have k1 = 4 and X = T 1.

Let p : G → SU(k1) = SU(4) ⊂ G′′
1 = SU(4) × T 1 be the natural projection. Recall the

covering projection c : K2 → (K ′′
2 )

o appearing in Section 2.3. Then, we have that

p(c(SU(3))) ⊂ p(c(G2)) ⊂ p((K ′′
2 )

o) ⊂ p(G) = SU(4).

Using Lemma 5.5 (also see K ′′ above), we also have

p(c(SU(3))) = SU(3) ⊂ p(c(G2)) ⊂ SU(4).

Therefore, p(c(G2)) is a non-trivial subgroup in SU(4). Since G2 is the simple Lie group, we also
have that

dim p(c(G2)) = dimG2 = 14.

It follows that there exists a subgroup H ⊂ SU(4) such that dimH = 14. However, this also
implies that there exists H ⊂ SU(4) such that SU(4)/H ∼= S1, because SU(4) is compact and
dimSU(4) = 15. As is well known, SU(4) can not act on S1 non-trivially (see e.g. [Ku4, Theorem
5.2, 5.3]). Therefore, this gives a contradiction.

If K ′′
2 ⊂ SO(2k1), then SO(2k1−1) ⊂ K ′′

2 by virtue of Lemma 5.5. Therefore, by Lemma 2.3,
we have that Spin(2k1 − 1) ⊂ K2 = G2 ×X. Note that SO(2k1 − 1) ⊂ (K ′′

2 )
o is a maximal rank

subgroup because rank (K ′′
2 )

o = k1 − 1, i.e., Spin(2k1 − 1) ⊂ K2 = G2 × X is a maximal rank
subgroup. Using Lemma 2.3 again, it is easy to check that

Spin(2k1 − 1) ⊂ G2

and

X = {e}.
Hence, with the method similar to that demonstrated in the case K ′′

2 ⊂ SU(k1) × T 1, we have
that k1 = 2 and Ko

2 = G′
1 × c(G2). This implies that there exists a subgroup H ⊂ SO(4) = G′′

1

such that c(G2) = H; however, this gives a contradiction because dimH = dim c(G2) = 14 and
dimSO(4) = 6.

This establishes the statement of this lemma. � �
In order to classify the case when G/K2 ∩MT

1 = ∅, we will decompose into the followng two
cases:

• G/K2 is an exceptional orbit;
• G/K2 is a singular orbit.
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Before we will analyze for each case above, we remark the following:

Remark 6.5. Because G/K2
∼= G′′

1/K
′′
2 , we see that G

′
1 is in the kernel of G-action on G/K2.

Together with the assumption that G = G′
1 ×G′′

1 acts on M1 almost effectively, this implies that
G′

1 acts on S2k2−2 almost effectively via σ2 : K2 = G′
1 ×K ′′

2 → O(2k2 − 1). Namely, kerσ2 ∩G′
1

is a finite normal subgroup of G′
1.

6.4. The case when G/K2∩MT
1 = ∅, II: G/K2 is an exceptional orbit. Assume k2 = 1,

i.e., G/K2 is an exceptional orbit. Then, we have the following proposition:

Proposition 6.6. Suppose that (M1, G) is a primitive torus manifold and G/K2 does not
contain a T -fixed point. If k2 = 1, then there are the following two cases:

(1) G = K1 = SU(n)× T 1,

K2 =

{((
a 0
0 A

)
, z

)
∈ S(U(1)× U(n− 1))× T 1

∣∣∣ az = ±1

}
and

K =

{((
a 0
0 A

)
, z

)
∈ S(U(1)× U(n− 1))× T 1

∣∣∣ az = 1

}
.

(2) G = K1 = SO(2n), K2 = S(O(1)×O(2n− 1)) and K = SO(2n− 1).

Proof. Because G′
1 is a product of connected, simple Lie groups and kerσ2∩G′

1 is finite (see
Remark 6.5) for σ2 : K2 = G′

1 ×K ′′
2 → O(2k2 − 1) = O(1) ≃ Z2, we have G′

1 = {e}, i.e.,

G = G′′
1 = K1.

Therefore, we have k1 = n. Moreover, K2 = K ′′
2 and σ2(K

′′
2 ) = O(1) ≃ Z2. This implies that

kerσ2 = K and K ′′
2 /K ≃ Z2. By Lemma 5.3, there are the following two cases:

G = G′′
1 = SU(n)× T 1

or

G = G′′
1 = SO(2n).

Assume G = K1 = SU(n)× T 1. Using Lemma 5.5, we have that

K =

{((
a 0
0 A

)
, z

)
∈ S(U(1)× U(n− 1))× T 1

∣∣∣ azγ = 1

}
,

where we can take γ as a non-zero integer because rank K = n− 1. Moreover, we have that

K ⊂ K2 ⊂ NG(K) = S(U(1)× U(n− 1))× T 1,

where NG(K) is the normalizer of K in G. We denote an element in NG(K) = S(U(1) × U(n −
1)) × T 1 by (a, z) for the sake of brevity, i.e., K = {(a, z) | azγ = 1}. Define the representation
α : S(U(1)× U(n− 1))× T 1 → S1 by

α(a, z) = azγ .

Then, by definition, kerα = K. Therefore, together with K2/K ≃ Z2, we have that K ( K2 ⊂
α−1({±1}). It follows that

K2 =

{((
a 0
0 A

)
, z

)
∈ S(U(1)× U(n− 1))× T 1

∣∣∣ azγ = ±1

}
.

It is easy to see that we may regard γ = 1 up to essential isomorphism. This establishes the 1st

case in the statement.
Assume G = K1 = SO(2n). Then, by Lemma 5.5, we have that K = SO(2n − 1). Because

K ⊂ NG(K) = S(O(1) × O(2n − 1)) and K2/K ≃ Z2, we have that K2 = S(O(1) × O(2n − 1)).
This establishes the 2nd case in the statement. � �
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6.5. The case when G/K2 ∩MT
1 = ∅, III: G/K2 is a singular orbit. Assume k2 > 1,

i.e., G/K2 is a singular orbit. Because K2 = G′
1 ×K ′′

2 , there are the following two cases by using
Lemma 6.2 and 6.4:

• σ2(G
′
1) = SO(2k2 − 1); or

• σ2((K
′′
2 )

o) = SO(2k2 − 1).

Suppose that σ2((K
′′
2 )

o) = SO(2k2 − 1). We first prove this case does not occur (see Lemma
6.7).

Because σ2(G
′
1) ⊂ Z(σ2((K

′′
2 )

o)) = Z(SO(2k2 − 1)) = {±1} and G′
1 is connected, we have

G′
1 ⊂ kerσ2. Because kerσ2 ∩ G′

1 is finite (see Remark 6.5), we see that G′
1 = {e}. Therefore,

using Lemma 5.3, we have

G = K1 = G′′
1 = SU(k1)× T 1

or

G = K1 = G′′
1 = SO(2k1).

Moreover, we have that k1 = n, K2 = K ′′
2 (by Lemma 6.1) and rank Ko

2 = rank Ko = n− 1.
Because σ2((K

′′
2 )

o) = σ2(K
o
2 ) = SO(2k2 − 1), it is easy to check that the covering group

K2 = K̃o
2 in Section 2.3 of Ko

2 can be decomposed into as follows:

K2 = Spin(2k2 − 1)× L,

where L is a product of simply connected, simple Lie groups and tori. In other words, the covering
map

c : Spin(2k2 − 1)× L→ Ko
2

satisfies that σ2 ◦c(Spin(2k2−1)) = SO(2k2−1) and c(L) ⊂ kerσ2. Because rank K
o = rank Ko

2 ,

it follows from Lemma 2.3 that K̃o = Spin(2k2 − 2)× L and

Ko = c(Spin(2k2 − 2)× L).

We claim the following:

Claim 1. In the conditions above, we have G = K1 = G′′
1 = SO(2k1).

Proof. Assume G′′
1 = SU(n)× T 1. By Lemma 5.5, we have that

Ko = K =

{((
a 0
0 A

)
, z

)
∈ S(U(1)× U(n− 1))× T 1

∣∣∣ zγ = a−1

}
where γ is a non-zero integer. Therefore, the covering group K̃ in Section 2.3 of K can decompose
into SU(n − 1) × T 1. Hence, in this case, there is an isomorphism between SU(n − 1) × T 1 and
Spin(2k2 − 2) × L. As is well known, SU(l1) ≃ Spin(l2) if and only if (l1, l2) = (2, 3) and (4, 6)
(see [MiTo]). Together with the assumption k2 > 1, there are just the following two cases:

• k2 = 2 and L ≃ SU(n− 1);
• (n, k2) = (5, 4) and L ≃ T 1.

If k2 = 2 and L ≃ SU(n− 1), then K2 = Spin(3)×SU(n− 1). Let ι : K2 → G = SU(n)× T 1

be the natural inclusion. Then, there exists the representation

ι ◦ c : Spin(3)× SU(n− 1) → SU(n)× T 1.

Because ι ◦ c(Spin(2)× SU(n− 1)) = ι ◦ c(SU(n− 1)× T 1) = K ⊂ SU(n)× T 1, we have that

ι ◦ c(SU(n− 1)) = SU(n− 1) ⊂ SU(n)

and

ι ◦ c(Spin(2)× {e}) ≃ S1.
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This also implies that ι ◦ c(Spin(3)) ⊂ ZSU(n)×T 1(SU(n − 1)) ⊂ SU(n) × T 1. By an easy com-

putation, we have that ZSU(n)×T 1(SU(n − 1)) ≃ T 2. This implies that ι ◦ c provides a repre-

sentation from Spin(3) to T 2. Because Spin(3) is the simple Lie group and T 2 is the commu-
tative group, such representation is just the trivial representation. This gives a contradiction to
ι ◦ c(Spin(2)) ≃ S1.

Therefore, we have (n, k2) = (5, 4) and L ≃ T 1. Then, K2 = Spin(7) × T 1 and there is the
the sequence

K ⊂ c(Spin(7)× T 1) = Ko
2 ⊂ G = SU(5)× T 1.

Let p : SU(5) × T 1 → SU(5) be the natural projection. Then, we have p(K) = S(U(1) × U(4))
because γ ̸= 0. Because we may regard p is the quotient representation by {e}×T 1, the dimension
of p(H) is dimH−1 or dimH for all subgroupH in G. Therefore, there is the following possibilities
of dimension of p(Ko

2 ):

dim p(Ko
2 ) = dim p ◦ c(Spin(7)× T 1) = dimSpin(7) = 21

or

dim p(Ko
2 ) = dim p ◦ c(Spin(7)× T 1) = dim(Spin(7)× T 1) = 22.

On the other hand, we have S(U(1)×U(4)) ⊂ p(Ko
2 ) ⊂ SU(5). As is well known, S(U(1)×U(4)) is

a maximal rank maximal subgroup of SU(5) (see e.g. [MiTo]). This implies that S(U(1)×U(4)) =
p(Ko

2 ) or p(K
o
2 ) = SU(5). However, because dimSU(5) = 24 and dimS(U(1) × U(4)) = 16, this

gives a contradiction to the possibilities of dimension of p(Ko
2 ) as mentioned above.

The argument above establishes that G = K1 = G′′
1 = SO(2n) � �

Therefore, by this claim,

G = K1 = G′′
1 = SO(2n).

By Lemma 5.5, we have that

Ko = K = SO(2n− 1).

Using K ⊂ K2 ⊂ G, K2/K ∼= S2k2−2, dimG/K2 = 2n− 2k2 + 1 and k2 > 1, we also have that

SO(2n− 1) ( K2 ( SO(2n).

Now we have σ2(K
o
2 ) = SO(2k2 − 1). In particular, we have σ−1

2 (SO(2k2 − 2)) = Ko = K =
SO(2n− 1). This implies that there is a surjective homomorphism from SO(2n− 1) to SO(2k2 −
2). Let us prove there is no such homomorphism. If there exists a surjective homomorphism
from SO(2n − 1) to SO(2k2 − 2), there exists a transitive SO(2n − 1)-action on S2k2−3 via this
homomorphism. However, by using the classification of transitive actions of spheres (see [HsHs,
Section 1] or [AlAl, Table 1]), the transitive SO(l)-action on S2k2−3 is just l = 2k2−2. Therefore,
there is no such homomorphism. This gives a contradiction. Consequently, we have

σ2((K
′′
2 )

o) ̸= SO(2k2 − 1).

In summary, we have the following lemma:

Lemma 6.7. If G/K2 ∩MT
1 = ∅ and G/K2 is a singular orbit, i.e., k1 > 1, then

K2 = G′
1 ×K ′′

2

and

σ2(G
′
1) = SO(2k2 − 1).

By Lemma 6.7, we have σ2(G
′
1) = SO(2k2 − 1). Because G′

1 is a product of simple Lie
group, we may assume σ2(SU(l1 + 1)) = SO(2k2 − 1) or σ2(SO(2m1 + 1)) = SO(2k2 − 1) by
Lemma 5.3 and 6.2. As is well known, if σ2(SU(l1 + 1)) = SO(2k2 − 1) then l1 = 1 and k2 = 2.
However, this is a contradiction to the assumption li ≥ 2 (see Remark 5.2). Therefore, we have
that σ2(SO(2m1 + 1)) = SO(2k2 − 1).

Because kerσ2 ∩G′
1 is finite (see Remark 6.5) and G′

1 is connected (see Lemma 5.3), we get

G′
1 = SO(2m1 + 1) = SO(2k2 − 1),
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i.e., a = 0, b = 1 and m1 = k2 − 1. Now we may prove the following proposition:

Proposition 6.8. Suppose that (M1, G) is a primitive torus manifold and G/K2 does not
contain a T -fixed point. If k2 > 1, then there are the following four cases:

(1) G = SO(2k2 − 1)× SU(k1)× T 1, K1 = SO(2k2 − 2)× SU(k1)× T 1,

K2 = SO(2k2 − 1)×
{((

a 0
0 A

)
, z

) ∣∣∣ z = a−1

}
and

K = SO(2k2 − 2)×
{((

a 0
0 A

)
, z

) ∣∣∣ z = a−1

}
;

(2) G = SO(2k2 − 1)× SU(k1)× T 1, K1 = S(O(1)×O(2k2 − 2))× SU(k1)× T 1,

K2 = SO(2k2 − 1)×
{((

a 0
0 A

)
, z

) ∣∣∣ ± z = a−1

}
and

K =

{((
x 0
0 X

)
,

(
a 0
0 A

)
, z

) ∣∣∣ xz = a−1

}
;

(3) G = SO(2k2−1)×SO(2k1), K1 = SO(2k2−2)×SO(2k1), K2 = SO(2k2−1)×SO(2k1−1)
and K = SO(2k2 − 2)× SO(2k1 − 1);

(4) G = SO(2k2 − 1) × SO(2k1), K1 = S(O(1) × O(2k2 − 2)) × SO(2k1), K2 = SO(2k2 −
1)× S(O(1)×O(2k1 − 1)) and

K =

{((
x 0
0 X

)
,

(
y 0
0 Y

)) ∣∣∣ detX = x,detY = y, xy = 1

}
,

where k1 ≥ 2.

Here, in both of the cases above, K ⊂ K1 ∩K2.

Proof. Using the argument before this proposition and Lemma 5.3, we have that

G = SO(2k2 − 1)×G′′
1

and

K1 = SO(2k2 − 2)×G′′
1

or

K1 = S(O(1)×O(2k2 − 2))×G′′
1 ,

where G′′
1 = SU(k1)× T 1 or SO(2k1). Moreover, by Lemma 6.1 (also see Lemma 6.7), we have

K2 = SO(2k2 − 1)×K ′′
2 .

Assume K1 = SO(2k2 − 2)×G′′
1 . If G

′′
1 = SU(k1)× T 1, then it follows from Lemma 5.5 that

we may regard K as follows up to essential isomorphism:

K = SO(2k2 − 2)×
{((

a 0
0 A

)
, z

) ∣∣∣ z = a−1

}
.(6)

If G′′
1 = SO(2k1), then it follows from Lemma 5.5 that

K = SO(2k2 − 2)× SO(2k1 − 1).(7)

Recall that K2/K ∼= S2k2−2 and G′
1 = SO(2k2 − 1) acts on K2/K transitively. Let p′′ : K2 =

G′
1 ×K ′′

2 → K ′′
2 be the natural projection. Then, one can easily show that p′′(K) = K ′′

2 (e.g. see
[Ku2, Lemma 8.0.2]). Together with (6) and (7), we have the 1st and 3rd cases in the statement.

Assume K1 = S(O(1)×O(2k2 − 2))×G′′
1 . If G

′′
1 = SU(k1)× T 1, by Lemma 5.5, we have

K =

{((
x 0
0 X

)
,

(
a 0
0 A

)
, z

) ∣∣∣ σ1(x)z = a−1

}
.
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Note that σ1(x) ∈ {±1}. With the method similar to that demonstrated as above, we also have

σ1(x) = x = ±1

and

K2 = SO(2k2 − 1)×
{((

a 0
0 A

)
, z

) ∣∣∣ ± z = a−1

}
.

This establishes the 2nd case in the statement. Similarly, we have the 4th case in the statement.
� �

Remark 6.9. Propositions 6.3, 6.6 and 6.8 also say that if we determine the slice representa-
tion σ1 then another slice representation σ2 is determined automatically. Moreover, σ1 is uniquely
determined once we choose (G,K1,K2,K) up to essential isomorphism.

7. Classification of primitive torus manifolds

In this section, we claasify the primitive torus manifolds. The goal of this section is to prove
the following theorem:

Theorem 7.1. Let (M1, T ) be a primitive torus manifold. Then, a codimension one extended
action (M1, G) is essentially isomorphic to one of the followings:

M1 G k1, k2

(1) P (Ck1 ⊕ Ck2) S(U(k1)× U(k2)) k1, k2 ≥ 1, k1 + k2 ≥ 3
(2) S(Ck ⊕ R) U(k) k = k1 = k2 ≥ 1
(3) S(R2k ⊕ R) SO(2k) k = k1 = k2 ≥ 1
(4) S(Ck1 ⊕ R2k2−1) U(k1)× SO(2k2 − 1) k1 ≥ 1, k2 ≥ 2
(5) S(R2k1 ⊕ R2k2−1) SO(2k1)× SO(2k2 − 1) k1 ≥ 1, k2 ≥ 2
(6) RP (Ck1 ⊕ R2k2−1) U(k1)× SO(2k2 − 1) k1 ≥ 1, k2 ≥ 1
(7) RP (R2k1 ⊕ R2k2−1) SO(2k1)× SO(2k2 − 1) k1 ≥ 1, k2 ≥ 1

Here, each G in the table acts on each M1 standardly.

7.1. Attaching maps. We have already seen (G,K1,K2,K) and two slice representations
σ1, σ2 in Section 5 and 6. Moreover, by the slice theorem (Theorem 3.2), we also get the tubular
neighborhoods X1 and X2 of G/K1 and G/K2, respectively. Due to Lemma 3.1, a primitive torus
manifoldM1 decomposes into X1∪X2 equivariantly. Therefore, in order to show Theorem 7.1, it is
enough to classify the attaching map f : ∂X1 → ∂X2 and construct aG-manifoldM(f) = X1∪fX2

attached by f . Note that ∂X1
∼= ∂X2

∼= G/K; therefore, we may regard ∂X1 and ∂X2 as G/K.
Moreover, the attaching map f must be a G-equivariant diffeomorphism because G-actions on
X1 and X2 extends to the G-action on M(f) = X1 ∪f X2. This implies that the attaching map
f : G/K → G/K may be regarded as an element in

AutG(G/K) ≃ NG(K)/K,

where NG(K) is the normalizer of K in G (see [Ka]).
Let f and f ′ be two attaching maps. In order to check whether M(f) and M(f ′) are equiv-

ariantly diffeomorphic, the following lemma is useful (see [Uc, Lemma 5.3.1]).

Lemma 7.2 (Uchida’s criterion). Let f, f ′ : ∂X1 → ∂X2 be G-equivariant diffeomorphisms.
Then M(f) is equivariantly diffeomorphic to M(f ′) as G-manifolds, if one of the following con-
ditions are satisfied:

(1) f is G-diffeotopic to f ′;
(2) f−1f ′ is extendable to a G-equivariant diffeomorphism on X1;
(3) f ′f−1 is extendable to a G-equivariant diffeomorphism on X2.

As in [Ga], we call this lemma the Uchida’s criterion. Note that this criterion also holds for
non-orientable manifolds.

Because of the Uchida’s criterion (1), it is sufficient to compute

N = NG(K)/No
G(K)
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instead of dealing with the whole NG(K)/K, where No
G(K) is a connected component of NG(K).

7.2. Construction of primitive torus manifolds. In this subsection, we computeNG(K)/No
G(K)

and consturuct the primitive torus manifold (M1, G) with codimension one extended G-action. Re-
call that (G,K1,K2,K) are classified as in Proposition 6.3 (1), (2), (3), Proposition 6.6 (1), (2)
and Proposition 6.8 (1), (2), (3), (4). We call each case CASE I-(1), (2), (3), CASE II-(1), (2)
and CASE III-(1), (2), (3), (4), respectively. It is easy to check the following lemma:

Lemma 7.3. The following statements hold for each N = NG(K)/No
G(K):

• if (G,K) is one of the pairs in CASE I-(1), (2) and CASE II-(1), then N = {e};
• if (G,K) is one of the pairs in CASE I-(3) and CASE II-(2), then N ≃ C;
• if (G,K) is the pair in CASE III-(1), (2), then N ≃ F ;
• if (G,K) is the pair in CASE III-(3), (4), then N ≃ F × C,

where

F ≃ S(O(1)×O(2l))/SO(2l)

and

C ≃ {±I2l} = S(O(1)×O(2l − 1))/SO(2l − 1),

i.e., C is the center of G.

We next prove the following lemma:

Lemma 7.4. Let f be an element of N in Lemma 7.3. Then,

M(f) ∼=M(e),

where M(g) = X1 ∪g X2 (g = e, f) and e ∈ N is the identity element.

Proof. We will check Uchida’s criterion (2) (Lemma 7.2), i.e., for all f : G/K → G/K ∈ N ,
f = e ◦ f extends to a G-equivariant diffeomorphism X1 → X1, where X1

∼= G ×K1
D2k1 . Note

that the attaching map f ∈ N can be regarded as f : G/K → G/K by f(gK) = gfK, i.e., the
multiplication from the right-hand side.

We first consider the case where f ∈ C ⊂ N , i.e., f ∈ N can be taken as an element in the
center of G. Because fg = gf for all g ∈ G, the following map is well-defined and commute:

G×K1 K1/K

Lf×Id

��

π // G/K

f

��
G×K1 K1/K

π // G/K

where ∂X1 = G ×K1 K1/K, π([g, kK]) = gkK and (Lf × Id)([g, kK]) = [fg, kK]. Note
that all maps in the diagram above are G-equivariantly diffeomorphic. The diffeomorphism Id :
K1/K ∼= S2k1−1 → S2k1−1 ∼= K1/K obviously extends to Id : D2k → D2k as the K1-equivariant
diffeomorphism. Therefore, we have that Lf × Id extends to the G-equivariant diffeomorphism
G×K1 D

2k1 = X1 → X1 = G×K1 D
2k1 . Hence, M(f) ∼=M(e) by Uchida’s criterion (2).

We next consider the case where f ∈ F ⊂ N , i.e., CASE III. By Proposition 6.8, f ∈ F can
be taken as an element (A, I) in G′

1 × G′′
1 such that ASO(2k2 − 2)A−1 = SO(2k2 − 2), where

A ∈ G′
1 = SO(2k2 − 1) and I ∈ G′′

1 is the identity element. Moreover, using Lemma 5.4 and
Proposition 6.8, there are the following three cases:

• if K ′
1 = SO(2k2−2), then G/K ∼= G′

1×K′
1
(K1/K) = S2k2−2×S(V ) and X1

∼= S2k2−2×
D(V );

• if K ′
1 = S(O(1)×O(2k2−2)) and σ1 is tirvial, then G/K ∼= G′

1×K′
1
(K1/K) = RP 2k2−2×

S(V ) and X1
∼= RP 2k2−2 ×D(V );

• if K ′
1 = S(O(1) × O(2k2 − 2)) and σ1 is non-tirvial, then G/K ∼= G′

1 ×K′
1
(K1/K) =

S2k2−2 ×Z2
S(V ) and X1

∼= S2k2−2 ×Z2 D(V ),
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where, in the final case above, Z2 acts on S2k2−2 and on D(V ), S(V ) via the representation to
{±1}. Here, V = Ck1 or R2k1 , S(V ) ∼= K1/K is its unit sphere, D(V ) is its unit disk. Let
N ×Γ S(V ) be the manifolds appearing above which are diffeomorphic to G/K, i.e., N = S2k2−2

or RP 2k2−2 and Γ = {e} or Z2. Therefore, f = (A, I) : G/K → G/K may be regarded as the
induced equivariant map from

(Ã, Id) : N ×Γ S(V ) −→ N ×Γ S(V ),

where Ã is an equivariant involution on N and Id is the identity map on S(V ). Namely, there
exists the following commutative diagram:

N ×Γ S(V )

(Ã,Id)

��

∼= // G′
1 ×K′

1
K1/K

RA×Id

��

π // G/K

f

��
N ×Γ S(V )

∼= // G′
1 ×K′

1
K1/K

π // G/K

where (RA × Id)([g, kK]) = [gA, kK]. Now Id : S(V ) → S(V ) extends to Id : D(V ) → D(V )

equivariantly. Hence, (Ã, I) extends to the G-equivariant diffeomorphism on X1 = N ×Γ D(V ).
This establishes M(f) ∼=M(e) by Uchida’s criterion. � �

Remark 6.9 and Lemma 7.4 say that the primitive torus manifold (M1, G) is uniquely deter-
mined by (G,K1,K2,K) up to essential isomorphism. Hence, in order to classify the primitive
torus manifolds, it is enough to find G-manifolds with isotropy groups K1, K2, K appearing in
CASE I-(1) to CASE III-(4).

Let us find the manifold with G-action for each case.
7.2.1. CASE I-(1). Set (G,K1,K2,K) as in Proposition 6.3 (1). Namely, we may find a

manifold withG = SU(k1)×SU(k2)×T 1-action whose isotropy subgroups areK1,K2,K appearing
in Proposition 6.3. Let M1 = P (Ck1 ⊕ Ck2) be the complex projectivization of Ck1 ⊕ Ck2 , i.e.,
P (Ck1 ⊕ Ck2) ∼= CP k1+k2−1. Now we define the G-action on M1 as follows: SU(k1) acts on
the Ck1 -factor standardly; SU(k2) acts on the Ck2 -factor by w 7→ Bw, where w ∈ Ck2 and
B ∈ SU(k2) is the complex conjugation of B ∈ SU(k2); and T 1 acts on Ck1 ⊕ Ck2 diagonally
except the first coordinate of Ck2 . Then, the isotropy subgroups are G[0,e1] = K1 G[e1,0] = K2

and G[e1,e1] = K appearing in Proposition 6.3 (1), where (e1, 0) represents the first coordinate of

Ck1 , (0, e1) represents the first coordinate of Ck2 and [x, y] represents the projective coordinate in
P (Ck1 ⊕ Ck2). By using the surjective homomorphism

SU(k1)× SU(k2)× T 1 −→ S(U(k1)× U(k2))

∈ ∈

(A,B, t) 7−→
(
Atk2 0
0 Bt−k1

)
,

we have that the G-action defined above is essentially isomorphic to the natural action of S(U(k1)×
U(k2)) on P (Ck1 ⊕ Ck2), where

S(U(k1)× U(k2)) =

{(
A 0
0 B

)
∈ SU(k1 + k2)

∣∣∣ A ∈ U(k1), B ∈ U(k2)

}
.

This implies that (M1, G) of CASE I-(1) is essentially isomorphic to

(P (Ck1 ⊕ Ck2), S(U(k1)× U(k2))),

where k1, k2 ≥ 1 and k1 + k2 − 1 = n. This establishes Theorem 7.1 (1) if n ≥ 2.
If n = 1, i.e., k1 = k2 = 1, then we easily obtain that (P (C ⊕ C), S(U(1) × U(1))) and

(S(C ⊕ R), U(1)) are essentially isomorphic. So we may regard n ≥ 2, i.e., k1 + k2 ≥ 3, in this
case. We shall discuss (S(C⊕ R), U(1)) in the next CASE I-(2).
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7.2.2. CASE I-(2). Set (G,K1,K2,K) as in Proposition 6.3 (2). Let M1 = S(Cn ⊕ R) be
the unit sphere in Cn ⊕ R, i.e., S(Cn ⊕ R) ∼= S2n. Then, M1 has the natural G = SU(n) × T 1-
action on the coordinate of Cn (where T 1 acts on it by the scaler multiplication) and its isotropy
subgroups are G(0,1) = K1 G(0,−1) = K2 and G(e1,0) = K appearing in Proposition 6.3 (2), where
(z, r) ∈ Cn ⊕ R. Moreover, it is easy to check that this action is essentially isomorphic to the
natural action of U(n) on S(Cn ⊕ R). This implies that (M1, G) of CASE I-(2) is essentially
isomorphic to

(S(Cn ⊕ R), U(n)),

where k1 = k2 = n. This establishes Theorem 7.1 (2).
7.2.3. CASE I-(3). Set (G,K1,K2,K) as in Proposition 6.3 (3). LetM1 = S(R2n⊕R) be the

unit sphere in R2n ⊕R, i.e., S(R2n ⊕R) ∼= S2n. Then, M1 has the natural G = SO(2n)-action on
the coordinate of R2n and its isotropy subgroups are G(0,1) = K1 G(0,−1) = K2 and G(e1,0) = K
appearing in Proposition 6.3 (3). This implies that (M1, G) of CASE I-(3) is essentially isomorphic
to

(S(R2n ⊕ R), SO(2n)),

where k1 = k2 = n. This establishes Theorem 7.1 (3).
7.2.4. CASE II-(1). Set (G,K1,K2,K) as in Proposition 6.6 (1). Note that (G,K1,K) of

this case coincides with that of CASE I-(2). Moreover, K2 of this case is the double covering of
K. These facts imply that the manifold M1 of CASE II-(1) can be obtained by a Z2-quotient
of S(Cn ⊕ R) in CASE I-(2). Let M1 = RP (Cn ⊕ R) be the quotient of S(Cn ⊕ R) by the
antipodal Z2-action, i.e., RP (Cn ⊕ R) is the 2n-dimensional real projective space. Then, M1 has
the natural G = SU(n)× T 1-action (where T 1 acts on Cn diagonally) and its isotropy subgroups
are G[0,1] = K1 G[e1,0] = K2 and G[e1,1] = K appearing in Proposition 6.6 (1), where [z, r] (z ∈ Cn,
r ∈ R) represents the projective coordinate in RP (Cn ⊕ R). Moreover, this action is essentially
isomorphic to the natural action of U(n) on RP (Cn ⊕ R). This implies that (M1, G) of CASE
II-(1) is essentially isomorphic to

(RP (Cn ⊕ R), U(n)),

where k1 = n and k2 = 1. This establishes Theorem 7.1 (6) with k2 = 1.
7.2.5. CASE II-(2). Set (G,K1,K2,K) as in Proposition 6.6 (2). With the method similar

to that demonstrated in the CASE II-(1), we have that (M1, G) of CASE II-(2) is essentially
isomorphic to

(RP (R2n ⊕ R), SO(2n)),

where k1 = n and k2 = 1. This establishes Theorem 7.1 (7) with k2 = 1.
7.2.6. CASE III-(1). Set (G,K1,K2,K) as in Proposition 6.8 (1). Let M1 = S(Ck1 ⊕R2k2−1)

be the unit sphere of Ck1 ⊕ R2k2−1. Then, M1 has the natural G = SU(k1)× T 1 × SO(2k2 − 1)-
action, and its isotropy subgroups are G(e1,0) = K1 G(0,e1) = K2 and G(e1,e1) = K appearing

in Proposition 6.8 (1), where (e1, 0) is the first coordinate in Ck1 and (0, e1) is that in R2k2−1.
Moreover, this action is essentially isomorphic to the natural action of U(k1) × SO(2k2 − 1) on
S(Ck1 ⊕ R2k2−1). This implies that (M1, G) of CASE III-(1) is essentially isomorphic to

(S(Ck1 ⊕ R2k2−1), U(k1)× SO(2k2 − 1)),

where k1 ≥ 1 and k2 ≥ 2. This establishes Theorem 7.1 (4).
7.2.7. CASE III-(2). Set (G,K1,K2,K) as in Proposition 6.8 (2). Let M1 = RP (Ck1 ⊕

R2k2−1) be the real projective space of Ck1 ⊕ R2k2−1. Then, M1 has the natural G = SU(k1) ×
T 1×SO(2k2−1)-action, and its isotropy subgroups are G[e1,0] = K1 G[0,e1] = K2 and G[e1,e1] = K

appearing in Proposition 6.8 (2), where [z, x] is the projective coordinate in Ck1⊕R2k2−1. With the
method similar to that demonstrated as above, we have that (M1, G) of CASE III-(2) is essentially
isomorphic to

(RP (Ck1 ⊕ R2k2−1), U(k1)× SO(2k2 − 1)),

where k1 ≥ 1 and k2 ≥ 2. This establishes Theorem 7.1 (5).
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7.2.8. CASE III-(3). Set (G,K1,K2,K) as in Proposition 6.8 (3). LetM1 = S(R2k1⊕R2k2−1)
be the unit sphere of R2k1 ⊕ R2k2−1. Then, M1 has the natural G = SO(2k1) × SO(2k2 − 1)-
action, and its isotropy subgroups are G(e1,0) = K1 G(0,e1) = K2 and G(e1,e1) = K appearing in
Proposition 6.8 (3). With the method similar to that demonstrated as above, this establishes that
(M1, G) of CASE III-(3) is essentially isomorphic to

(S(R2k1 ⊕ R2k2−1), SO(2k1)× SO(2k2 − 1)),

where k1 ≥ 1 and k2 ≥ 2. This establishes Theorem 7.1 (6) with k2 ≥ 2.
7.2.9. CASE III-(4). Set (G,K1,K2,K) as in Proposition 6.8 (4). Let M1 = RP (R2k1 ⊕

R2k2−1) be the real projective space. Then, M1 has the natural G = SO(2k1) × SO(2k2 − 1)-
action, and its isotropy subgroups are G[e1,0] = K1 G[0,e1] = K2 and G[e1,e1] = K appearing in
Proposition 6.8 (4). With the method similar to that demonstrated as above, this establishes that
(M1, G) of CASE III-(4) is essentially isomorphic to

(RP (R2k1 ⊕ R2k2−1), SO(2k1)× SO(2k2 − 1)),

where k1 ≥ 1 and k2 ≥ 2. This establishes Theorem 7.1 (7) with k2 ≥ 2.
Consequently, we have Theorem 7.1.

8. Preliminary to classifying non-primitive torus manifolds

In this section, we consider the general structures of non-primitive torus manifolds. Let
(M2n, Tn) be a non-primitive torus manifold with codimension one extended action (M,G). Due
to Theorem 4.5, such (M,G) is essentially isomorphic to the following manifolds:

M ∼= G′ ×H′ M1;

G ≃ G′ ×G′′,

where (M1, G
′′) is one of the primitive torus manifolds in Theorem 7.1 and

G′ ≃
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1);

H ′ ≃
a∏

i=1

S(U(1)× U(li))× S

for some subgroup S such that So =
∏b

j=1 SO(2mj) ⊂ S ⊂
∏b

j=1 S(O(1)×O(2mj)). Note that

S/So ≃ A ⊂ (Z2)
b.

Here, M is the quotient of the H ′-action on G′ ×M1 defined by the product of the natural action
on the G′-factor and on the M1-factor via

µ : H ′ → DiffG′′(M1),

where DiffG′′(M1) represents the set of all G′′-equivariant diffeomorphisms on M1. By the defini-
tion of M , we can define the G = G′ ×G′′-action on it naturally.

Note that there exists the natural surjective homomorphism

s : H ′ → T a ×A,
because T a ×A ≃ H ′/(

∏a
i=1 SU(li)× So). We also note the following remark.

Remark 8.1. Let qj : G → SO(2mj + 1) be the natural projection. If qj(H
′) = SO(2), i.e.,

SO(2mj+1)∩A = {e} andmj = 1, then we may regard the SO(2mj+1)-factor as the SU(la+1+1)-
factor (la+1 = 1) up to essential isomorphism, because (SO(3), SO(2)) and (SU(2), S(U(1)×U(1)))
are locally isomorphic. Hence, we assume if mj = 1 then qj(H

′) = S(O(1)×O(2)).

As we mentioned in Section 4, in order to classify all the torus manifolds with codimension
one extended actions, we need to analyze the representation

µ : H ′ → DiffG′′(M1).
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We first analyze the general property of the representation µ. Because the H ′-action on M1

commutes with the G′′-action on M1, we have that

h(G′′(x)) = G′′(hx),

for all h ∈ H ′ and G′′-orbit G′′(x) of x ∈M1. Thus, G
′′(hx) ∼= G′′(x). This implies that if G′′(x)

is a principal orbit then G′′(hx) is also a principal orbit. On the other hand, if G′′(x) = G′′/K1 is a
non-principal orbit then G′′(hx) = G′′/K1 or G′′/K2, where K1 and K2 are non-principal isotropy
subgroups of (M1, G

′′). Therefore, we can define the induced H ′-action on M1/G
′′ = [−1, 1] via a

homomorphism

µ[−1,1] : H
′ → O(1),

where O(1) acts on [−1, 1] ⊂ R naturally. Note that if µ[−1,1] is non-trivial then G
′′/K1

∼= G′′/K2.
Thus, there are the following two cases:

• µ[−1,1] is trivial;
• µ[−1,1] is non-trivial and G

′′/K1
∼= G′′/K2.

In Section 9 and 10, we classify all torus manifolds with codimension one extended actions.

9. The case when µ[−1,1] is trivial

Let (M1, G
′′) be a primitive torus manifolds appearing in Theorem 7.1. Assume µ[−1,1] is

trivial. Let K1 and K2 be non-principal isotropy subgroups of (M1, G
′′). We first analyze the

H ′-action on tubular neighborhoods of two non-principal orbits of (M1, G
′′).

9.1. Two tubular neighborhoods X̂i. Because µ[−1,1] is trivial, we see that H ′ acts on
G′′/K1 and G′′/K2 via G′′-equivariant automorphisms. Namely, using the argument in Section
7.1, the representation µ : H ′ → DiffG′′(M1) induces the representations

µi : H
′ −→ AutG′′(G′′/Ki) ≃ NG′′(Ki)/Ki,

for i = 1, 2. Let K̂1 and K̂2 be non-principal isotropy subgroups of (M,G). Then, two non-

principal orbits G/K̂i of (M,G) are denoted by

G′ ×H′ (G′′/Ki)(8)

such that H ′ acts on G′′/Ki via µi (i = 1, 2). Therefore, we have the following lemma:

Lemma 9.1. Two singular isotropy subgroups K̂i, i = 1, 2, of (M,G) is isomorphic to the
following group:

K̂i ≃ {(h, k) ∈ H ′ ×NG′′(Ki) | µi(h) = [k] ∈ NG′′(Ki)/Ki}
for some representation µi : H

′ → NG′′(Ki)/Ki (i = 1, 2).
In particular, if µi is the trivial representation, then we have

K̂i = H ′ ×Ki.

Moreover, tubular neighborhoods of two non-principal orbits of (M,G) can be denoted by

G×K̂i
Dli ∼= G′ ×H′ Xi

∼= G′ ×H′ (G′′ ×Ki
Dli)

for i = 1, 2. We now analyze how H ′ acts on Xi
∼= G′′ ×Ki D

li .
Using (8) and the slice theorem, we have that the H ′-action on Xi preserves the bundle

structure of Xi. Therefore, it follows from ∂Xi = G′′/K that the following commutative diagram:

G′′/K

��

µ̃i(h) // G′′/K

��
G′′/K1

µi(h) // G′′/K1

for i = 1, 2 and h ∈ H ′, where µ̃i(h) ∈ NG′′(K)/K is the induced automorphism on the principal
orbit G′′/K from µ : H ′ → DiffG′′(M1). This implies that µi(h) ∈ NG′′(Ki)/Ki is induced from
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µ̃i(h) ∈ NG′′(K)/K. Namely, we may regard µ̃i(h) as an element of the following subgroup of
NG′′(K)/K:

(NG′′(Ki) ∩NG′′(K))/K,

and µi(h) as the image of µ̃i(h) of the natural projection

p : NG′′(Ki)/K −→ NG′′(Ki)/Ki,

where (NG′′(Ki) ∩NG′′(K))/K ⊂ NG′′(Ki)/K, i.e.,

p(µ̃i(h)) = µi(h).

Let M1 be a manifold appearing in Theorem 7.1. If M1 = P (Ck1 ⊕ Ck2), then

NG′′(K) ∩NG′′(Ki) = S(U(1)× U(k1 − 1)× U(1)× U(k2 − 1)) ⊂ Ki.

Therefore, in this case, µi(h) is the identity element in NG′′(Ki)/Ki for i = 1, 2. Otherwise, i.e.,
if M1 ̸= P (Ck1 ⊕ Ck2), it is easy to check that

NG′′(K) ⊂ NG′′(Ki)

for i = 1, 2. Moreover, by using this relation, we have that the following homomorphism

NG′′(K)/K −→ NG′′(Ki)/Ki

∈ ∈
[g] 7−→ [g]

is well-defined and surjective when M1 ̸= P (Ck1 ⊕ Ck2). This implies that µi(h) can be taken as
any element in NG′′(Ki)/Ki. Hence, we have the following lemma:

Lemma 9.2. The induced automorphism µi(h) : G
′′/Ki → G′′/Ki for h ∈ H ′ can be regarded

as an element of the following groups:

M1 µ1(h) µ2(h)

CASE (1) P (Ck1 ⊕ Ck2) {e} {e}
CASE (2) S(Ck ⊕ R) {e} {e}
CASE (3) S(R2k ⊕ R) {e} {e}
CASE (4) S(Ck1 ⊕ R2k2−1) F ≃ Z2 S1

CASE (5) S(R2k1 ⊕ R2k2−1) F ≃ Z2 C ≃ Z2

CASE (6) RP (Ck1 ⊕ R2k2−1) {e} S1/{±1}
CASE (7) RP (R2k1 ⊕ R2k2−1) {e} {e}

where S1 is the diagonal subgroup of U(k1), F = NSO(2k2−1)(SO(2k2 − 2))/SO(2k2 − 2) and
C = NSO(2k1)(SO(2k1 − 1))/SO(2k1 − 1). Here, the numbers of CASE (1)–(7) in the list coincide
with those of Theorem 7.1.

Now we may prove the following lemma which tells us how H ′ acts on Xi:

Lemma 9.3. Let X̂i be a tubular neighborhood of non-principal orbit in (M,G). Then, X̂i is
equivariantly diffeomorphic to

G′ ×H′ (G′′ ×Ki D
li)

such that h ∈ H ′ acts on [g′′, x] ∈ G′′ ×Ki D
li by

[g′′, x] 7→ [g′′µi(h)
−1, si(h)x],

where µi is the representation appearing in Lemma 9.2 and

si : H
′ s−→ T a ×A ρi−→ Z(σi(Ki);O(li))

for some representation ρi. Here, A is a subgroup of (Z2)
b appearing in Section 8 and the repre-

sentation s : H ′ → T a ×A is the natural surjective homomorphism defined in Section 8.
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Proof. We first assume that (M1, G
′′) is one of CASE (1)–(3) in Lemma 9.2. In this case,

li = 2ki and µi(h) is identity. Therefore, by Lemma 9.1, the isotropy subgroup is H ′ ×Ki. This
implies that an element of H ′ commutes with that of Ki. Hence, there exists a representation
si = σi|H′ : H ′ → Z(σi(Ki);O(2ki)) such that its slice representation is denoted by

σ̂i : H
′ ×Ki

si×σi−−−−→ O(2ki),

where σi : Ki → O(2ki) is the slice representation of Ki in (M1, G
′′). By the arguments in Sections

5 and 6, we already know how to embed σi(Ki) into O(2ki); by using this, it is easy to check that
Z(σi(Ki);O(li)) is a commutative group for all CASE (1)–(7). Using the notations in Section 5.2
together with Remark 8.1, we can put the elements of H ′ =

∏a
i=1 S(U(1)×U(mi))×S as follows:

τI =

((
t1 0
0 A1

)
, · · · ,

(
ta 0
0 Aa

))
∈

a∏
i=1

S(U(1)× U(li)),

νJ =

((
x1 0
0 X1

)
, · · · ,

(
xb 0
0 Xb

))
∈ S ⊂

b∏
j=1

S(O(1)×O(2mj)).

Recall S/So = A ⊂ (Z2)
b. Now we can define the natural surjective homomorphism s : H ′ →

T a ×A as follows:

s(τI , νJ) = ((t1, . . . , ta), (x1, . . . , xb)) ∈ T a ×A ⊂ T a × (Z2)
b.

By abuse of notation, we often denote ((t1, . . . , ta), (x1, . . . , xb)) by (τI , νJ ) simply. Because
Z(σi(Ki);O(2ki)) is a commutative group, there exists the following decomposition:

si : H
′ s−→ T a ×A ρi−→ Z(σi(Ki);O(2ki)),

for some ρi. Now recall that H ′ acts on G′′/Ki trivially in CASE (1)–(3). Therefore, one can
easily check that the map

(G′ ×G′′)×(H′×Ki) D
li −→ G′ ×H′ (G′′ ×Ki D

li)

∈ ∈

[(g′, g′′), x] 7−→ [g′, [g′′, x]]

induces the equivariant diffeomorphism from the tubular neighborhood

X̂i = G×K̂i
Dli ∼= (G′ ×G′′)×(H′×Ki) D

li

to

G′ ×H′ Xi
∼= G′ ×H′ (G′′ ×Ki D

li),

where h ∈ H ′ acts on [g′′, x] ∈ G′′ ×Ki
Dli by

[g′′, x] 7→ [g′′, si(h)(x)].

We next assume that (M1, G
′′) is one of CASE (4)–(7) in Lemma 9.2. In this case, l1 = 2k1

and l2 = 2k2 − 1. Moreover, by Theorem 7.1, we may put

G′′ = G′′
1 ×G′′

2 ;

K1 = G′′
1 × kerσ1;(9)

K2 = kerσ2 ×G′′
2 ,

where σi : Ki → O(li) is the slice representation of Ki in (M1, G
′′); for example, if (M1, G

′′) is
the manifold in CASE (4), then G′′ = U(k1)× SO(2k2 − 1) = G′′

1 ×G′′
2 , K1 = G′′

1 × kerσ1 (where
kerσ1 = SO(2k2 − 2)), and K2 = kerσ2 × G′′

2 (where kerσ2 = U(k1 − 1)). This implies that
kerσi ⊂ G′′

r and

NG′′
r
(kerσi)/ kerσi = NG′′(Ki)/Ki,(10)

where (i, r) = (1, 2) or (2, 1). Now we may regard Ki ⊂ K̂i as the subset

{(e, k) ∈ K̂i | k ∈ Ki},
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where e ∈ G′ is the identity element. Then, it is easy to check that σ̂i|Ki = σi, where σ̂i : K̂i →
O(li) is the slice representation of K̂i in (M,G). Hence, kerσi can be regarded as the normal

subgroup of K̂i. Therefore, it follows from the relations above (9), (10) that

K̂i/ kerσi = {(h,A, µi(h)) ∈ H ′ ×G′′
i ×NG′′(Ki)/Ki}.

This also implies that

K̂i/ kerσi ≃ H ′ ×G′′
i .

Hence, the slice representation σ̂i can be decomposed into as the following diagram:

K̂i

��

σ̂i

$$IIIIIIIIII

H ′ ×G′′
i

si×σi // O(li)

for some representation si : H
′ → Z(σi(Ki);O(li)). With the method similar to that demonstrated

as above in CASE (1)–(3), there exists a representation

ρi : T
a ×A → Z(σi(Ki);O(li))

such that

si = ρi ◦ s.

Therefore, by using Lemma 9.1, we have that the following map is well-defined:

(G′ ×G′′)×K̂i
Dli −→ G′ ×H′ (G′′ ×Ki D

li)

∈ ∈

[(g′, g′′), x] 7−→ [g′, [g′′, x]]

where h ∈ H ′ acts on [g′′, x] ∈ G′′ ×Ki D
li by

[g′′, x] 7→ [g′′µi(h)
−1, si(h)(x)].

It is easy to check that this map gives the equivariant diffeomorphism. This establishes Lemma
9.3. � �

9.2. Torus manifolds with trivial µ[−1,1]. In this subsection, we classify (M,G) with
trivial µ[−1,1]. Let M = G′ ×H′ M1 be a torus manifold with codimension one extended G′ ×G′′-
action and the H ′-action on M1 preserves the orbits of (M1, G

′′), i.e., µ[−1,1] is trivial. We will
analyze in each case; CASE (1)–(7).

9.2.1. CASE (1). Let (M1, G
′′) be CASE (1), i.e.,

(P (Ck1 ⊕ Ck2), S(U(k1)× U(k2))).

Because G′′ acts on M1 by the standard multiplication, its two non-principal orbits are

G′′/K1
∼= {[0 : w] ∈ P (Ck1 ⊕ Ck2)},

G′′/K2
∼= {[z : 0] ∈ P (Ck1 ⊕ Ck2)},

and two tubular neighborhoods are

G′′ ×K1 D
2k1 ∼= X1 = {[z : w] ∈ P (Ck1 ⊕ Ck2) | w ̸= 0, z ∈ D2k1 ⊂ Ck1},

G′′ ×K2 D
2k2 ∼= X2 = {[z : w] ∈ P (Ck1 ⊕ Ck2) | z ̸= 0, w ∈ D2k2 ⊂ Ck2}.

Using Lemma 9.2 and 9.3, we may define H ′-action on Xi as follows:

[z, w] 7→ [s1(h)z, w] for X1;

[z, w] 7→ [z, s2(h)w] for X2,

where h ∈ H ′ and si : H
′ → Z(σi(Ki);O(2ki)) ≃ S1 (scaler multiplication). Due to Lemma 7.4,

we may regard the attaching map between X1 and X2 in M1 as the identity map. Therefore, the
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restricted H ′-action on X1 to ∂X1 coincides with that of ∂X2. This implies that the following
relation:

s1(h) = s2(h)
−1.

Hence, M is equivariantly diffeomorphic to

G′ ×H′ P (Ck1
s1 ⊕ Ck2),

where H ′ acts on Ck1
s1 by the scaler multiplication via a representation s1 : H ′ → S1 and on Ck2

trivially.
Put

S(a; b) =
a∏

i=1

S2li+1 ×
b∏

j=1

S2mj .

Because there exists a decomposition s1 : H ′ s−→ T a × A ρ−→ S1 for some representation ρ (see
Section 9.1), we have the follow proposition:

Proposition 9.4. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = P (Ck1 ⊕ Ck2), then there exists a representation ρ : T a × A → S1 such that
(M,G) is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A P (Ck1
ρ ⊕ Ck2),

G =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× S(U(k1)× U(k2)),

where G acts on M standardly and M is defined by the following T a × A quotient: T a × A ⊂
T a × (Z2)

b acts on S(a; b) via the natural action; on Ck1
ρ by the scaler multiplication via ρ; and

on Ck2 trivially.

9.2.2. CASE (2). Let (M1, G
′′) be CASE (2), i.e.,

(S(Ck ⊕ R), U(k)).

Then, its two tubular neighborhoods are

G′′ ×K1 D
2k ∼= X1 = {(z, r) ∈ S(Ck ⊕ R) | 0 ≤ r ≤ 1};

G′′ ×K2 D
2k ∼= X2 = {(z, r) ∈ S(Ck ⊕ R) | − 1 ≤ r ≤ 0},

where z ∈ Ck and r ∈ R such that |z|2 + r2 = 1. Using Lemma 9.2 and 9.3, we may define
H ′-action on Xi as follows:

(z, r) 7→ (s1(h)z, r) for X1;

(z, r) 7→ (s2(h)z, r) for X2,

where h ∈ H ′ and si : H ′ → Z(σi(Ki);O(2k)) ≃ S1 (scaler multiplication). With the method
similar to that demonstrated in the proof of Proposition 9.4, we have that

s1(h) = s2(h)

and the follow proposition:

Proposition 9.5. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = S(Ck ⊕ R), then there exists a representation ρ : T a ×A → S1 such that (M,G)
is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A S(Ck
ρ ⊕ R),

G =

a∏
i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× U(k),

where T a ×A acts on Ck
ρ by the scaler multiplication via ρ and on R trivially.
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9.2.3. CASE (3). Let (M1, G
′′) be CASE (3), i.e.,

(S(R2k ⊕ R), SO(2k)).

Similarly as in CASE (2), its two tubular neighborhoods are

G′′ ×K1 D
2k ∼= X1 = {(x, r) ∈ S(R2k ⊕ R) | 0 ≤ r ≤ 1};

G′′ ×K2 D
2k ∼= X2 = {(x, r) ∈ S(R2k ⊕ R) | − 1 ≤ r ≤ 0},

where x ∈ R2k and r ∈ R such that |x|2 + r2 = 1. Using Lemma 9.2 and 9.3, we may define
H ′-action on Xi as follows:

(x, r) 7→ (s1(h)x, r) for X1;

(x, r) 7→ (s2(h)x, r) for X2,

where h ∈ H ′ and si : H
′ → Z(σi(Ki);O(2k)) ≃ Z2 (scaler multiplication). Similarly as in CASE

(2), we also have that

s1(h) = s2(h)

and the follow proposition:

Proposition 9.6. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = S(R2k ⊕R), then there exists a representation ρ : T a ×A → Z2 such that (M,G)
is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A S(R2k
ρ ⊕ R),

G =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× SO(k),

where T a ×A acts on R2k
ρ by the scaler multiplication via ρ and on R trivially.

Note that in Proposition 9.6 M is equivariantly diffeomorphic to the following manifold:

a∏
i=1

CP (li)×

 b∏
j=1

S2mj+1 ×A S(R2k
ρ ⊕ R)

 ,

because the restricted representation ρ|Ta is trivial.
9.2.4. CASE (4). Let (M1, G

′′) be CASE (4), i.e.,

(S(Ck1 ⊕ R2k2−1), U(k1)× SO(2k2 − 1)).

Similarly as in CASE (1), its two tubular neighborhoods are

G′′ ×K1 D
2k1 ∼= X1 = {(z, x) ∈ S(Ck1 ⊕ R2k2−1) | 0 ≤ |x| ≤ 1/

√
2};

G′′ ×K2 D
2k2−1 ∼= X2 = {(z, x) ∈ S(Ck1 ⊕ R2k2−1) | 0 ≤ |z| ≤ 1/

√
2},

where z ∈ Ck1 and x ∈ R2k2−1 such that |z|2 + |x|2 = 1. Using Lemma 9.2 and 9.3, we may define
H ′-action on Xi as follows:

(z, x) 7→ (s1(h)z, µ1(h)
−1x) for X1;

(z, x) 7→ (µ2(h)
−1z, s2(h)x) for X2,

for some scaler representations

s1 : H ′ → Z(σ1(K1);O(2k1)) ≃ S1,

s2 : H ′ → Z(σ2(K2);O(2k2 − 1)) ≃ Z2,

µ1 : H ′ → NG′′(K1)/K1 ≃ Z2,

µ2 : H ′ → NG′′(K2)/K2 ≃ S1.

With the method similar to that demonstrated in the proof of Proposition 9.4, we have that

s1(h) = µ2(h)
−1 ∈ S1,

s2(h) = µ1(h)
−1 ∈ Z2,
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and the follow proposition:

Proposition 9.7. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = S(Ck1 ⊕ R2k2−1), then there exist representations ρ1 : T a × A → S1 and
ρ2 : T a ×A → Z2 such that (M,G) is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A S(Ck1
ρ1

⊕ R2k2−1
ρ2

),

G =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× U(k1)× SO(2k2 − 1),

where T a × A acts on Ck1
ρ1

by the scaler multiplication via ρ1 and on R2k2−1
ρ2

by the scaler multi-
plication via ρ2.

9.2.5. CASE (5). Let (M1, G
′′) be CASE (5), i.e.,

(S(R2k1 ⊕ R2k2−1), SO(2k1)× SO(2k2 − 1)).

Similarly, its two tubular neighborhoods are

G′′ ×K1 D
2k1 ∼= X1 = {(x, y) ∈ S(R2k1 ⊕ R2k2−1) | 0 ≤ |y| ≤ 1/

√
2};

G′′ ×K2 D
2k2−1 ∼= X2 = {(x, y) ∈ S(R2k1 ⊕ R2k2−1) | 0 ≤ |x| ≤ 1/

√
2},

where x ∈ R2k1 and y ∈ R2k2−1 such that |x|2 + |y|2 = 1. Using Lemma 9.2 and 9.3, we may
define H ′-action on Xi as follows:

(x, y) 7→ (s1(h)x, µ1(h)
−1y) for X1;

(x, y) 7→ (µ2(h)
−1x, s2(h)y) for X2,

for some scaler representations

s1 : H ′ → Z(σ1(K1);O(2k1)) ≃ Z2,

s2 : H ′ → Z(σ2(K2);O(2k2 − 1)) ≃ Z2,

µ1 : H ′ → NG′′(K1)/K1 ≃ Z2,

µ2 : H ′ → NG′′(K2)/K2 ≃ Z2.

With the method similar to that demonstrated in the proof of Proposition 9.4, we have that

s1(h) = µ2(h)
−1 ∈ Z2,

s2(h) = µ1(h)
−1 ∈ Z2,

and the follow proposition:

Proposition 9.8. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = S(R2k1 ⊕ R2k2−1), then there exist representations ρ1 : T a × A → Z2 and
ρ2 : T a ×A → Z2 such that (M,G) is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A S(R2k1
ρ1

⊕ R2k2−1
ρ2

),

G =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× SO(2k1)× SO(2k2 − 1),

where T a ×A acts on R2k1
ρ1

by the scaler multiplication via ρ1 and on R2k2−1
ρ2

by the scaler multi-
plication via ρ2.

Note that in Proposition 9.8 M is equivariantly diffeomorphic to the following manifold:

a∏
i=1

CP (li)×

 b∏
j=1

S2mj+1 ×A S(R2k1
ρ1

⊕ R2k2−1
ρ2

)

 ,

because the restricted representation ρ1|Ta is trivial.
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9.2.6. CASE (6). Let (M1, G
′′) be CASE (6), i.e.,

(RP (Ck1 ⊕ R2k2−1), U(k1)× SO(2k2 − 1)).

Then, its two tubular neighborhoods are

G′′ ×K1
D2k1 ∼= X1 = {[z : x] ∈ RP (Ck1 ⊕ R2k2−1) | x ̸= 0, z ∈ D2k1 ⊂ Ck1};

G′′ ×K2 D
2k2−1 ∼= X2 = {[z : x] ∈ RP (Ck1 ⊕ R2k2−1) | z ̸= 0, x ∈ D2k2−1 ⊂ R2k2−1}.

Using Lemma 9.2 and 9.3, we may define H ′-action on Xi as follows:

[z : x] 7→ [s1(h)z : x] for X1;

[z : x] 7→ [µ2(h)
−1z : s2(h)x] for X2,

for some scaler representations

s1 : H ′ → Z(σ1(K1);O(2k1)) ≃ S1,

s2 : H ′ → Z(σ2(K2);O(2k2 − 1)) ≃ Z2,

µ2 : H ′ → NG′′(K2)/K2 ≃ S1.

With the method similar to that demonstrated in the proof of Proposition 9.4, we have that

s1(h) = s2(h)µ2(h)
−1 ∈ S1,

where s2(h) ∈ Z2 = {±1} ⊂ S1. Therefore, we have the follow proposition:

Proposition 9.9. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = RP (Ck1 ⊕ R2k2−1), then there exists a representation ρ : T a ×A → S1 such that
(M,G) is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A RP (Ck1
ρ ⊕ R2k2−1),

G =
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× U(k1)× SO(2k2 − 1),

where T a ×A acts on Ck1
ρ by the scaler multiplication via ρ and on R2k2−1 trivially.

9.2.7. CASE (7). Let (M1, G
′′) be CASE (7), i.e.,

(RP (R2k1 ⊕ R2k2−1), SO(2k1)× SO(2k2 − 1)).

Similarly, its two tubular neighborhoods are

G′′ ×K1 D
2k1 ∼= X1 = {[x : y] ∈ RP (R2k1 ⊕ R2k2−1) | y ̸= 0, x ∈ D2k1 ⊂ R2k1};

G′′ ×K2 D
2k2−1 ∼= X2 = {[x : y] ∈ RP (R2k1 ⊕ R2k2−1) | x ̸= 0, y ∈ D2k2−1 ⊂ R2k2−1}.

Using Lemma 9.2 and 9.3, we may define H ′-action on Xi as follows:

[x : y] 7→ [s1(h)x : y] for X1;

[x : y] 7→ [x : s2(h)y] for X2,

for some scaler representations

s1 : H ′ → Z(σ1(K1);O(2k1)) ≃ Z2,

s2 : H ′ → Z(σ2(K2);O(2k2 − 1)) ≃ Z2.

With the method similar to that demonstrated in the proof of Proposition 9.4, we have that

s1(h) = s2(h)
−1 ∈ Z2,

and the follow proposition:
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Proposition 9.10. Let M = G′ ×H′ M1 be a non-principal torus manifold with the trivial
µ[−1,1]. If M1 = RP (R2k1 ⊕R2k2−1), then there exists a representation ρ : T a ×A → Z2 such that
(M,G) is essentially isomorphic to the following manifold:

M = S(a; b)×Ta×A RP (R2k1
ρ ⊕ R2k2−1),

G =

a∏
i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1)× SO(2k1)× SO(2k2 − 1),

where T a ×A acts on R2k1
ρ by the scaler multiplication via ρ and on R2k2−1 trivially.

Note that in Proposition 9.10 M is equivariantly diffeomorphic to the following manifold:

a∏
i=1

CP (li)×

 b∏
j=1

S2mj+1 ×A RP (R2k1
ρ ⊕ R2k2−1)

 ,

because the restricted representation ρ|Ta is trivial.

10. The case when µ[−1,1] is non-trivial

Assume µ[−1,1] is non-trivial. In this case, K1 ≃ K2 (isomorphism), i.e., k1 = k2. Therefore,
there exist three possibilities; Theorem 7.1 (1), (2), (3). We first prove that the case when Theorem
7.1 (1) does not occur.

Lemma 10.1. Let (M1, G
′′) be (P (Ck ⊕ Ck), S(U(k) × U(k))) with k ≥ 2. Then, µ[−1,1] is

trivial.

Proof. Let π :M1 →M1/G
′′ = [−1, 1] be the projection to the orbit space. Put π−1(−1) =

G′′/K1 and π−1(1) = G′′/K2. Because (P (Ck ⊕ Ck), S(U(k)× U(k))) is the standard action, we
may put that G′′/K1 = {[z : 0] ∈ P (Ck⊕Ck) | z ∈ Ck} and G′′/K2 = {[0 : w] ∈ P (Ck⊕Ck) | w ∈
Ck}.

Assume there exists a G′′-involution f on M1 induced from the non-trivial µ[−1,1]. Because
Im µ[−1,1] = O(1) acts non-trivially on M1/G

′′ = [−1, 1], such f induces the G′′-equivariant

diffeomorphism between G′′/K1 and G′′/K2. Put f([z : 0]) = [0 : w] for some z, w ∈ Ck. Because
f is G′′-equivariant, we have the following equations:

f([Az : 0]) = (A,B)f([z : 0]) = (A,B)[0 : w] = [0 : Bw]

for all (A,B) ∈ S(U(k) × U(k)). However, this also implies that [0 : w] = [0 : Bw] for all
(Ik, B) ∈ S(U(k) × U(k)), where Ik is the identity element of U(k). This gives a contradiction
to that G′′/K2 is 2k-dimensional orbit and k ≥ 2. Therefore, there is no G′′-involution f on M1

induced from the non-trivial µ[−1,1]. � �

By Lemma 10.1, we may assume that (M1, G
′′) is one of the followings:

(S(Ck ⊕ R), U(k));

(S(R2k ⊕ R), SO(2k)),

where k ∈ N. We often denote these manifolds by S(V ⊕ R), where V represents the complex
k-dimensional manifold or the real 2k-dimensional manifold.

We first analyze the induced H ′-action on M1 by non-trivial µ[−1,1] : H
′ → O(1). Now we

may regard the orbit projection π :M1 →M1/G
′′ as follows:

S(V ⊕ R) π−→ [−1, 1]

∈ ∈

(z, r) 7−→ r

where z ∈ V and r ∈ R such that |z|2 + r2 = 1. Therefore, the non-trivial µ[−1,1](h) acts on the
element (z, r) ∈ S(V ⊕ R) as follows:

(z, r)
µ[−1,1](h)7−−−−−−→ (w,−r)
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for some w ∈ V such that |z| = |w|. It follows from |z| = |w| that there is an element X ∈ G′′

such that

(z, r)
µ[−1,1](h)7−−−−−−→ (Xz,−r).

Because µ[−1,1](h) is G
′′-equivariant, we see that X ∈ Z(G′′), i.e., the center of G′′. Therefore, it

follows from µ[−1,1](h)
2 = 1 that

X = ±1.

Hence, we have the following lemma:

Lemma 10.2. Let h ∈ H ′ be an element such that µ[−1,1](h) ∈ O(1) is non-trivial. Then,
µ[−1,1](h) induces one of the following maps on S(V ⊕ R):

(z, r) 7→ (z,−r)
or

(z, r) 7→ (−z,−r).

Let H ′′ ⊂ H ′ be the kernel of µ[−1,1] : H
′ → O(1). Then, there exists the double covering

G′ ×H′′ M1 −→ G′ ×H′ M1,

and G′ ×H′′ M1 becomes a torus manifold with the trivial µ[−1,1]. Because M1 is S(V ⊕ R), it
follows from Proposition 9.5 and 9.6 that

G′ ×H′′ M1
∼= S(a; b)×Ta×A′ S(Vρ′ ⊕ R)

where Vρ′ is the vector space V with a scaler representation ρ′ and A′ ⊂ (Z2)
b. Here, we note

that A′ is a proper subgroup of (Z2)
b, because H ′′ is the kernel of µ[−1,1]. It follows from Lemma

10.2 that there exists the subgroup A ⊂ (Z2)
b such that A′ ⊂ A and A/A′ ≃ O(1) ≃ Z2 and

G′ ×H′ M1 is equivariantly diffeomorphic to

S(a; b)×Ta×A S(Vρ ⊕ Rϵ),

where ρ is a scaler representation whose restricted representation to A′ coincides with ρ′ and
ϵ : A → O(1) is the surjective homomorphism whose kernel coincides with A′. This establishes
the following proposition:

Proposition 10.3. Let (M,G) be the torus manifold such that M ∼= G′ ×H′ M1. If µ[−1,1] is
non-trivial, then there exist the following two cases up to essential isomorphism:

M G

S(a; b)×Ta×A S(Ck
ρ ⊕ Rϵ) G′ × U(k)

S(a; b)×Ta×A S(R2k
ρ ⊕ Rϵ) G′ × SO(2k)

where G′ =
∏a

i=1 SU(li + 1)×
∏b

j=1 SO(2mj + 1), and G acts on M naturally.

Here, in Proposition 10.3,M is defined by the following quotient manifold: T a×A ⊂ T a×(Z2)
b

acts on the product of spheres S(a; b) naturally, on Ck
ρ by the representation ρ : T a×A → S1, and

on R2k
ρ by the representation ρ : T a × A → {±1}; furthermore, A acts on Rϵ by some surjective

homomorphism ϵ : A → O(1).
Consequently, by Propositions 9.4–9.10 and 10.3, we have the classification list in Theorem

1.1. Note that in Theorem 1.1 the representation ϵ might be trivial, i.e., the case when ϵ is trivial
corresponds to Propositions 9.5 and 9.6, the case when ϵ is non-trivial corresponds to Proposition
10.3. As a corollary of the list in Theorem 1.1, we have Corollary 1.2.

11. Moment-angle manifolds and the orientability

In closing this paper, we prove the orientability of our manifolds in Proposition 9.4–9.10 and
10.3 by using similar objects with moment-angle manifolds. We first recall the moment-angle
manifold (see [BoMe, BuPa, DaJa] for detail).

37



11.1. Moment-angle manifolds. Let P be a simple convex polytope with the set of facets
F = {F1, . . . , Fm}. For each facet Fi ∈ F , the 1-dimensional coordinate subgroup of the m-torus
TF ≃ Tm corresponding to Fi is denoted by TFi , i.e.,

TFi = {(1, . . . , 1, ti, 1 . . . , 1) ∈ Tm | ti ∈ S1},
where ti is the i

th coordinate in Tm. Then assign to every face L the coordinate subtorus

TL =
∏

Fi⊃L

TFi ⊂ TF .

For every point q ∈ P , L(q) denotes the unique face containing q in its relative interior. Then a
moment-angle manifold ZP over P is defined by the identification space

ZP = (TF × P )/ ∼,
such that (t1, p) ∼ (t2, q) if and only if p = q and t−1

1 t2 ∈ TL(p). Note that moment-angle manifolds

ZP have natural Tm-actions on their TF factors.
Moreover, we have the following relations between quasitoric manifolds M over P and the

moment-angle manifold ZP over P (see [BuPa, Proposition 6.5]):

Proposition 11.1. Let M be the quasitoric manifold whose orbit space is a simple polytope
P . Let m be the number of facets of P , and n be the dimension of P . Then, there is the subtorus
H ⊂ TF such that H ≃ Tm−n and H acts freely on ZP . Furthermore, this freely H-action induces
the principal Tm−n-bundle ZP →M as the orbit projection.

Next we shall show the moment-angle manifold over the quasitoric manifold in Corollary 1.2,
i.e.,M =

∏a
i=1 S

2li+1×Ta−1 P (Ck1
ρ ⊕Ck2). The orbit space ofM becomes the product of simplices∏a

i=1 ∆
li ×∆k1+k2−1. Recall the following two formulas:

ZP1×P2 = ZP1 ×ZP2 ;(11)

Z∆n = S2n+1.(12)

Here, the formula for the product of polytopes (11) is due to [BuPa, Proposition 6.4] and the
moment-angle manifold over the simplex (12) is due to [BuPa, Example 6.7]. By using these
formulas (11) and (12), the moment-angle manifold over P =

∏a
i=1 ∆

li ×∆k1+k2−1 is as follows:

ZP =
a∏

i=1

S2li+1 × S(Ck1
ρ ⊕ Ck2),

where S(Ck1
ρ ⊕ Ck2) ∼= S2k1+2k2−1.

Note that the number of facets of
∏a

i=1 ∆
li ×∆k1+k2−1 and its dimension are

m =
a∑

i=1

(li + 1) + k1 + k2 and n =
a∑

i=1

li + k1 + k2 − 1,

respectively. Therefore, by using Corollary 1.2 or Proposition 9.4, the subgroup which acts on ZP

freely is

H = T a × S1.

By definitions of M and ZP , this group H = T a × S1 acts on ZP as follows:

(1) T a ⊂ H acts naturally on the
∏a

i=1 S
2li+1 factor, and acts on the S(Ck1

ρ ⊕ Ck2) ∩ Ck1
ρ

factor via the representation ρ : T a → S1;
(2) S1 ⊂ H acts only on the S(Ck1

ρ ⊕Ck2) = S2k1+2k2−1 ⊂ Ck1
ρ ⊕Ck2 factor naturally as the

scaler multiplication.

One can easily show that ZP has the natural action of G =
∏a

i=1 SU(li+1)×S(U(k1)×U(k2)),
with codimension one principal orbits

∏a
i=1 S

2li+1 × S2k1−1 × S2k2−1, and two singular orbits∏a
i=1 S

2li+1 × S2k1−1 and
∏a

i=1 S
2li+1 × S2k2−1. Furthermore, this G-action on ZP commutes

with the H = T a × S1-action and induces the codimension one action on M . Similarly, we have
this fact for quasitoric manifolds with codimension 0 extended G-actions (such quasitoric manifolds
are only products of complex projective spaces, see [Ku3]), i.e., all transitive actions on quasitoric
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manifolds can be induced from transitive actions on moment-angle manifolds. Hence, we have the
following theorem by using the argument as above and our classification results.

Theorem 11.2. Assume a (quasi)toric manifold M2n has a codimension 0 or 1 extended
G-actions. Then, there exists the principal T a+1-bundle

ZP =
a+1∏
i=1

S2li+1 →M2n

such that we can lift the codimension 0 (resp. 1) extended G-actions on M to the G-action on ZP

with codimension 0 (resp. 1) principal orbits. In other wards, all of codimension 0 and 1 extended
G-actions on M are induced from G-actions on ZP with codimension 0 and 1 principal orbits,
respectively.

Remark 11.3. We can easily show that two singular orbits of (ZP , G) are moment-angle
manifolds of two singular orbits of (M,G), respectively.

11.2. Orientability. We next analyze orientabilities of torus manifolds with codimension
one extended actions. We first show the following general property:

Proposition 11.4. Let E be the total space of fibre bundle, and F its fibre. If the manifold
F is non-orientable, then the manifold E is also non-orientable.

Proof. Assume F is non-orientable. As is well known, the 1st Stiefel-Whitney class w1(M) =
0 if and only if the manifold M is orientable (see e.g. [MiSt]). Therefore, w1(F ) ̸= 0.

Let ι be an embedding of F into E. Then, its pull-back of the tangent bundle ι∗τE can be
decomposed into τF ⊕ νF , where τF is the tangent bundle of F and νF is its normal bundle in E.
Because of the local triviality condition of the fibre bundle, we see that νF is the trivial bundle.
This implies that the total Stiefel-Whitney class satisfies

ι∗w(E) = w(τF ⊕ νF ) = w(F )w(νF ) = w(F ).

It follows from w1(F ) ̸= 0 that w1(E) ̸= 0. This establishes the statement of proposition. � �

It follows from Proposition 11.4 that manifolds appearing in Proposition 9.9 and 9.10 never
become orientable.

Due to Proposition 9.4–9.8 and 10.3, we can easily show that there is a similar principal
(T a × A)-bundle such as the moment-angle manifold in Theorem 11.2, i.e., we can define the
following principal (T a ×A)-bundle such as Theorem 11.2:

Z = S(a; b)× S(VρV ⊕WρW ) −→M

where M is a torus manifold with codimension one extended action, the symbols VρV
, WρW

represent the representation spaces appearing in Proposition 9.4–9.8 and 10.3, and ρV , ρW rep-
resent the scaler representation of T a ×A. Here, T a ×A acts on S(a; b)-factor naturally and on
S(VρV

⊕WρW
)-factor by the representation ρV ⊕ ρW . By definition, the T a-action on Z preserves

its orientation. Hence, M is orientable if and only if A preserves the orientation of Z.
We analyze when A-action preserves the orientation. Because of the definition of A-action,

we have that this action is induced from the following representation:

χ : A ι⊕ρV ⊕ρW−−−−−−−→ (Z2)
b+2 ⊂

b∏
j=1

O(2mj + 1)×O(dimVρV
)×O(dimWρW

)

⊂ O(

b∑
j=1

2mj + b+ dimVρV + dimWρW ),

where
∏b

j=1O(2mj+1)×O(dimVρV
)×O(dimWρW

) acts naturally on
∏b

j=1 S
2mj ×S(VρV

⊕WρW
),

the group (Z2)
b+2 is the diagonal group {±I}b+2, and ι : A → (Z2)

b is the embedding. Therefore,
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one can easily show that the determinant of all elements in χ(A) is 1 if and only if A-action
preserves the orientation of Z. Because VρV is an even dimensional vector space, we have

ρV (A) = χ(A) ∩O(dimVρV
) ⊂ SO(dimVρV

).

Hence, it is easy to check the following proposition:

Proposition 11.5. Let M be a torus manifolds with codimension one extended action. Then,
for the orientability of M , the following statements hold:

(1) if M is one of manifolds appearing in Proposition 9.4–9.6, then M is orientable if and
only if

A ⊂ SO(

b∑
j=1

2mj + b);

(2) if M is one of manifolds appearing in Proposition 9.7 and 9.8, then M is orientable if
and only if

{(a, ρ2(a)) ∈
b∏

j=1

O(2mj + 1)×O(2k2 − 1) | a ∈ A}

⊂ SO(

b∑
j=1

2mj + b+ 2k2 − 1);

(3) ifM is one of manifolds appearing in Proposition 9.9 and 9.10, thenM is non-orientable;
(4) if M is one of manifolds appearing in Proposition 10.3, then M is orientable if and only

if

{(a, ϵ(a)) ∈
b∏

j=1

O(2mj + 1)×O(1) | a ∈ A}

⊂ SO(
b∑

j=1

2mj + b+ 1).

Using Proposition 9.4–9.10, 10.3 and 11.5, we get Theorem 1.1.

Acknowledgements. Finally the author would like to thank Professors Mikiya Masuda and
Michel Brion for their invaluable advices and comments. In particular, Michel Brion told him
the paper [AlAl]. In the previous version of this paper [Ku4, Ku5], the author only used the
method in [Uc]. Together with the method in [AlAl], arguments of the classification can be
greatly reduced. He also would like to thank Professors Zhi Lü and DongYoup Suh for providing
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265.

[MaPa] M. Masuda and T. Panov, On the cohomology of torus manifolds, Osaka J. Math., 43 (2006), 711–746.
[MiSt] J.W. Milnor, J.D. Stasheff, Characteristic classes, Princeton Univ. Press, 1974.
[MiTo] M. Mimura and H. Toda, Topology of Lie Groups, I and II, Amer. Math. Soc., 1991.

[MoSa] D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math., 44 (1943), 454–470.
[Od] T. Oda, Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Springer,

New York (1988).
[Uc] F. Uchida, Classification of compact transformation groups on cohomology complex projective spaces with

codimension one orbits, Japan. J. Math. Vol. 3, No. 1, (1977), 141–189.

Department of Mathematical Sciences, KAIST, Daejeon 305-701, R. Korea
E-mail address: kuroki@kaist.ac.kr

41


