Equivariant cohomology distinguishes geometric structures of toric
hyperKahler manifolds

Shintaro Kuroki

ABSTRACT. Toric hyperKahler manifolds are the hyperKéahler analogue of symplectic toric man-
ifolds. The purpose of this paper is to study some variation of cohomological rigidity theorem
for toric hyperKéahler manifolds. Roughly, we prove that the weak H*(BT)-algebra structure of
equivariant cohomology determines the weak T-hyperhamiltonian structure of toric hyperKéhler
manifolds.

1. Introduction

A toric hyperKdahler manifold is defined by the hyperKéahler quotient of a torus action on the
quaternionic space H™. This space is introduced as the hyperKéhler analogue of symplectic toric
manifolds in [BiDa, Go]. The resulting manifolds are 4n-dimensional manifolds with quarter
dimensional torus actions, i.e., with T™-actions (see Section 2). We note that symplectic toric
manifolds are 2n-dimensional manifolds with half dimensional torus actions. So, as a space, sym-
plectic toric manifolds and toric hyperKéhler manifolds are quite different. However, in [BiDa],
Bielawski-Dancer show that there is a one-to-one correspondence between toric hypreKéahler man-
ifolds (geometry) and smooth hyperplane arrangements (combinatorics) (see Section 3). This is
the similar phenomena to that toric manifolds can be described by using the combinatorial objects,
fans or polytopes (see [BuPa, Fu, Od] for detail). Namely, as far as toric hyperKéhler manifolds
(or toric manifolds) are considered, the following two informations are the same:

<:>’ Combinatorics ‘

In particular, using this correspondence, equivariant cohomologies of toric manifolds and toric
hyperKéhler manifolds can be computed (see [Fu, Od] for toric manifolds and [Kol, Ko2] for
toric hyperK&hler manifolds). Here, the equivariant cohomology is the important invariant of
group actions (see [Br, Hs, Ka] for detail, and also see Section 5). Furthermore, in the case of
toric manifolds, the following important theorem are proved by Masuda in [Ma2]:

THEOREM 1 (Masuda). Two toric manifolds are isomorphic as varieties if and only if their
equivariant cohomology algebras are weakly isomorphic.

The Masuda’s theorem means that the informations coming from the equivariant cohomology
(algebra) has also the same informations with those coming from geometry and combinatorics,

2000 Mathematics Subject Classification. Principal: 55N91; 57525, Secondly: 14M25; 32522; 37J05.

Key words and phrases. Cohomological rigidity, Equivariant cohomology, Hyperhamiltonian isometry, Hyper-
plane arrangement, Toric hyperKéahler manifold (hypertoric manifold).

The author was supported in part by Basic Science Research Program through the NRF of Korea funded by
the Ministry of Education, Science and Technology (2010-0001651) and the Fujyukai Foundation.

1



i.e., we have the following trinity for the toric manifolds:

N

Combinatorics ‘

Motivated by the Masuda’s theorem, the purpose of this paper is to show the trinity above
also holds for toric hyperKéahler manifolds. Namely, the goal of this paper is to prove the following
theorem (see Theorem 4.4 and 8.1 for detail):

THEOREM 1.1. Let (M, T, pg) and (Mg, T, ME) be toric hyperKdhler manifolds M., Mg with
hyperKahler moment maps pg, 1 and Hg, HE be their hyperplane arrangements, respectively.
Then, the following three statements are equivalent:

(1) (MavTv Ma) =w (Mﬁ,T, /JB‘),'

(2) Ha =w HZ.};

(3) there exists a weak H*(BT)-algebra isomorphism fi + Hy.(My;Z) — Hy(Mg;Z) such
that (fF)r(@) = b,

where @ = J, (@) € HA(Ma;R), b= J;, (B) € HA(Mg;R) and (f3)r : Hj(Ma; R) — Hy(Mg;R)
is the natural isomorphism induced from f7.

Here, in Theorem 1.1, three equivalence relations are introduced in Section 4.1 for toric hy-
perKéhler manifolds, Section 4.2 for hyperplane arrangements, and Section 5.1 for equivariant
cohomologies; and J,,,, : (t™)* — HZ(M,;R) and J,p,, : (t™2)* — H2(Mg;R) are isomorphisms
defined in Section 7.1.2, where M,, My are defined by the hyperKéahler quotient on H™*, H™2,
respectively. In this paper, H*(X) always represents H*(X;Z).

Theorem 1.1 tells us that, as far as toric hyperKahler manifolds are considered, we have a
trinity among toric hyperKéhler manifolds with hyperKéhler moment maps (M, T, ug) (geome-
try), smooth hyperplane arrangements Hg C (+*)* (combinatorics), and equivariant cohomologies
with non-zero element @ € H2(My;R) (H3(M,),7*,a) (algebra) such as the following diagram:

| {(Ma, T 12)} /= |

—

| {Ha c ()"}/= | {(Hp(Ma), 7, @)}~ |

The organization of this paper and the idea of proof of Theorem 1.1 are as follows. We
first recall toric hyperK&hler manifolds and their basic facts in Section 2, and we then introduce
hyperplane arrangements defined by toric hyperKahler manifolds in Section 3. In Section 4, we
introduce two equivalence relations on toric hyperKahler manifolds and hyperplane arrangements,
and prove these two equivalence relations are compatible (in Theorem 4.4). In Section 5, we
recall the basic facts about equivariant cohomologies of toric hyperKéahler manifolds. The idea
of proof of Theorem 1.1 is to translate the original hyperplane arrangements defined in the dual
of Lie algebra (t")* into the hyperplane arrangements defined in the equivariant cohomology
H?(BT™;R). So, in Section 6, we define the hyperplane arrangement in H?(BT™;R), and in
Section 7, we prove two hyperplane arrangements in (t*)* and H?(BT™;R) are equivalent up to
weak equivalence defined in Section 4 (in Proposition 7.11). Finally, in Section 8, we prove a
weak H*(BT)-algebra isomorphism between two equivariant cohomologies Hx(M,,) and H}(M3a)

induces a weak equivalence between two hyperplane arrangements in H*(BT;R) KEY H:(M,;R)

and H*(BT;R) it H}.(Mg;R). This yields the trinity described as above.
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2. Toric hyperKahler varieties

First of all, in this section, we recall the basic facts of the toric hyperKdhler variety needed
later (see [BiDa, HaSt, Ko3, Pr], for detail). We assume throughout this paper that Z is the
integer, R is the real, C is the complex and H is the quaternionic numbers, i.e., H ~ R* as the
R-vector space whose basis are 1, i, j, k and they satisfy the following quaternionic relations:

ijk=12=j2=k%=—1.

2.1. Definition of toric hyperKéahler manifolds and their geometric structures. We
first define a toric hyperKdhler manifold and introduce its geometric structure.

2.1.1. HyperKdhler structure on H™. In the beginning, let us recall a geometric structure
on the quaternionic vector space. Assume H™ is the m-dimensional quaternionic vector space
with the left H-scalar product. Then the complex structure Iy : H™ — H™ with 112 = —Idgm
(resp. I and I3) on H™ is defined by the left multiplication of i (resp. j and k). We now
put the flat Riemannian metric g on H™ arising from the standard Euclidean scaler product
on H™ ~ R = R™ @ iR™ @ jR™ & kR™. Using these structures, we can define three Kihler
forms on H™ as follows:

(2.1) wi(X,Y) = g(LX,Y) i=1, 2, 3

where X, Y are tangent vectors on a point in H'™. The metric g is a hyperKdhler metric, i.e.,
it is a K&hler metric with respect to all three complex structures I, I and I3 which satisfy the
quaternionic relations. The automorphism group which preserves the hyperKéhler structure (i.e.,
g, I1, Ir and I3) is called the symplectic group and denoted by Sp(m), i.e., the subgroup of special
orthogonal group SO(4m) which commutes with I, I and I3, or equivalently preserves the Kéhler
forms wy, wy and ws. Note that Sp(m) acts on H™ from the right. In this paper, if the group
G acts on a hyperKéahler manifold M with preserving its hyperKéahler structure, we call G acts
on (M, gn, In, Ju, Kar), where gas is a Riemannian structure and Ips, Jy and Kjs are three
complex structures which define the hyperKahler structure on M.

2.1.2. HyperKdahler moment map of (H™,T™). We next recall properties of the torus action
on (H™ g, I, I, I3). Because Sp(m) acts on (H™, g, I, I, I3), a maximal torus in Sp(m) preserves
the hyperKéahler structure on H™. Let T™ be the diagonal abelian subgroup in Sp(m), i.e., m-
dimensional torus. This torus 7™ is a maximal torus in Sp(m), and the T™-action on H™ is
defined by right multiplication:

H™ — H™
(2.2) w . w
z+wk = zt+wt 'k

for z, w € C™ and t € T™. By using this action, we can regard H™ as T*C™, i.e., the cotangent
bundle of C™; or equivalently C™ @ C™, where C™ is isomorphic to C™ with reversed orientation.

Regard a symplectic form on H™ as wg = w; and a holomorphic symplectic form on H™ as
we = wy + v/—1ws. Then the T™-action defined in (2.2) preserves wg and wc, and induces the
hyperKdahler moment map

pr @ pe s H™ — (") @ ()"
such that

| —

m
*Z |Zl|2 ‘w1|

and
M(C(Z, w) =2v-1 Z 2jw; 05,
i=1

where z = (21,...,2,) € C™ and w = (wy,...,wy,) € C™ for H™ = C™ @ C™, and 0; (i =
1, ..., m) is the basis in (¢")* and (t)*.



2.1.3. Definition of a toric hyperKdhler variety. In order to define a toric hyperKéhler variety,
we explain the hyperKdhler quotient.

Let K be a connected subgroup 7. There is the following sequence:

(2.3) K- 1m e mm/K ~T",

where ¢ is the inclusion, p is the projection to the cokernel of ¢, and put n = m — dim K. This
sequence induces the following exact sequence of Lie algebras:

(2.4) {0} — €& 25— {0}

Taking its dual, we have the following exact sequence:

(2.5) {0} — ()" L5 (1) NN {0}.

By using ¢* and its complexification ., we can define the hyperKdhler moment map of K-action
on H™ as follows:

(2.6) prg s H™ AEEES, (gmyr g (gmyr D00 e g g,

By the definition of pp, an element (o,0) € € & € for each non-zero o € ¢* is a regular
value of uyi. Hence, its inverse image u;IIK(a, 0) has the almost free K-action. Therefore, its
quotient space (1% (o, 0)/K is a 4n-dimensional orbifold with the induced 77 /K (=~ T™) action
from T™-action on ul_JlK (r,0). This quotient is called the hyperKdahler quotient.

Put

M, = u;IIK(a,O)/K.
We call M, a toric hyperKdhler variety. If M, is non-singular, then we call it a toric hyperKdhler
manifold. The following proposition gives the necessary and sufficient condition for the smoothness
of a toric hyperKéhler variety (see [Kol, Proposition 2.2]).
PROPOSITION 2.1. The following two statements are equivalent.
(1) The action of K on uyy(a,0) is free, i.e., My = iy (a,0)/ K is a manifold.
(2) For any J C {1,...,m} such that {¢*u; | j € J} forms a basis of €*,
t7 =t Z 70; as a Z-module,
jeJe
where we regard € as the subset of ™ via 1y, u; is an element of ({™)*, and ¥z and
are lattice subgroups of € and t™ respectively.
We also note the following proposition:

PROPOSITION 2.2. Let uy, € (t™)* be a basis. If v*(um) = 0, then there exists the (4n — 4)-
dimensional toric hyperKdahler manifold M such that
i (a,0)/ K = M x H,
where M x H has the diagonal T" 1 x S'-action and the S'-action on H is the standard action.
PROOF. Because u,, is a basis of (t™)*, there exists the (m — 1)-dimensional subspace in t™
defined by
{z €t | (um,x) =0},

where (,) is the natural paring of Lie algebra and its dual, i.e., (U, ) = um(x). Denote this
subspace by t" 1.
Assume t*(u,,) = 0. Let y € €. Then, we have

(tm, 1 (y)) = (" (um),y) = 0.
Therefore, ¢,(€) C t™~!. In particular, taking their exponent, we have K C T™~!. Hence,
ul}lK(a, 0)/K may be regarded as the hyperKahler quotient of the diagonal action of K x {e} on
H™ ! x H. By the definition of hyperKahler quotient, the space appearing as the hyperKéhler

quotient of the identity group {e}-action on H is H itself. Therefore, for the hyperKéhler quotient
M of K-action on H™!, we have that (o, 0)/K = M x H. O
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2.1.4. HyperKdhler moment map of (My,T™). By the definition of the toric hyperKéhler
variety M,, the T™-action on the smooth part of M, preserves three Kahler forms w; induced
from w;, i =1, 2, 3 (see (2.1)), i.e., this action preserves the hyperKéhler structure on the smooth
part of M,. Hence, this T™-action also preserves the real symplectic form wg = w; and the
holomorphic symplectic form @e = &y + v/—1ws on the smooth part of M,. Define a hyperKéhler
moment map iz = R D fc as follows:

~ ~ IR 2 2 -
(2.7) br[z, w] @ liclz,w] = <2 ;(|zl| — |w;|?) — ai> 0; ©2v/—1 ;ziwi&-
€ kert* @kerit ~ (") @ ()",
where [z,w] € M, and q; is the i*" element of @ = (aq,...,q,) € (1*)7(a) C (t™)*; we call

ae (t™)* a lift of a € (t")*.

We note the following remark (assumption) needed in Section 8.

REMARK 2.3. Suppose t*(u,,) = 0. Then, by Proposition 2.2, the toric hyperK&hler manifold
is ugx(a,0)/K = M x H. Note that S acts on H standardly. In this paper, we assume that
the hyperKihler moment map of the standard S'-action on H is always defined by the map
pw=pur ® puc : H — RdC in Section 2.1.2. Therefore, by the definition of the hyperKahler
moment map pg, it is easy to check the following decomposition:

Ha = Ha O M,
for some lift @’ € ("7 1)* of a € & (note that K C 7™ ! in this case). Namely, if ¢*(u,,) = 0
then we always assume a lift @ € (t™)* of « as follows:
(@,0) € (" H)* @ (th*.
2.2. Example and Remark. Here, we give the standard example of toric hyperKé&hler
varieties.

EXAMPLE 2.4. Let A be the diagonal subgroup in 7"*!. Then, we get the following exact
sequence by using the inclusion A ¢ T7+!:

(2.8) () £ (gt R
such that
(at, ... apq1) = a1+ +apg €ER,

where (aq,...,a,41) € (1"71)* =~ R"*! and R is the dual of Lie algebra of A.

Put « = n+1 € R. Then the toric hyperKéhler manifold u;IIK (a,0)/A is T"-equivariantly
diffeomorphic to T*CP"™, where the T"-action on T*CP" is induced from the standard T"-action
on CP".

We finish this section by the following remark (assumption).

REMARK 2.5. Let {ey,..., ey} be the standard basis of t™ whose dual basis are {91, ..., }.
If p.(e;) = 0, then we can easily show that K and 7™ can be decomposed into K = K’ x S; and
Tm = T™1 x S; by using (2.3) and (2.4), where K’ C T™~! and S; is the i*" coordinate circle
of T™. Then, the hyperKéhler moment map gy in (2.6) decomposes into pyy and p;, where
Wy g is the hyperKdhler moment map of the K’-action on H™~! and p; is that of the S;-action
on H. Because the hyperKéahler variety constructed by the S;-action on H is the 0-dimensional
manifold, we may regard that the toric hyperK&hler variety in this case is constructed by the
hyperKéhler quotient of K’-action on H™~!. Hence, throughout this paper, we assume p.(e;) # 0
foralli=1, ..., m.

3. Hyperplane arrangements

One of the most important properties of toric hyperKéahler manifolds is the correspondence be-
tween toric hyperKéhler manifolds and hyperplane arrangements, established by Bielawski-Dancer
in [BiDa] (also see [HaPr, Ko3, Pr]). In this section, we recall the hyperplane arrangement in-
duced from the toric hyperKéahler variety and recall some basic facts.
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3.1. Hyperplane arrangements induced from toric hyperKahler varieties. In order
to define toric hyperKahler varieties, it is enough to use the exact sequence (2.5) and the non-zero
element o € £* (see Section 2). By the exactness of (2.5), there is a non-zero lift @ of «, i.e.,
t*(@) = a. This & determines m affine hyperplanes in (t")* as follows:

Hy ={x e (") | (p*(z) + a,e;) = 0}

where e;’s (i =1, ..., m) are the basis of " ~ R™ such as those in Remark 2.5.

REMARK 3.1. Due to Remark 2.5, we may assume that p.(e;) # 0 for all i =1, ..., m.
This implies that H; defined as above is always codimension-one affine subspace in (t")*, i.e.,
dim H; = n — 1. Moreover, we may regard H; (i = 1, ..., m) as a weighted, cooriented, affine

hyperplane by regarding p.(e;) € t} as a nonzero integer, cooriented, normal vector of H;. Here,
“weighted” means that p.(e;) is not required to be primitive.

We call the set of hyperplanes
Ha ={Hi,...,Hn}
the hyperplane arrangement induced from (M, T™) or hyperplane arrangement of (My,T™).

REMARK 3.2. Ths choise of a lift @ € (+*)~1(«) yields a parallel translation of the hyperplane
arrangement Hg. Let @ and dia be elements in (t")* which satisfy that *(a;) = a = *(Q2).
It is easy to check that the intersection posets of Hs, and Hgs, are the same. Namely, the
choice of a lift @ does not change the combinatorial structure of Hg. However, geometrically, a
determines the hyperKéhler moment map because of the definition in (2.7). This implies that the
date (M,,T™, ua) gives more precise structure of hyperplane arrangements than the combinatorial
structure (see Section 4.2, 4.3).

We also note that all hyperplane arrangements do not appear as hyperplane arrangements of
(Mg, T™). We shall explain it in the following Lemma 3.3. Before that, we prepare two notations.
A hyperplane arrangement is called simple, if every nonempty intersection of k hyperplanes is
codimension-k and there are n hyperplanes whose intersection is nonempty (also see Figure 3 in
Section 3.4). A hyperplane arrangement is called smooth, if it is simple and every collection of n
linearly independent vectors {p.(e;,), ..., p«(e;, )} spans £} (also see Figure 2 in Section 3.4). Let
us state Lemma 3.3 (see [BiDa, HaPr| for detail).

LEMMA 3.3. The toric hyperKahler variety M is an orbifold if and only if a hyperplane ar-
rangement of (M, T) is simple. Furthermore, M is smooth (i.e., non-singular) if and only if the
hyperplane arrangement of (M, T) is smooth.

The following example is one of the standard examples.

EXAMPLE 3.4. As seen in Example 2.4, the toric hyperK&hler manifold which is defined by
the diagonal subgroup A in T"+! is T™-equivariantly diffeomorphic to T*CP™.
By using the exactness of (2.8), we may define a representation p* as follows:
P (@) = (B0, Xy — (21 + -+ 1)) € (VTH*

Because we took a lift of a as (1,...,1) € (t""1)* (see Example 2.4), by definition, we get the
following hyperplanes:

Hl = {(1}1, . ,,1;”) c (tn)* | T = _1}’
H, = {(IL - ,xn) c (tn)* | €, = _1};
Hyoo = {(on..wn) € () |21+ o, = 1),

Figure 1 shows the case when n = 2.

Henceforth, we assume all toric hyperKahler varieties are non-singular, i.e., all toric hy-
perKéhler varieties are smooth manifolds. In other words, all toric hyperKéahler varieties satisfy
the condition in Proposition 2.1 or equivalently their hyperplane arrangements are smooth as we
have seen in Lemma 3.3.



H, Hs

H.

FIGURE 1. The hyperplane arrangement H 1 1y of T*CP(2)

3.2. Toric hyperKahler manifolds induced from smooth hyperplane arrangements.
We next demonstrate the construction of the toric hyperKéhler manifold with the hyperKahler
moment map (M2" T™ ugz) from the smooth hyperplane arrangement in (t")*. Before demon-
strating that, we assume the following fact.

REMARK 3.5. If m = n, i.e., dimH" = 4dim T™", then the toric hyperKéahler manifold is H"
itself and the hyperKéhler moment map is given by ugr @ uc (see Section 2.1). Therefore, this
case is uniquely determined. If n = 0, then the toric hyperK&hler manifold is the one point and
the hyperKéhler moment map is given by the zero map to {0} @ {0}. Therefore, this case is also
uniquely determined. Hence, in this paper, we assume m >n+ 1 and n > 1.

Let H be a set of weighted, cooriented, affine hyperplanes {Hy, ..., H,,} such that
H,={ze ()" | (z,v;) + a; = 0}
and
dimH; =n —1,

where v; € t§ (i =1, ..., m) regarded as the weighted coorientation (normal vector) of H; and
a; € R determines the position in (t")*. Assume the hyperplane arrangement H is smooth (see
Lemma 3.3). Because H is smooth and m > n+1 (see Remark 3.5), the surjective homomorphism
px 2 ¥ — £ can be defined by

(3.1) ps(€i) = v; € t7,

where e; is the i*" standard basis of t” ~ R™. Because dim H; = n — 1, we have that v; # 0 (also
see Remark 2.5). Put € = ker p,. Then, there is the following exact sequence:

{0} — £ = ker p, = t™ 25 ¢ — {0}.

Taking its dual, we can define the following sequence as well as the sequence (2.5):
{0} — ()" 2 (@) S — {0y,

Now we may regard «; = (@, e;) by taking & = (aq, ..., ;) € (™)* with respect to the dual
basis 0; of e;. Because H is simple and m > n + 1, we can easily show that .*(@) = o # 0 in
¢*. Therefore, with the method similar to that demonstrated in Section 2.1, we can construct
the toric hyperKihler variety M, = pj % (a,0)/K from the above exact sequence and the non-
zero element a € £, where K is the connected torus whose Lie algebra is £. Moreover, it is
easy to check that M, is non-singular by the smoothness of H and Proposition 2.1, and we have
the hyperKéhler moment map ug as the equation (2.7). Therefore, from the smooth, weighted,
cooriented, affine hyperplane arrangement, the toric hyperKéhler manifold with the hyperKahler
moment map (M,,T", ugz) can be constructed.
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3.3. Geometric meaning of weighted, cooriented, affine hyperplanes. In this sub-
section, we quickly review the geometric meaning of hyperplanes.

According to [BiDa, Theorem 3.1 (1)], the hyperKéhler moment map pg : My — (£*)*® (t¢)*
in (2.7) is surjective. Let rg : ()" @ ({#)* — (t")* be the natural projection to the real part.
Then, we have the surjective map

Vs : M, — (f")*

by U = rr o ug-

Let M; be a characteristic submanifold of (M, T™), i.e., M; is an invariant connected sub-
manifold in M, which is fixed by some circle subgroup in 7. By [HaHo, Section 3], we have the
following proposition.

PROPOSITION 3.6. Let N; (i =1, ..., m) be the subset in p5y (a,0) C C™ @& C™ such that
zi = 0 = w;, where z; and w; are the i coordinate in C™ and C™, respectively. For the given
characteristic submanifold M;, there exists the subset N; such that

M; = N;/K.

Equivalently, M; is the hyperKdhler quotient of the restricted K -action on the (m—1)-dimensional
subspace H;nfl, where H;vnfl is the subspace of H™ whose i** coordinate is 0.

Due to Proposition 3.6, we have dim M; = 4n — 4 for all ¢ = 1, ..., m. By the definition of
ug and hyperplanes H; (for ¢ =1, ..., m), we have the following relation:

(3.2) Va(M;) = H; C (t")".

Hence, there exists the one-to-one correspondence between hyperplanes in Hg and characteristic
submanifolds in (M, T", ug)-

Next we demonstrate the meaning of the cooriented, normal vector p.(e;) of H;. Note that
the vector p,.(e;) is a primitive vector in t*, because hyperplane arrangements are smooth. By
using Proposition 3.6, the circle subgroup which fixes M; is induced by the it coordinate circle S;
in T™. Because p.(e;) # 0 in t” (see Remark 2.5), the induced subgroup S;/K(C T™/K) is the
circle subgroup 7; in 7™ and can be obtained by the exponent of p.(e;) € t*. In other words, such
circle subgroup can be determined by the vector p.(e;) € t" up to sign. Moreover, it is easy to
check that the circle subgroup 7T; acts on the normal bundle v; of M; and this action is induced by
the right scaler multiplications on fibres, where fibers are isomorphic to H = C & C. Namely, two
choices of signs of p.(e;) € t" correspond to two orientations of v; (we often call the orientation
of v; an omni-orientation of M;, also see [HaMa]). In summary, we have the following corollary
as the geometric meaning of the weighted, cooriented, normal vector p.(e;) of H;.

COROLLARY 3.7. Let p.(e;) be the weighted, cooriented, normal vector of H;. Then, the
circle subgroup which fizes the characteristic submanifold M; such that V5 (M;) = H; is given the
following subgroup:

T, = {exprp.(e;) | r € R}
foralli=1, ..., m.

Furthermore, two signs of p.«(e;) correspond to two orientations of the normal bundle v; of
M;.

3.4. Some remarks on smooth hyperplane arrangements. In closing this section, we
give some remarks about smooth hyperplane arrangements. Let Hg be a smooth weighted, coori-
ented affine hyperplane arrangement. Then, by definition, we may put

Ha ={Hi, ..., Hp}
and
Hy = {z € ()" | (@, p.(e0)) = —(@ e},
such that
(pe(€i), -y palei))z =14



if {p«(es,), ..., p«(e;, )} is linearly independent. This condition is equivalent to the following
condition:

(3-3) det(p«(ei,) -~ pu(ei,)) = £1,
where (p.(e;,) - p«(e;,)) is the n x n-integer matrix whose column vectors consist of p.(e;)’s.
Because Hz is also simple, we have that for all ¢ € [m] there exists {i1,...,i,} C [m], where

[m] ={1,...,m}, such that
ie{i1,... in}
and
M H,, = {p} C (7).

By changing the order of hyperplanes, we may regard N, H; = {p}. Let p.(e;) = v; € t*. Then,
there exists the linear isomorphism f, : t" — t" such that

f*(vl) = (0,...,0,1,0,...,0) =x; €,
ie, {fe(v1),..., fu(vy)} is the standard basis of t*. By the definition of H; and p € H; for all

1,...,n, we have

(f) 7 w)xi) = (o, £ (x2)) = (p,vi) = — (@, i)

for all i = 1,...,n, where f* : (t")* — (¢")* is the induced dual isomorphism of f,.. Therefore,
we can easily check that there exists an affine (parallel) isomorphism A : (t*)* — (")* such that
A(p) is the origin of (t")* and

A(H,) = {z € ()" | (e.x,) = O},

for i = 1,...,n. Because x; is the standard basis of ", we may regard A(H;) as the following
linear subspace in (t")*:

) ={(@1, .., 2i-1,0,Tiy1,...,2n) € (t")* | x; € (t1)* ~R}.

Therefore, up to affine isomorphism on (t*)*, we may regard first n hyperplanes in Hgz as

()1, - ()5
In this case, by the condition (3.3), if there is the hyperplane H, 1 € Hg such that H, is
not parallel to any (t")F for i = 1,...,n, then H,; is given by the following hyperplane:

Hppr={z € (t")" [ (z, px(ens1)) = (@, €nt1)}
such that (@, e, 1) # 0 and
pelent1) = (£1,...,£1) e £

Again by using (3.3), we have that if H,,11 and H, 1o are not parallel to any (t*) then H,; and
H, 5 are parallel, i.e.,

ps(€nt1) = ps(€ni2).

Therefore, if H € Hg is not parallel to any (")} then we may take
P*(en+1> = (]—7 sy 1) et’

up to linear isomorphism (just changing the sign of some coordinates, i.e., the coorientations of
hyperplanes).

Now, we call two hyperplane arrangements H; and Hs in R™ are affine equivalent if there
exists an affine isomorphism A : R™ — R"™ which preserves all hyperplanes, i.e., the cardinalities of
H1 and Hs are the same, and for all HZ-(U € H; there exists H](-Q) € Ho such that A(Hi(l)) = HJ(-Q).

9



By using the arguments above, a smooth hyperplane arrangement Hz can be divided into the
following subsets up to affine equivalence:

Ha(l) = {Hiyi,...,Him };
Ha(n) = {HTL,17 LY Hn,mn};
H&(n"’_ 1) = {Hn+1,1u~~~7Hn+1,mn+1};

where H5(4) is the set of hyperplanes which are parallel to (") for i = 1,...,n and Ha(n+1) is
the set of hyperplanes whose p,(e;) coincides with (1,...,1) € t*. Here, >.1" | m; + my41 = m,
m; >0fori=1,...,n, and my4+1 > 0.

Therefore, we have established the following proposition (also see Figures 2 and 3):

ProOPOSITION 3.8. Let Hg be a smooth hyperplane arrangement. Then, there exists integers
My, ...,mp(> 0) and mu41(> 0) such that Hg is combinatorially equivalent to the following
hyperplane arrangement:

H(mlu ceey M, mn+1)7
where H(my, ..., my, mpy1) s a simple hyperplane arrangement such that the cardinality of hy-
perplanes which is parallel to (t")F ism; fori=1, ..., n, and that of hyperplanes whose p.(e;)

coincides with (1,...,1) is mp41.
Furthermore, the above equivalence can be taken from the affine equivalence, for any fized
affine structure on H(ma, ..., My, Mpy1).

X1+ X2

FIGURE 2. Smooth hyperplane arrangements. The left arrangement is the ar-
rangement represented by #H(4,5,0) and the right one is H(2, 1, 3).

/<X1_X2 P

X1+ Xo 2 X1+ X2

A¢

F1GURE 3. Non-smooth hyperplane arrangements. Both of the hyperplanes do
not satisfy the condition (3.3) around the vertex p; therefore, both of them are
not smooth (but simple). Note that bounded regions of smooth hyperplane ar-
rangements in R? are equilateral triangles or quadrangle only.
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Here, in Proposition 3.8, we call two hyperplanes 1 and Hy are combinatorially equivalent if
their intersection posets are equivalent.

4. Equivalence relations on toric hyperK&ahler manifolds

We next define the equivalence relations on toric hyperKéhler manifolds and the hyperplane
arrangements, and prove that these equivalence relations are compatible (see Theorem 4.4) in this
section.

Before we define equivalence relations, we recall the following notations. For two G-spaces X
and Y, amap f: X — Y is called a weak G-equivariant map if there is a group isomorphism
¢ : G — G such that f(z-t) = f(z) - ¢(t) for all t € G and = € X; if this isomorphism ¢ is the
identity map then f is called a G-equivariant map.

4.1. Equivalence relations of toric hyperKéhler manifolds. Let (M,,T", uz) and
(Mg,T",uB) be two toric hyperKéhler manifolds with hyperKé&hler moment maps, where we
put o € €, 8 € € and their lifts a € ], B € 3, respectively. Here, dim7} — dim K} = n =
dlng — dll’IlKQ (dll’IlTl =mi and lelTQ = mg).

DEFINITION 4.1. We say a weakly T"-equivariantly isometric map f : M, — Mg a weak
hyperhamiltonian T"-isometry or weak T"-isomorphism simply, if a weak T™-equivariant diffeo-
morphism f preserves the hyperKéahler structures and satisfies that

Ha = Proc © Mz o f,

that is, the following diagram is commute:

(4.1) My —% () @ ()%

lf Tg@i@c
1

Ms —= (") @ ()¢

where @i @ (87)* @ (12)* = (1")" @ ()" is the induced isomorphism from ¢ : T" — T™ such
that f(xz-t) = f(x)-p(t). If ¢ is the identity map, then f is called a hyperhamiltonian T™-isometry
or T™-isomorphism simply.

If there is a (weak) T"-isomorphism between two triples

(MouTnnU/a) and (MﬂaTnnU/B)v
then we say that such triples are (weakly) hyperhamiltonian T™-isometric or (weakly) T™-isomorphic.

REMARK 4.2. In the paper [Bi], if the above ¢ is identity then M, and Mg are called iso-
morphic as tri-Hamiltonian hyperKdhler T-manifolds.

In this paper, the symbol (M, T™, uz) = (Ms, T™, ,ug) (resp. (My, T", pa) = (M57T”7/1§))
represents that (My,T", pg) and (Mg, T™, [LE) are weakly T"-isomorphic (resp. T™-isomorphic).
4.2. Equivalence relations of hyperplane arrangements. In this subsection, we intro-

duce the equivalence relations of weighted, cooriented, smooth hyperplane arrangements. Let
Ha = {Hfl), ce H,(ﬁl)} and Hz = {Hf), ce H,(iz)} be such hyperplane arrangements consist of

(4.2) HY = {o e )" | (@,0f") + @ =0},
(43) H? = {z € ()" | {a,0?) +5; =0},
where vgl) et" (i=1, ..., m) and v§ e n (j =1, ..., ma) are weighted, cooriented vectors,

a;, Bj € R represent positions of hyperplanes, respectively
Now we may introduce the equivalence relation on the weighted, cooriented, smooth hy-
perplane arrangements. Two hyperplane arrangements Hg and HE are called weakly (linear)
equivalent if there exists a linear isomorphism ¢* : (t*)* — (")*, induced from an isomorphism
11



@ T™ — T, such that ¢* sends Hgz to HE’ i.e., m; = my = m and there is a permutation
o : [m] — [m] such that
- 2
p*(HV) = Hz(f(Z)
for all ¢ € [m]; in this paper, the symbol [m] for some m € N represents the finite set {1,...,m},
and we denote such hyperplane arrangements by Hg =, 7—[[;. Moreover, if we can take such ¢* as
the identity map, then Hg and HB are said to be equivalent, and we denote them by Hz = HE'

REMARK 4.3. As we mentioned in Section 3.4, there are other equivalence relations of hyper-
plane arrangements, i.e., affine equivalence and combinatorially equivalence. One can easily show
that there are the following hierarchy for these equivalence relations:

weak equivalence | C | affine equivalence |C | combinatorially equivalence

4.3. Relations between equivalent toric hyperKéahler manifolds and their hyper-
plane arrangements. The goal of this subsection is to prove the following theorem:

THEOREM 4.4. Let (Mo, T™, ug), (MB,T”,,LLE) be two toric hyperKdhler manifolds, and Hg,
HE be their hyperplane arrangements, respectively. Then, the following two statements are equiv-
alent:

(1) (MCHTnvMa) =w (Mﬁ,Tn,,U/B),

We first show the direction (1) = (2) in Theorem 4.4.

PROPOSITION 4.5. Under the hypothesis of Theorem 4.4, if (M, T", pa) =w (Mg,T",,uB),
then Hg = 7{3.

PrROOF. Assume (My,T", uz) =w (Mg,T",pE). By definition, there exists a weak T"-

isomorphism f : M, — Mgz such that the following diagram commutes (see Section 3.3 and
4.1):

Ma4f>M5

i% lw

where ¢* is induced from the isomorphism ¢ : T™ — T™ such that f(z -t) = f(z) - ¢(t). Be-
cause f preserves the characteristic submanifolds, we have that the cardinality of characteristic
submanifolds of M, is the same with that of Mg, say m. Then, we can define the permutation

o : [m] = [m] induced by f, i.e., if f(Mi(l)) = M]@) for characteristic submanifolds Mi(l) C M,
and M;z) C Mg (4,7 € [m]), then we define o (i) = j. Using the geometric meaning of hyperplanes
mentioned in Section 3.3, we have that
Hi(l) = \I/a(Mi(l)) (by the relation (3.2))

=p*o¥z0 f(Mi(l)) (by the commutativity of the above diagram)

=¢p*o \I/B(Mﬁz)) (by the definition of o)

= p* (H((f(z)) (by the relation (3.2)),
for all ¢ € [m]. This implies that ¢ : (t")* — (t")" is a linear map which gives Ha =, H3. O

The following lemma is the key lemma to prove Theorem 4.4:

LEMMA 4.6. Let Hg and HE be smooth hyperplane arrangements induced from toric hy-
perKdihler manifolds (M, T", uz) and (MBaan“B); respectively. Assume a linear isomorphism
12



©* L (1) = (), induced from an isomorphism ¢ : T™ — T™, gives HE =w Hg. Then, there
exists the lift ©* such that the following diagram commutes:

*

(’Ln)* i> (tm)*

and
¢ (B) = a,
where pi, p5 : (£)* — (™)* are the injective representations defined in (2.5) for My, Mg, respec-

tively.
Furthermore, the above ©* can be represented as a following matriz:

e 0 - 0
0 e -+ 0
. ) -2
0 0 - €,

with respect to the basis 0; (i € [m]) of (t™)*, where ¢, = £1 for i € [m] and ¥ is the m x m
matriz induced from the permutation o : [m] — [m].

PROOF. Assume "Hg =w Hg. Then, by definition, there exists a linear isomorphism ¢* :
(t")* — (t")* such that

w2y _ (D)

for all j € [m] and some permutation o : [m] — [m], where H(gl(;) and HJ@) are hyperplanes in Hg
and HE’ respectively. Here, m is the cardinalities of Hz and 7—[3. Then, we have the following
relations:

o (HY) = o*({z € ()" | (ps(x) + B, e;) = 0})

! T\ * * ~
- Hi(i‘) ={y e (t")" | (pi(y) + &, e,()) = 0}.

Hence, for x € H ](2), we have the following equations:
(4.4) (pa(z),e5) = —(B,e;);

<pT © Qﬁ* (l‘), eo’(j)> = —<(/)é\7 ea(j)>'
One can easily show that the following two statements are equivalent:

d <B7 ej> = O;
. H]@) is a linear subspace in (t")*.

This implies that (B, e;) = 0 if and only if (@, e,(;)) = 0. Therefore, because (@, e,;)) and (B, e;)
are real numbers, there exists ¢’ € R\ {0} such that

(45) <a7 ea(j)> = €;<Bvej>'
Using the equations (4.4) and (4.5) above, it is easy to check that, for all z € H](.Q),
(z, (p2)(€}€;)) = (2,01 0 (p1)x(€0(5))):

where @, : t" — t" is the dual linear isomorphism of ¢*. Therefore, by using the fact that H j(_z)
is a codimension one hyperplane, we can easily show that two non-zero vectors (pz).(€}e;) and
©40(p1)«(€s(;)) lie in the same 1-dimensional linear subspace in t". Hence, there exists e; € R\ {0}
such that

(4.6) €j(p2)«(€j) = wx 0 (p1)«(€0(;))-
13



Define the linear map @, : t™ — t™ as the following (m x m)-square matrix with respect to the
standard basis {eq, ..., en}:

€1 0 0
0 €y v-- 0 .271
0 0 €m

where the (m x m)-matrix ¥~! is the inverse of the matrix ¥ induced from the permutation
o : [m] — [m]. Using (4.6), we have that the linear map @, satisfies that
Px 0 (p1)s = (P2)s © Pss

i.e., the following diagram is commute:

o (p2)+ ¢

N
(p1)«

tn < tm
We claim €¢; = 1 for all j =1, ..., m. Because H; is a smooth hyperplane arrangements,
for all j € [m], there exists I; C [m] such that |I;| = n (i.e., the cardinality of I, is n), j € I,
Niel, Hi(Q) # () and

{(p2)«(e) | i € I;}
spans t7 (also see Section 3.4). Therefore, because ¢* gives weak equivalence between two smooth
hyperplane arrangements HE and Hg, the vectors

{(p1)«(esqy) | i € I;}

also spans t. By the definition of ¢, and the commutativity of the diagram above, we have that

@0 (p1)x(€s) = (p2)x 0 Pules(i))
= (p2)«(cie;).
Because the isomorphism ¢, : t" — t" is induced from an isomorphism ¢ : 7" — 1", the
restriction of ¢, to t; induces the isomorphism between t; and ;. This implies that ¢; = %1 for

all i € I;. Because this satisfies for all I; (j € [m]), we have ¢; = £1 for all j =1, ..., m. By
taking the dual of the above homomorphisms, it is easy to check the statement of Lemma 4.6. [J

Now we may prove the direction (2) = (1) in Theorem 4.4.

PROPOSITION 4.7. Under the hypothesis of Theorem 4.4, if Ha =w 7-[3, then (Mo, T™, uz) =w
(Mg, T", nz)-

PROOF. Assume Hg =, H3 and this is given by ¢* : (t")* — (t")". In this case, by using the
arguments in Section 3.3, the cardinality of characteristic submanifolds of M, and that of Mg are
the same, say m. Therefore, it also follows from Proposition 3.6 that M, and My are defined by
the hyperKahler quotient of torus actions on H™, i.e., there exist the same dimensional subtori
K1, Ky C T™ such that

Mo = pp(a,0)/Ky,
Mg L (8,0)/Ka,

where K, s = 1,2, can be defined by the exponent of Lie algebra ¢; whose dual is € = (™)*/Im p?.
By using Lemma 4.6, there exists the lift ¢* : (t™)* — (™)* of ¢* such that

¢ (B) = a,
and we also have its matrix representation with respect to the basis 9; (i € [m]) of (t™)* such as

the matrix in Lemma 4.6. We denote this matrix representation by X € O(m).
14



Let 4 = pr @ pc be the hyperKéhler moment map of the standard T™-action on H™ (see
Section 2.1). Then, by the definition of p, it is easy to check that the following diagram is
commutative:

H — (£7) @ ()
T‘I’X ﬁiemi
H™ — s (7)) @ ()%

where Ppoc = 0" © 9r(= X @ X) and @x : H™ — H™ is defined by the following matrix Xz in
Sp(m):

hi O 0
0 ho 0
. g
0 O hom
such that
h;=1 ifeg=1
hz' = k lf €; = 71,

and Yg' is the (m x m)-matrix induced by the permutation ¢~ : [m] — [m] acting on H™.

Here, k is the basis of H, i.e., {1,i,j,k}, and Xg acts on H™ from the right hand side (note
that X acts on (t™)* @ (t")¢ from the left hand side). Because ®x : H™ — H™ is represented
by Xy € Sp(m) as above and rk = kr~! for all r € S!, we see that ®x gives the weak T™-
isomorphism on (H™,T™, 1) such that ®x((z,w)t) = ®x(z,w)(t), where ¢ : T™ — T™ is the
induced isomorphism from ¢* : (£™)* — (™)* (also see @, in the proof of Lemma 4.6).

Because CE*(B\) = @, one can easily show that

O x (1 (0, 0)) = pp (8,0).

Recall that, in the first paragraph of this proof, we define Ky, s = 1,2, as the induced torus from
£ = (t")* /Imp?. Because ¢* is a lift of ¢*, i.e., ©* o p5 = pi o ¢*, this lift ¢* induces the natural
isomorphism between €5 and £]. This implies that

P(K1) = Ko.

Therefore, ®x induces the weak T"-equivariant diffeomorphism between M, = up 5 (a,0)/K;
and Mg = M;IIK(B,O) /Ko; moreover, ®x preserves their hyperKéhler structures because Xy €
Sp(m). Note that @ : T™ — T™ induces ¢/K : T /K1, — T™/K, and ¢/K coincides with
@ :T" — T", where @ is the isomorphism which induces ¢* : (£*)* — (t*)* in the first paragraph
(also see the definition of Hg =,, Ho in Section 4.2). Moreover, by using {5*(3) = & and the
definitions of the hyperKéahler moment maps ug and 1 (see Section 2.1.4), we have that the
induced diffeomorphism from ®x also preserves hyperKéahler moment maps pusz and 1 This
establishes that (Ma, T", pg) =w (Mg, T", j15). O

By Propositions 4.5 and 4.7, we have Theorem 4.4.

5. Equivariant cohomology of toric hyperKahler manifolds

Using the combinatorial data of the smooth hyperplane arrangement induced from the toric
hyperKéhler manifold (M,T), we can describe the ring structure of the equivariant cohomology
HY (M) of (M,T), i.e., the Konno’s theorem (see Theorem 5.4). In this section, we recall this
important fact of the equivariant cohomology of toric hyperKéahler manifolds.
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5.1. Notations and H}.(M) as the H*(BT)-algebra. We first recall the H*(BT)-algebra
structure of Hy(M). In order to define H3 (M), we need to take a space ET xp M called the
Borel construction (or homotopy quotient). This space is the orbit space of the diagonal T-action
on ET x M, where ET is a total space of the universal principal T-bundle. Because T acts freely
on the ET-factor in ET x M, the Borel construction is regarded as the fibre bundle over the
classifying space BT = ET/T with fibre M, i.e., there is the following fibration:

(5.1) M L5 BT xo M = BT,

where 7 is the projection and j is the injection to the fixed fibre. We call the ordinary cohomology
H*(ET xp M) the equivariant cohomology of (M,T), and denote it by H}(M). By using the
fibration (5.1), we have the following induced homomorphism:

7 H*(BT) — HE:(M).

Hence, the equivariant cohomology H3 (M) can be regarded as not only the ring but also the
H*(BT)-algebra via 7*.

REMARK 5.1. In this paper, as we mentioned in Section 1, if we do not mention the coefficient
of the cohomology, it means that we take the integer Z as the coefficient ring.

The following proposition is well-known (see e.g. [MiTo, Chapter 3]).

PROPOSITION 5.2. If dimT = n, the cohomology ring H*(BT;R) is isomorphic to the poly-
nomial ring, i.e.,

H*(BT;R) ~ R[z1,.-.,%x]
for R=17 or R, wheredegz; =2 (i=1, ..., n).

By using the Serre spectral sequence and Proposition 5.2, we also have the following well-
known proposition (see e.g. [MiTo, Chapter 3]).

PROPOSITION 5.3. If H¥(M;R) =0 and M is simply connected, then the induced homomor-
phism 7 is injective and the induced homomorphism j* : Hx(M;R) — H*(M;R) is surjective
for R =27 orR.

In closing this subsection, we recall the equivalence relations on equivariant cohomologies.
Let (M,T) and (N,T) be two manifolds with T-actions. If there exists ring isomorphisms f7 :
HY(M) — H%(N) and ¢* : H*(BT) — H*(BT) such that the following diagram commutes:

H*(BT) —> Hx(M)

\LSO* lf;

H*(BT) —2~ Hi(N)

then we call Hy(M) and Hi(N) are weakly H*(BT)-algebra isomorphic, and denote them by
HY (M) ~,, Hy(N). If the above ¢* is the identity, then we call H}.(M) and Hy.(N) are H*(BT)-
algebra isomorphic, and denote them by H7(M) ~ H.(N).

5.2. Equivariant cohomology of toric hyperKéahler manifolds. In this subsection, we
review the ring structure of HJ(M,) of toric hyperKahler manifold (M,,T) (see e.g. [Ko3,
HaHo, HaPr, Pr] for detail).

First, we introduce the ring generators of H}(M,) which are defined by the 15 Chern classes
of line bundles along the characteristic submanifolds. Let M;, i =1, ..., m, be the characteristic
submanifold of (M,,T) (see Section 3.3). The symbol v; represents its normal bundle in M,,.
Then we may regard the total space E(v;) of v; as follows:

(5.2) E(v;) = N; x g Hj,
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by using Proposition 3.6. Here, the 1-dimensional H-vector space H;(~ H ~ R*) is the represen-
tation space of K by the following representation:

(53) 23 K —L> A i) Si;

where p; is the projection to the i*" coordinate subgroup S; ~ S of T™. Thus, we may regard
the normal bundle v; as the pull-back bundle induced from the following diagram:

(5.4) E(v;)) —— uI_fK(oz, 0) xx H;

| |

M; —— M, = pyhe(,0)/K

where the bottom M; — M, is the inclusion.

Now we may regard the product manifold py;% (a,0) x H; as the T™-manifold, i.e., T™ acts
on the 37 (v, 0)-factor naturally and on the Hj-factor by the representation p; (see (5.3)). Then,
the subgroup K(C T™) acts on ujr (e, 0) x H; freely, because K acts on the ;5 (a, 0)-factor
freely. Therefore, the induced 7™ = 7™ / K-action on pj5 (a,0) x x H; is well-defined. Similarly,
we can define T™-action on FE(v;). Thus, by taking the Borel construction of each factor in (5.4),
the following commutative diagram is induced:

(5.5) ET" xqpn E(v;) — ET™ Xpn py (o, 0) x i H;
ETn XT'!L MZ ET’FL XTn Ma

Because H = C @ C (see Section 2.1), the bundle in (5.5) splits into the following line bundles:
ET"™ xru (g (0, 0) X Hi) = BT™ xo (g (0, 0) x i (C; ® ),

where C; is the complex 1-dimensional representation space with K-representation via ¢; defined
in (5.3), and C; is isomorphic to C; with reversed orientation. Let LL; be the following line bundle
over ET™ xpn M,:

(5.6) E(L;) = ET™ x1n (5 (o, 0) x g Cy),
and let 7; be the 15° Chern class of L, i.e.,
(5.7) 7 = c1(Ly) € HE(My).

The following Konno’s theorem says that the set of such 1%* Chern classes {71,...,7n} gives the
canonical generator of Hi(M,):

THEOREM 5.4 (Konno). Let (M, T) be a toric hyperKdihler manifold and H = {Hq, ..., Hpy}
its hyperplane arrangement. Then, the equivariant cohomology H}.(M) satisfies the following
isomorphism:

H}(M;Z) ~Zlr1,...,mm]/T
where I is the ideal in the polynomial ring Z[r1, ..., Tm] generated by
[
iel
for all T C [m] such that N;erH; = 0.

Due to the geometric meaning of hyperplanes mentioned in Section 3.3 and the definition of 7;
in (5.7), we have the following correspondence among the characteristic submanifolds M; C M,,
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the hyperplanes H; € Hg and the canonical generators 7, € H%(M,):

€ B0

We finish this section by the following example.

EXAMPLE 5.5. By Example 2.4, the cotangent bundle T*CP"™ over CP"™ is a toric hyperKahler
manifold. Using Example 3.4, we may put the hyperplane arrangement of T*CP" as H =
{H1,...,Hnt1}. Again by Example 3.4, if I C [n + 1] satisfies that N;e; H; = 0 then I = [n + 1].
Therefore, by using Theorem 5.4, the equivariant cohomology ring of T*CP™ is given by

H;(T*CPH) 22[7'17 cee Tn+1]/<7'1"'7'n+1>,

where deg 7; = 2.
In this case, characteristic submanifolds are given by T*CP;, where CP; = CP"~! is the
complex projective space in CP™ whose i*"-projective coordinate is 0.

6. Hyperplane arrangements induced from the equivariant cohomology

As we have seen in Section 3 and 4, the hyperplane arrangements induced from toric hy-
perKéhler manifolds are defined in (£*)*. One of the idea to prove our main theorem, Theorem
1.1, is to translate these hyperplane arrangements into the equivariant cohomology H?(BT;R).
In this section, we define the hyperplane arrangement induced from the equivariant cohomology
(with fixed generators).

Let (M4, T) be a toric hyperKahler manifold. Then, by using the homotopy exact sequence
for the fibration (5.1), i.e.,

M, - ET xp M, ™ BT,

we have the fundamental group m1 (ET X7 M,) is trivial; therefore, Hy(ET X7 M,) = {0}. Hence,
by using the universal coefficient theorem for cohomology, we have

(6.1) H2(M,;Z) ~ Hom(Ho(ET x7 M,), 7).
Here, the homology H.(ET x1 M,) is called the equivariant homology, and often denoted by
HI (M)

Because of Proposition 5.3 and Theorem 5.4, we have that the following induced exact sequence
from the fibration (5.1):

(6.2) {0} — H*(BT;2) = H3(Ma;Z) 2 H?(Ma;Z) — {0}.
Now we may take the canonical generator in H2(My;Z) as {71, ..., Tm} by virtue of Theorem 5.4.

With the method similar to that demonstrated by Masuda in the proof of [Ma2, Proposition 2.2],
it is easy to show that the homomorphism 7* in (6.2) can be expressed as that in the following
proposition:

PROPOSITION 6.1. To each i € [m], there exists a unique element v; € Hy(BT;Z) such that
m
T (x) = Z<xvvi>HTi
i=1

for any x € H*(BT;Z).

Here, in Proposition 6.1, the symbol (,)y represents the pairing of the cohomology and ho-
mology defined by H?(BT) ~ Hom(Hz(BT);Z) (see (6.1) with M, = {*}). We also note that
Theorem 5.4 and Proposition 6.1 imply that the H*(BT)-algebra structure on Hi.(M,).
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Taking the tensor product H}.(M,) ®z R, the sequence (6.2) induces the following exact
sequence:

.
TR

(6.3) (0} — H(BT;R) ™ H2(Ma;R) 25 H2(M;R) —s {0},

where 7 in (6.3) is induced by 7* ® id : H*(BT) ®z R — H5(M,) ®z R. Using Proposition 6.1,
the injective homomorphism 73 can be described by the following formula:

m

(6.4) mR(x) = Z<Jf, Vi) H T,

i=1
where z € H?*(BT;R), v; € Hy(BT;Z) C Ho(BT;R) and 7; € H2(M,;Z) C H2(Mgy; R).
Take an element @ € H2(M,;R). Then, we define H? as follows:

MO = {H{9,. .. HE}

such that each hyperplane H{? C H*(BT;R),i=1, ..., m, is defined by
H{? = {x € H*(BT;R) | (m}(x) +a@,u;) g = 0}.
Here, u;, i =1, ..., m, is the linear basis in HI (M;Z)(C HI (M;R)) such that
(1 ifi=
(65) <Tj,ui>H—{ 0 le%]

where the paring (,)# is defined by (6.1). We call HZ? a hyperplane arrangement of H}.(M,).
We finish this section by the following two remarks.

REMARK 6.2. The hyperplane arrangement of equivariant cohomology H-? is determined by
the triple (HZ(M,),7*,a) for @ € HZ(M;R) as well as the hyperplane arrangement of toric
hyperKéhler manifold Hg is determined by the triple (M,,T", ugs) (see Section 2.2 and 3.3). So
we may think of the inclusion 7* : H?(BT) — HZ2(M) as an algebraic counterpart to the 7T-
action on M, and the fixed element @ € H2(M,;R) as that of the hyperKéihler moment map
Ua : My — (1) @ (") (also see [AtBo] and the equivariant symplectic form in [GuSt, Chapter

9]).

REMARK 6.3. Using Proposition 5.3, if H°% (M) = 0 then a simply connected T-manifold
(M, T) (not only toric hyperKéhler manifolds) satisfies all conditions mentioned as above. There-
fore, for more general class of T-manifolds, we can define a hyperplane arrangement of Hy (M) as
above.

7. Equivalence between two hyperplane arrangements in (t")* and H?(BT™;R)

Henceforth, we assume (M2" T™ 13) is a triple of 4n-dimensional toric hyperKihler manifold
M,, its T"-action and its hyperK&hler moment map pg, where v € £* is a non-zero element and
a € (t™)* is its lift (see Section 2). In this section, we prove that two hyperplane arrangements
induced from M, and the equivariant cohomology H;.(M,) are weak equivalent.

7.1. Equivalence of two exact sequences. We first recall the following two exact se-
quences defined in (2.5) and (6.3):

(7.1) [0} — () 25 (7)o — {0}
and
(7.2) (0} — H(BT;R) ™5 H2(MoR) 25 H2(Ma;R) —s {0}

In this subsection, we will define the following three natural isomorphisms:
Jr (1) — H*(BT™;R) (see Section 7.1.1);
Jr () — H2(M,;R)  (see Section 7.1.2);
Ji 8 — H*(M,;R) (see Section 7.1.4),
and prove the following proposition:
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PROPOSITION 7.1. The following diagram (7.3) is a commutative diagram.

* *

(7.3) 0——— ()" . (tm)* : e 0

iJ?Z iJ;L J/ch?
ot .

0 — H2(BT™R) —> H2(Ma;R) —=> H2(M.;R) — 0

Proposition 7.1 tells us that the two exact sequences (7.1) and (7.2) are equivalent.
7.1.1. Definition of the 1% isomorphism. We first define the 1°¢ isomorphism

(7.4) J: (1) — H*(BT™;R).
Let f € Hom(S!,T™). The homomorphism f can be denoted by

st L ™
(7.5) w w
to— (. o),

for some integers ¢y, ..., ¢,. Using this (7.5), we have the isomorphism Hom(S!,T") ~ Z".
Moreover, f induces the continuous map Bf : BS' — BT", and this map induces the homo-
morphism Bf, : Hy(BSY;Z) — Hy(BT";Z). We fix a generator k € Hy(BS';Z) ~ Z. Because
Ho(BT™;Z) ~ Z" ~ Hom(S', T™), the homomorphism defined as follow is the isomorphism:

Hom(S',T") =+ Hy(BT™;Z)
(7.6) w w
f — Bf.(k).

Because of (7.5), there exists the lift to the Lie algebra homomorphism f: R — t" such that
fry=(cr,...,cyr) for r € R, ie., we have the following commutative diagram

R——t"

L,

Sl — 17"

where two vertical maps are the exponential maps from Lie algebras to Lie groups. Because
(c1,...,¢y) € Z", the lift f preserve lattices, i.e., f(Z) C t}, where t§ ~ Z" is the lattice in t".
Hence, there is the following isomorphism:

(7.7) w w

o~

! f(1) = (c1y..05cn).

By the composition of two isomorphisms (7.6) and (7.7) as above, we can define the isomorphism

Hom(SY,T") —
—

Hy(BT™Z) —
Y w

~

Bf.(k) —  f(1).
Taking the tensor products with R, this isomorphism induces the following isomorphism:
(7.8) (Jn)s : Ho(BT™;R) — "

The isomorphism (7.4) is define by taking the dual of (Jp, ).
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7.1.2. Definition of the 2" isomorphisms. We next define the 2"¢ isomorphism
(7.9) JE (6™ — HE(M,;R)
as follows:
(") = Hi(Mo;R)

w w
J
0 Ti
where 9; is the dual basis in (t™)* (i = 1, ..., m) of the basis e; in t"* ~ R™ (see Remark

2.5), and 7; is the canonical generator of the equivariant cohomology H}(M,;Z) (see (5.7) and
Theorem 5.4); here, we may regard it as the basis of H%(M,;R).
Note that the isomorphism J7, in (7.9) is also defined by the dual of the following isomorphism:

HY (M R) ks g
w B w
u; — €;,

where u; is the basis which satisfies (6.5).

7.1.3. Preparation to define the 3" isomorphisms: the geometric interpretation of v;. In order
to define the 3@ isomorphisms, we recall the geometric meaning of the unique element v; €
Hy(BT;Z) C Hy(BT;R) in the following formulation (6.4) (also see Proposition 6.1);

mr(u) = Z(u, vi) T € HE(My;R),
i=1

for u € H*(BT;R). Namely, the purpose of Section 7.1.3 is to prove the following proposition.

PROPOSITION 7.2. LetT; be the circle subgroup in T™ appeared in Corollary 3.7, i.e., the circle
subgroup which fizes the characteristic submanifold M;. Let \,, : S* — T™ be the homomorphism
which corresponds to the unique element v; € Ho(BT;Z) in Proposition 6.1 via the inverse of
isomorphism (7.6). Then, the following relation holds:

Ao, (SY) = T;.

We note that the arguments we will use in Section 7.1.3 is almost similar to the proof of [Mal,
Lemma 1.10].

First, we recall the tangent spaces of fixed points of toric hyperK&hler manifolds (see [HaHo,
Section 3] for detail). Let p be a fixed point, i.e., p € ML, and M; C M, be the characteristic
submanifold (see Section 3.2) (i = 1,...,m). Put I(p) = {i | p € MT}. By the definitions of toric
hyperKéhler manifolds and their characteristic submanifolds (also see Proposition 3.6), we have
that the cardinality of I(p) is just n for all p € MI i.e., |I(p)| = n, and

{p} = MicrpM;.
Using (5.2), there exists the following decomposition:
(7.10) T,My= P vil = P Vi) @ V(—x),
i€I(p) i€I(p)

where V(x;) @ V(—x;) ~ C@® C ~ H, the representation y; : 7™ — S! is induced from the normal
representation of M; on p and —Y; is its orientation-reversing representation, i.e., —x;(t) = x;(t) 1.

Let us interpret the above x; € Hom(T™,S!) as the element in the (equivariant) cohomol-
ogy H?(BT™;Z) (see Proposition 7.4). Taking the dual of (7.6), we first define the following
isomorphism:

H*(BT™;7Z) —» Hom(T",S")
(7.11) w w
U — x“.

In order to prove Proposition 7.4, we prepare the following lemma:
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LEMMA 7.3. Let (Bx*)* : H*(BSY;Z) — H*(BT™;Z) be the induced representation. Then,
it satisfies that

(BX")" (k") =u
for the dual basis k* € H*(BSY;Z) of a basis k € Hy(BSY; 7).
PROOF. Let f € Hom(S',7™). Then, by definition, x* o f : S* — S* can be defined by the
following homomorphism:
X" o f(r) = B,

where r € S1. Because x* is the dual basis, by using the arguments demonstrated in Section 7.1.1
(in this case, n = 1), we have that

(u, Bfu(r))m = (5", (Bx" © f)«(K))n-
Because this equation holds for all f € Hom(S!,T™), we have the statement of this lemma. [

Let 1, be the inclusion ¢, : {p} — M, and ¢l be its induced inclusion ] : ET xp {p} —

ET xp M,. The inclusion LZ induces the following representation:

i Hp(Mo) — Hi({p}) = H* (BT).
Then, x; : T™ — S* in (7.10) can be translated into the element in the equivariant cohomology as
the following proposition:

PROPOSITION 7.4. For all i € I(p), x; = x»(™).

PRrROOF. The representation x; : T™ — St in (7.10) induces the continuous map Bx; : BT —
BS'. Now we may regard (by changing the sign of « if we need) the basis x* € H*(BSY;Z) as
the 15* Chern class of the canonical line bundle n:

E(n) = ES* x¢1 C — BS*,
where S acts on C by the scaler multiplication (rotated by one time only) , i.e.,
K* = c1(n).

Let ET xp V(x;) be the Borel construction of the representation space V(x;). Then we may
regard ET xp V(x;) — BT as the line bundle over BT and denote this line bundle as ;. It is
easy to see that «; is the pull-back of n along By; : BT — BS', i.e.,

ET xp V(xi) —= ES' xg1 C

SV

Bx:
BT —— > pgt.

Therefore, Bx}(k*) = Bxici(n) = c1(y). Hence, it follows from Lemma 7.3 that By} =
(Bx“*(#))*. Thus, together with the definition of J* in Section 7.1.1, we have

xi = x“0).

Hence, in order to complete the proof, i.e., to prove x; = XL;(T"'), it is sufficient to show that
Cl(’}/i) = L;(Ti).

Using (5.5) and (7.10), one can easily show that ; is the pull-back of L; (see (5.6)) along the
following inclusion:

1) ET xp {p} = ET xp M; = ET xp M,.
Because c;(IL;) = 7;, we have ¢;(7;) = ¢;,(7;). This establishes Proposition 7.4. O
Moreover, we have the following corollary.

COROLLARY 7.5. The set {u5(7;) | i € I(p)} is a basis of H*(BT;Z) for allp € M.
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PROOF. It is sufficient to show that {x; | i € I(p)} is a basis of Hom(7™, S') by using (7.11)
and Lemma 7.4. By the definition of the toric hyperKéhler manifold M,,, we see that T™ acts on
M, effectively. Hence, by using the differentiable slice theorem (see e.g. [Br, Kal), this action
induces an effective and linear T"-action on the tangent space T, M for every fixed point p € MT
in other wards, the induced T™-action on T, M ~ H" can be defined by an injective representation
to Sp(n). It follows that the representations {x; | ¢ € I(p)} which appeared in the decomposition
(7.10) of T,,M can be regarded as a basis of Hom(7™, S'). This establishes Corollary 7.5. O

Using the definition of L; (see (5.6)), we have that the restricted bundle L;|, to p € MT\M] is
the trivial line bundle over BT'. Therefore, it follows from Corollary 7.5 that we have the following
relations:

() — : T T
(7.12) L::(Tl) 0 }f pE MT\MZ

t(mi) #0 if pe M; .
The following lemma tells us the relation between ¢5(7;) € H*(BT) and v; € Hy(BT) in Proposi-
tion 6.1.

LEMMA 7.6. Let v; be the element appearing in Proposition 6.1. Then, the set {1;(7;) | i €
I(p)} € H*(BT;Z) is the dual basis of {v; | i € I(p)} C Ho(BT;Z).

PROOF. By using Proposition 6.1, we have the following equation:

m

©(ip (1) = D (en(mi), o) 1y

j=1
Using (7.12), the equation above implies the following equation:
o (ip(m) = Y {p(m), v uey(ry).
Jel(p)

Because ET xr {p} = BT 2y ET xp M =5 BT can be regarded as the identity map, the
induced map ¢, o 7* is the identity map. Therefore, we have

L;(Ti) = Z <L;(Ti),'[}j>HL;(Tj).
JEI(p)

By Corollary 7.5, there are no linear relations among ¢;(7;)’s. Therefore we have the following
equation:

(th(Ti),vi)m =0 if i #j
<L;(7‘i),1)j>H =1 ifi=j.
This establishes that the element ¢;(7;) is the dual basis of v; for all i € I(p). O

In order to prove Proposition 7.2, we prepare one more lemma:

LEMMA 7.7. Let x* € Hom(T,S') (resp. A\, € Hom(S!,T)) be the corresponding homomor-
phism to uw € H*(BT;Z) (resp. v € Ho(BT;Z)) via (7.11) (resp. (7.6)). Then
X" oA (r) = plwvin
for all v € S*.
PROOF. Let k* € H?*(BSY;Z) Cc H?*(BSR) be the dual basis of k € Ha(BSYZ) C
Hy(BSYR). Put (Bx“ o B« : Ho(BSY;R) — H.(BSY;R) the induced homomorphism by

x“oA, : St — S1. Because k € Ha(BS';Z) is a generator, we can put (Bx“oB\,).(k) = a(u,v)k
for some a(u,v) € Z. Using (7.6) and Lemma 7.3, we have

(wo)g = ((Bx")" (k") (BA)«(r)) i = (&7, Bxi © (BAy)« (k) 1
= (85 (Bx" 0 BAy)«()) i = (£%; a(u, v)R) g
= a(u,v).

23



It follows that
(Bx" o BA\y)«(K) = (u,v) g k.
Therefore, by using the isomorphism (7.6), (7.7) for n = 1, we have that
X 0 Ay (1) = rlwvda
for r € St O
Now we may prove Proposition 7.2.

PROOF OF PROPOSITION 7.2. Using Lemma 7.6 and 7.7, we have x»(™) o A, (r) = r for all
p € M¥ and r € S1. By Proposition 7.4, we also have y;o\,, (r) = r for all 7 € S*. It follows from
the decomposition (7.10) that \,,(S!) acts on the normal space of M; on each p € M effectively.
Therefore, one can easily show that the circle subgroup \,,(S') C T™ acts trivially on M;. Thus,
we have that \,,(S1) = T;. This establishes Proposition 7.2. O

7.1.4. Definition of the 3" isomorphisms. We finally define the 34 isomorphism
(7.13) T & — H*(M.;R),

and prove Proposition 7.1.
In order to do that, we first prove the following proposition:
PROPOSITION 7.8. The following diagram is a commutative diagram:

(7.14) )y —2 s (gm)

E P
H2(BT™R) > H2(M:R)
where p* is defined by (2.5) (or see (7.1)), m by (6.4), J¥ by (7.4) and J}, by (7.9).
In order to prove Proposition 7.8, we prepare the following lemma:
LEMMA 7.9. The following equation holds for alli =1, ..., m,
(Jn)s(vi) = pa(ei),
where v; is the unique element appearing in Proposition 6.1.

PROOF. Let \,, € Hom(S!,T) be the element which corresponds to v; € Ho(BT;Z) via the
isomorphism (7.6). By the definition of (.J,). in Section 7.1.1, we have that

(Jn)w(vi) = Ao, (1),

where XW : R — " is the lift of A,,. Therefore, it is enough to show that :\\m(l) = p«(e;).
Because e; € tJ', we have that p.(e;) € t§. Let A\, (e,) € Hom(S',T) be the element which

corresponds to p.(e;) € tj via the isomorphism (7.7), i.e., A\, (e,)(1) = p«(e;) for the lift XP*(ei) :
R — t". Hence, using Corollary 3.7 and Proposition 7.2, we have that

Moo (1) = {expro.(es) | 7 € RY = T = Ay, (S).
It follows that }\\p*(ei)(l) = p«(€;) = Xv(l) This establishes the statement of Lemma 7.9. O
Now we may prove prove Proposition 7.8.

PROOF OF PROPOSITION 7.8. Let x € (t*)*. Using the formula (6.4), we have the equation

T o (@) = D {5 (@), vidi
i=1
where v; € Hy(BT;Z) C Ho(BT;R) and 7; € H%(M;Z) C H%(M;R) (i = 1, ..., m). By the

definition of J;; in Section 7.1, we also have the equation

(Jn(@),vi) i = (@, (Jn)«(02)),
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where (J,)« @ Ha(BT;R) — t" is the isomorphism defined in (7.8). Note that, in the above
equation, the left (,)y is the pairing of the cohomology and homology and the right (,) is the
pairing of the dual Lie algebra and Lie algebra. Using the above two equations, we have

m

(7.15) 730 i (@) = 3 (@, (Ja)e(v) ai

i=1

On the other hand, the homomorphism p* : (t*)* — (£™)* can be denoted as follows:

(7.16) pr(z) = (p*(z),e:)0;

-

h
Il
_

|
.MS

©
Il
—

(z,p(€:))0; € (™),

where e; is the natural basis in t™ and 0; is its dual basis in (£™)*. Therefore, by the definition of
J% in Section 7.1.2 and (7.16), we have that

(7.17) Tmop (@) = Y (wpele))u
i=1
Using (7.15), (7.17) and Lemma 7.9, we have Proposition 7.8. O

Let us define the 3™ isomorphism Jj in (7.13). First, we regard the two homomorphisms in
(7.1) and (7.2) as the quotient homomorphism:

() =~ (7)) /Im(p*)
and
j : H7(M;R) — H?(M;R) ~ Hz.(M;R)/Im ().

Then, using Proposition 7.8, we get the well-defined isomorphism Jj : € — H?(M;R) as the
quotient homomorphism of the isomorphism J7, : (t™)* — HZ(M;R) defined by (7.9). This gives
the definition of the 3" isomorphism (7.13).

It is also easy to check Proposition 7.1 by using Proposition 7.8 and the definition of Jj.

7.2. Equivalence of two hyperplane arrangements. In this subsection, we prove that the
hyperplane arrangement Hg C (t*)* defined by (M, T", ug) is weak equivalent to the hyperplane
arrangement H:! C H?(BT;R) defined by the triple (H7(M,), 7*,a), where @ is the element in
H2(M,,) such that @ = J (). Namely, we prove the isomorphism J* : (t*)* — H?(BT;R)
defined in Section 7.1.1 preserves these two hyperplane arrangements.

We first recall two hyperplane arrangements (see Section 3 and Section 6). Using the top
exact sequence in (7.3), the hyperplane arrangement Hg = {H1, ..., Hy,} of (M, T™, ug) satisfies

Hi ={x e (t")" | (p"(x) +aei) =0},

where @ € (t™)* is a lift of the non-zero element a € ¢* and e; € t™ is the basis whose dual is
0; € (™)*. On the other hand, using the bottom exact sequence in (7.3), we have the hyperplane
arrangement Ho! = {H{?,... H} of (H;(M,),7*,a) for a(= J;, (@) € HZ(Mqy;R) as follows:

H{" = {y € H*(BT;R) | (m(y) + @, u;) = 0},

where u; € H] (M,;R) is the basis whose dual is tha canonical generator 7, € H%(M).
In order to prove the weak equivalence of two hyperplane arrangements, we remark the fol-
lowing.

REMARK 7.10. Using the following three facts: (Jp,)«(u;) = €; (see Section 7.1.2); p.(e;) # 0
(see Remark 3.1); and the commutativity of the dual of the diagram (7.3), we have (7g).(u;) # 0
for all i =1, ..., m. This gives that dim H;? =n — 1.

The following proposition tells us the equivalence of Hg and ng.
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PROPOSITION 7.11. Let Hgz = {H1,...,Hpy} be the hyperplane arrangement of (My, T™, ug)
and H = {H{,... HE} that of (Hj(My),7*,a), where @ = J},(@). Then, the isomorphism
Jr o (tY)* — H?(BT;R) satisfies that
Jn(Hi) = H*
foralli=1, ..., m.
In particular, we have that Hg induced from (Mo, T™, pg) and He? induced from (Hy(My), 7, @)
are weak equivalence (see Section 4.2).

PROOF. Let z € H; € Hg. Then, by definition, = satisfies (p*(x) + &, e;) = 0. Then, By using
the definition of J}, and, we have that J(x) € H?(BT};R) satisfies the following equations:

<7TROJ*( )+ a,u) g

(Jrop ( )+ J5(@),w;)g  (by the commutativity of (7.3))
= (p*(z) +a,(Jn)«(w;)) (by the definition of J})
= (() p*(z) + @, e) (by (Jm)«(us) = ;)

Therefore, J(H;) C H;?. Because J; is the isomorphism and dim H; = dim H;? = n — 1 (by
Remark 3.1 and 7.10), we have that

Jn(H;) = H*
foralli=1, ..., m. O

8. T"-equivariant cohomological rigidity
In this final section, we prove the following main theorem of this paper:

THEOREM 8.1. Let (M,, T, png) and (Mg, T, ,ug) be toric hyperKdahler manifolds with hy-
perKdhler moment maps. The following two statements are equivalent:
(1) (MaaTa Ma) =w (MﬁvTa ,LLE),
(2) there exists a weak H*(BT)-algebra isomorphism fr : Hy(My;Z) — Hy(Mg;Z) such
that f(a) =0,
where @ = Jy, (@) and b= I, (B) for the isomorphisms Jj;, : (£™)* — HZ(My;R) and J},, -
(tm2)* — H2(Mg;R) defined in Section 7.1.2.

Let (Ma,T", pia), (Mg, T", uz) be two toric hyperKahler manifolds, and M, ’Hﬁq be their
hyperplane arrangements induced from the equivariant cohomologies, respectively, Where a =
Jr, (@) and b = Jz,_(B). Here, My = pih(,0)/K; such that ppgx : H™ — (&) @ (&)%
and Mg = py5(8,0)/ Ky such that ppr : H™ — (£2)* @ (£2)5. By using Theorem 4.4 and
Proposition 7.11, in order to prove Theorem 8.1, it is enough to show the following two statements
are equivalent'

(1) Mt =0 HI":
(2) there eletb a weak H*(BT)-algebra isomorphism f3 : Hx(My;Z) — Hy(Mg;Z) such
that fr(a) = b.

8.1. Proof of (1) = (2). We first prove the following proposition:

ProrosiTION 8.2. If 'Heq =y %q then there exists a weak H*(BT)-algebra isomorphism
fi Hi(Mo; Z) — Hi(Mg; Z) such that fr(@ =b.

PROOF. Let * : H?*(BT) — H?*(BT) be an isomorphism such that ¢} gives H! =, %q
Then, we may put m as the cardinalities of HZ! and }qu. Due to Proposition 7.1, we may regard

two exact sequences appearing in Proposition 7.1 as the same sequences. Therefore, with the
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method similar to that demonstrated in the proof of Lemma 4.6, there exists the lift f7. such that
the following diagram commutes:

(7R

(8.1) H?(BT;R) — H2%(M,;R)
iwi lf%
HA(BT:R) "% 12.(My: R
and
fr(@ =5,

where m @ BT xp M, — BT and mp : ET xp Mg — BT are the projections of the Borel
constructions. Furthermore, the above f} can be represented as the following matrix:

e 0 - 0
0 € -+ 0
.. . Y
0 0 - 6

with respect to the canonical basis Ti(l) of H2(M,) and 7@ of HZ(Mpg) (i € [m]), where ¢; = 1
].

i
and X is the (m x m)-matrix induced from the permutation o : [m] — [m]. Namely, for the

canonical basis of H}.(M,) and H}.(Mg), we have
FHY) = emy

We claim that this f7} extends to the weak H*(BT)-algebra isomorphism. Because cpﬂ‘{(Hi(l)) =
Hf(z) for HV € M4 and H((f(z) € H:?, we have that the following two statements are equivalent
for I C [m]:

] ﬂz‘eIHi(l) =0
2
o No(yeonyHipy = 0.

Therefore, due to Theorem 5.4, the linear isomorphism f; : H2(M,) — H2(Mp) naturally extends
to the ring isomorphism

fr+ Hp(Mo) — Hp(Mpg).
Note that H*(BT) is the polynomial ring (see Proposition 5.2), i.e., there is no relations among
generators {x1, ..., ¥,} in H*(BT). Therefore, the linear isomorphism o* : H?(BT) — H?(BT)
also naturally extends to the ring isomorphism

©* : H*(BT) — H*(BT).

By using Proposition 6.1 and the commutativity of the diagram (8.1), it is easy to check that, for
every degree, the following diagram commutes:

H*(BT) —> H:(M,)

ls@* lf}

H*(BT) —2> H(Mg)

ie., fris a weak H*(BT)-algebra isomorphism. O
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8.2. Proof of (2) = (1). We next prove the converse of Proposition 8.2. Assume that
fr o Hip(M,) — H;(Mg) is a weak H*(BT)-algebra isomorphism such that f(@) = b. Let
7'1(1), ce T,%)} and {7'1(2), e ,7',533} be the canonical generators of Hy (M) and Hj(Mg), respec-
tively (say 7™ and 73 briefly).
Because Hiy(M,) ~ H}(Mg), we have that mq = mg = m. The goal of this final subsection
is to prove the following proposition:

PROPOSITION 8.3. If there exists a weak H*(BT)-algebra isomorphism f3 : H3(Mu;Z) —
H}(Mg;Z) such that f7(a) = b, then HZ' =, H".

In order to prove Proposition 8.3, the most part of this subsection is devoted to the proof of
the following key lemma:

LEMMA 8.4. For any weak H*(BT)-algebra isomorphism f7. : H3(My) — Hiy(Mg) such that
fr(a) = b, there exists a weak H*(BT)-algebra isomorphism g : Hy(My) — H3(Mpg) such that
gr(a) = b and g7 preserves the canonical generators up to sign, i.e., there exists a permutation
o:[m] = [m] and ¢; = £1 such that

gr(rV) = ami),

for alli € Im].

In order to prove this lemma, we prepare some notations and facts (also see [MaZ2]).
Let MT be the set of T-fixed points in M,. Because p € M1 can be represented by

{p} = m?:lMij

for some characteristic submanifolds M;, (j =1, ..., n, where 4n = dim M,,), the fixed point set
MY consists of finitely many points.
For & € H%(M,), we denote its restriction to p € MI by &, ie,

Elp = 1,(6) € Hr({p}) = H*(BT),

where ¢y, is the induced homomorphism from the natural projection ¢, : {p} = M,. We define the
set

Z(¢) =={pe Ml | ¢, =0}

We call the cardinality of Z(&) the zero-length of &, denote it |Z(€)|. The following proposition
tells us that the zero-length |Z(€)| is invariant under an algebra isomorphism.

PROPOSITION 8.5. Let fr : Hy(My) — H}(Mg) be a weak H*(BT)-algebra isomorphism.
Then, the following equation holds for all & € H}(M,):

12| = 12(fr(©))]-

PROOF. Let S = H*(BT) \ {0} and let S~'H%(M) denote the localized ring of H;(M) by
S, ie.,

S~UHA(M) = {2 | e Hi(M), s S}/

where

1 T2

— ~ = <= (r189 —res1)t =0 for some t € S.

S1 52
Due to Theorem 5.4 and Proposition 6.1, Hy(M,;Z) is free as a module over H*(BT';Z). Hence,
because of the localization theorem in equivariant cohomology (see [Hs, p.40]), the natural map

Hy(My) — ST Hi (M) ~ ST HR (ML) = €D S~ 'Hi({p})
peEMT
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is injective (also see [HaPr, Theorem 2.5]), where the isomorphism appearing in the above maps
is induced from the inclusion map from M7 to M,. Therefore, we may regard an element ¢ €
H%(M,) as an element in S~'H2%(M,,). Then, the annihilator

Amn(¢) = {n € ST H}(Ma) [né =0} ¢ @ S~ Hi({p})
peEMT

of ¢ is nothing but the sum of S™*H;({p}) over p with &|, = 0, because 5|, = 0 if |, # 0.
Therefore, Ann(¢) is a free S~'H*(BT)-module of rank |Z(¢)|. Since f is a weak H*(BT)-
algebra isomorphism, we have

Ann(§) ~ Ann(f7(€))
as a free ST'H*(BT)-module. This implies that |Z ()| = |Z(f5(€))|- =

Put 7 and 7 be the canonical generators in H:(M,) and H:(Mg), respectively. Let
76(5) C T®), for s = 1,2, be the canonical generators whose zero-length are zero. Let Tl(s) be the

set in 7(®) \76(5) with largest zero-length, and let 7'2(5) be the set in 7(*) \76(5) second largest
zero-length, and so on.

REMARK 8.6. In toric manifolds, all of canonical generators satisfy |Z(r;)| # 0, i.e., TO(S) =0.
However, in toric hyperKéhler manifolds, there exists a canonical generator 7; such that |Z(7;)| =
0, i.e., ’75(8) # (). For example, in the equivariant cohomology of a toric hyperKahler manifold
M = M’ x H, the canonical generator 7 which corresponds to the characteristic submanifold M’
satisfies |Z(7)| = 0 because MT = (M’)T. This gives one of the difference between the proof of
the Masuda’s theorem (see Theorem 1 in Section 1) for toric manifolds proved in [Ma2] and that
of Theorem 1.1 in Section 1 for toric hyperKéahler manifolds.

We first show the following property for 76(5) (s=1,2):

PROPOSITION 8.7. If there exists T; € 76(5) (s = 1,2), then there exists the element xz; €
H?(BT) such that

W:(l’l) =T;.

PROOF. Assume 7; € 76(1). By definition, we have that 7;|, # 0 for all p € MT. Recall that
the canonical generator 7; corresponds to the characteristic submanifold M;, and M; corresponds
to the hyperplane H; C H?(BT;R) (see Section 5.2). Using 7;|, # 0 for all p € M7 it is easy to
check that (M;)T = MZI. Therefore, because fixed points correspond to the intersection of just n
hyperplanes, we have that H; N H; # 0 for all j # i. Because there are no intersection points of
just n hyperplanes in the complement of H;(C H?(BT;R)), there exists a primitive z; € H*(BT)
such that all of the hyperplanes H; (where j # ¢) satisfy

Hj = Lj X in,

where L; = H; N H; is the (n — 2)-dimensional hyperplane (see Figure 4). This means that, for
all z € H; (j # 1), there exists 2’ € L; = H; N H; and r € R such that

r =21 +rz.

Hence, we have the following relations:

0 = (ri(z)+a,u)n (by = € Hj)
= (rj (2" +rz;) +a,uj)g  (by x =2’ + ra;)
= (m](rezi), uj)m (by 2’ € Hj).

Therefore, we have that
(mi(zi),uj)g =0 forall j #i.

Because 77 is injective, this also implies that (7} (x;),u;) # 0. Because 7; is the dual basis of u;
(see Section 7.2), we have that

mi(x;) =711 € H%(Ma)
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FIGURE 4. The hyperplane H; = L; x Rz;. Three lines in the hyperplane H;
represent the intersections with the other hyperplanes and H; N H; = L;.

for ' = (7} (z;),u;) € Z\ {0}. Therefore, one can easily show that
T/Ti|p =y,
for all p € MI" (e.g. by using the localization theorem, also see [HaHo, HaPr]). Because z; is a
primitive vector in H?(BT), we have that ' = 41. Therefore, by changing the sign if we need,
we have that there exists z; € H?(BT) such that 7} (x;) = 7;. This establishes the statement for
s=1.
Similarly, we have the statement for s = 2. O

Next, we prove that f7. preserves E(l) to 7;(2) for k # 0 (see Lemma 8.9). In order to do that,
we need the following lemma:

LEMMA 8.8. Let £ € H2(M,) be an element with |Z(§)| # 0. Express € =Y v, a;7; for some
integers a;. If a; # 0 for some i, then Z(€) C Z(r;) for 7y € T \75(1).

Furthermore, if a; # 0 and a; # 0 for some different i and j, then Z(§) C Z(1;) for 7; €
T \76(1)~

PrROOF. Let p € M and p € Z(¢). Then 0 = &|, = Y%, a;7i|p,. Using Corollary 7.5, we
have that if a; # 0 then 7;/, = 0. This establishes that if a; # 0 then Z(£§) C Z(7;); moreover,
if both a; and a; are non-zero, then Z(£) C Z(r;) N Z(7;). Therefore, it suffices to prove that
Z(1;) N Z(7;) is properly contained in Z(7;).

Suppose that Z(r;) N Z(1;) = Z(1;). Then Z(1;) D Z(7;). By (7.12), we have that
(8.2) 7ilg =0 if and only if ¢ ¢ M.

Therefore, M C M. Recall that fixed points of (Mq,T) correspond to the intersections of just
n hyperplanes. Hence, the condition M ]T C M} gives that the corresponding hyperplanes H. ; and
H; satisfy that H; N H; = Lj is the (n — 2)-dimensional hyperplane and
Hj = Lj X in,
for some x;; a normal vector of H; (also see the proof of Proposition 8.7). Because we assume
Tilp = 0, there exists ¢ H;NH; in H*(BT;R) such that {z} = Njes(,) Hi by using (8.2) (also see
Figure 5), where I(p) C [m]\{4, j} is the set satisfying that {p} = Npes(p) My, i.e., € H*(BT;R) is
the corresponding intersection point to p € M g . Because the hyperplane arrangement is smooth,
it is easy to check that there exists [ € I(p) such that, for I'(p) = I(p) \ {l}, the intersection
Mker (p)Hy is the 1-dimensional affine subspace which goes through x and Hj. It also follows
from I(p) C [m]\ {4,7} that the 1-dimensional affine subspace Ny /() Hr does not intersect with
L;j = H;N H;. Therefore, there is the point {y} = (Nrer (p)Hr) N H; such that y & H; (see Figure
5). This gives a contradiction to the assumption that MJT C M. Therefore, Z(m;,)NZ(1j) # Z(7i).
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FIGURE 5

This establishes that Z (&) C Z(7;). O
Now we may prove Lemma 8.9.

LEMMA 8.9. Every weak H*(BT)-algebra isomorphism f3. preserves 7;(1) to 776(2) up to sign
for k #0.
(1)

PRrROOF. Let m, ’ (resp. mk )) be the zero-length of elements in 7;(1) (resp. ’Tk(2)).

By using Lemma 8.8,if £ = Y1 | a; T( ) satisfies a;,a; # 0 then |Z(§)| < |Z( ) )| Therefore,
we have that mg ) is the highest zero-length in H%(M,), and if |Z(£)| = m§ ) then &= 7 for
some non-zero integer a; and 7' ™ e T(l Similarly, we have that m?) is the highest zero-length
in H%(Mpg), and if |Z(€ )\ = mgz) then £ = b; T ) for sorne non-zero integer b; and T @ ¢ TQ)
Take an element 7'( ) e T ™. Due to Proposition 8.5, fT( ) has the zero-length mg ) Moreover,
(T (1)) has the highest zero-length in f5(H2(M,)) = H2(Mjg). Therefore We have mg ) = g ).
By using the arguments above, we have that f:’;(Ti(l)) = bT( ) for some 7' ) e T( and non-zero
integer b. Because f7 is isomorphism, we also have that b = =£1, ie., f} maps 7'1(1) to 7'1(2)
bijectively up to sign.

Take an element T T(l . Because 7—1 ™) and 7—12 are preserved under f5 and (f5)7!,
fT( ) does not have a term described by a linear comblnatlon of elements in 7'1( ). Therefore,
by usmg Proposition 8.5 and Lemma 8.8, we have that fT( ) has the second highest zero-length
m2 in fr(H%(M,)) = H2(Mg). With the method similar to that demonstrated as above, we
also have that m(l) = mgz) and f7. maps 7'2(1) to 7'2(2) bijectively up to sign. By repeating this
argument, we have that f7 preserves ’7;(1) to ’7;(2) up to sign for k # 0. O

Let us prove Lemma 8.4.

PROOF OF LEMMA 8.4. Because of Lemma 8.9, f3 preserves 7MW\ T¢ to 73\ 74, To-
gether with |[T(M| = [T?)| = m, we may put

1 2
73 = 1737 =m

Let 76(5) = {Ti(s) |i=1,...,mg} for s = 1,2. By Proposition 8.7, there exist elements z;,y; €
H?(BT) such that 7% (z;) = T(l) and 73 (y;) = 7' ) for i = 1, ..., mg. Therefore, by the exactness
of the sequence (6.2), we have that j*(7; (s )) = 0. Hence, it follows from the assumption mentioned

in Remark 2.3 that a; = b; = 0, where a;, b; are the i*" coordinate of @ and 3, respectively.
Moreover, using Proposition 2.2, we have that M, = M, x H™® and Mg = Mj x H™° for some
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4(n — mog)-dimensional toric hyperKéhler manifolds M, and Mp; therefore, we have

Hp (M) = Hip g (ML) ® Hpg (H™),
H(Mp) 2= Hipneg (M) @ Hiong (H™)

such that 75(5) becomes the canonical generators in Hzn., (H™) and 71 \75(1) (resp. T \76(2))
becomes those in H* (M) (resp. H (M})). Therefore, f7 decomposes into

Tn—mg Tn—mg
I = Fnmo ® Ormg-
where
Prmg + Hmo (H™) = Homo (H™)
is an isomorphism and

fremo # Hipnmo (Mg) = Hinm (Mp)
is a weak H*(BT™ ™0)-algebra isomorphism which preserves 7 \’76(1) to 7 \’76(2). Therefore,
in order to prove Lemma 8.4, it is enough to change ¢y, = into some isomorphism which preserves
76(1) to 76(2)'

Because 7 (z;) = Ti(l) and ma(y;) = TZ-(Q), we may identify H*(BT™°) and Hjm, (H™) by s

and there exists a decomposition

(P* = @;—mo S3) QO:;LO

for some isomorphism ¢, _,,, : H*(BT"~™°) — H*(BT"~™°) such that that the following dia-
gram is commutative for each factor:

*

H(BT"""0) @ HX(BT™) — > H2,\_ g (ML) & Hn (H™)
J{w*—wimo SPmm, lf&i—fﬁmg SPm,

H2(BT"=m0) @ H2(BT™) —> H3.\y (M}) © Hi oo (H™)

ie., gy, om =m30p, and fi_, om =m0y .. . Because py, is an isomorphism and
{z;} and {y;} are generators of H*(BT"™°) (see the proof of Proposition 8.7), there exists an
isomorphism X : H*(BT™°) — H*(BT™°) such that X o ¢}, (z;) = y;. Then, it is easy to check
that

97 = frmy @ X 00,

is a weak H*(BT)-algebra isomorphism which preserves 7;(1) to 776(2) for k > 0. Moreover, gi(a) =
b because a; = b; = 0 for the coordinates in HZ.., (H™0). This establishes Lemma 8.4. O

Now we may prove Proposition 8.3:

PROOF OF PROPOSITION 8.3. Let Hi(l) and H]@) be hyperplanes in Hz and H;, respectively.
Due to Lemma 8.4, there exists a weak H*(BT)-algebra isomorphism ¢ such as Lemma 8.4.
Because g5 is a weak algebraic isomorphism, there exists an isomorphism ¢* : H*(BT) — H*(BT)
such that g7 o 77 = w5 o p*. We claim gp*(Hi(l)) = Hf)

Because g}(Ti(l) (%2), we have

(i) for some permutation o : [m] — [m].

) = &T,

(8.3) (gr)-(ul0) = e,
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for the dual basis ugl) € HI (M,) and uf()i) € HI(Mpg) of Ti(l) and 75%2)7 respectively. Therefore,
we have the following relations for = € H, i(l):

(3 00" () + b, ul ) m

= (ghomi(x)+ gy(a), uff()z))H (by assumptions)
(7} (@) +@, (97).(u) g (by dual)

= (ri(2)+ G eu)n (by (8.3))
0. (by z € HY)

It follows from the relations above that we can easily prove ¢*(H, (1)) = H((fz(z) for all ¢ € [m]. This

i

establishes Proposition 8.3. O

By using Proposition 8.2 and 8.3, we have Theorem 8.1.
Because of Theorem 4.4 and 8.1, we have Theorem 1.1.

REMARK 8.10. According to [HaPr], there exists the residual S'-action on toric hyperK#hler
manifolds. The similar statement with Theorem 8.1 also holds for the T™ x S'-action on toric
hyperKéahler manifolds. We omit the detail of this fact in the present paper. This fact will be
proved for more general context in the future works (also see [Ku]). Moreover, the cohomology
rings and dimensions determine the diffeomorphism types of toric hyperKéhler manifolds. Namely,
the set of 4n-dimensional toric hyperKahler manifolds satisfy the cohomological rigidity for all
n € N. The detail of this fact will be appeared in somewhere soon.
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