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Abstract. Let S be a closed Riemann surface of genus g(= 2) and set Ṡ =
S \{ẑ0}. Then we have the composed map φ◦r of a map r : T (S)×U → F (S)

and the Bers isomorphism φ : F (S) → T (Ṡ), where F (S) is the Bers fiber
space of S, T (X) is the Teichmüller space of X and U is the upper haf-plane.

The purpose of this paper is to show the map φ ◦ r : T (S) × U → T (Ṡ).
has a continuous extension to some subset of the boundary T (S)× ∂U .

1. Introduction

Let S be a closed Riemann surface of genus g(= 2). Consider any pair (R, f)
of a closed Riemann surface R of genus g and a quasiconformal map f : S → R.
Two pairs (R1, f1) and (R2, f2) are said to be equivalent if f2 ◦ f−1

1 : R1 → R2 is
homotopic to a biholomorphic map h : R1 → R2. Let [R, f ] be the equivalence
class of such a pair (R, f). We set

T (S) = {[R, f ] | f : S → R : qc}

and call T (S) the Teichmüller space of S.
It is known that S can be represented as U/G where U is the upper half-plane

and G is a torsion free Fuchsian group.
Let L∞(U,G)1 be the space of measurable function µ on U satisfying

(1) ∥µ∥∞ = supz∈U |µ(z)| < 1,

(2) (µ ◦ g)g
′

g
for all g ∈ G.

For any µ ∈ L∞(U,G)1, there is a unique quasiconformal map w of U onto U
satisfying normalization conditions w(0) = 0, w(1) = 1 and w(∞) = ∞. Let Q(G)
be the be the set of all normalized quasiconformal map w such that wGw−1 is also
Fushsian. We wite w = wµ. Two maps w1, w2 ∈ Q(G) are said to be equivalent if
w1 = w2 on the real axis R. Let [w] be the equivalence class of w ∈ Q(G). We set

T (G) = {[w] | w ∈ Q(G)}

and call T (G) the Teichmüller space of G.
Then we have a canonical bijection

(1.1) T (G) ∋ [wµ] 7→ [U/Gµ, fµ] ∈ T (S)

where Gµ = wµGw−1
µ and fµ is the map induced by wµ : U → U . Throughout this

paper, we always identify T (G) with T (S) via the bijection (1.1).
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For any µ ∈ L∞(U,G)1, there is a unique quasiconformal map w of Ĉ with
w(0) = 0, w(1) = 1, w(∞) = ∞, such that w satisfies the Beltrami equation wz̄ =
µwz on U , and is conformal on the lower half-plane L. We write w = wµ.

The Bers fiber space F (G) over T (G) is defined by

F (G) = {([wµ], z) ∈ T (G)× Ĉ | [wµ] ∈ T (G), z ∈ wµ(U)}.

Take a point z0 ∈ U and denote the set of all points g(z0), g ∈ G, by A. Let

v : U → U −A

be a holomorphic universal covering map and define

Ġ = {h ∈ Aut U | v ◦ h = g ◦ v for some g ∈ G }.

We see that U/Ġ = U/G − {π(z0)}, where π : U → S = U/G is the natural

projection. And set Ṡ = U/Ġ. By Lemma 6.3 of Bers[1], every point in F (G) is
represented as a point ([wµ], w

µ(z0)) for some µ ∈ L∞(U,G)1. For µ ∈ L∞(U,G)1,

we define ν ∈ L∞(U, Ġ)1 by

µ(v(z))
v′(z)

v′(z)
= ν(z).

Hence we have a map φ : F (G) → T (Ġ) by

([wµ], w
µ(z0)) 7→ [wν ].

Then the important Bers isomorphism thorem (Theorem 9 of [1]) asserts that φ is
a biholomorphic bijection map. Moreover we define a map r : T (G) × U → F (G)
by

([wµ], wµ(z0)) 7→ ([wµ], w
µ(z0)).

By Lemma 6.4 of [1], this map r is a real analytic bijection.
Via the bijection (1.1), the Bers fiber space F (S) over T (S) is defined by

F (S) = {([Rµ, fµ], z) ∈ T (S)× Ĉ | [Rµ, fµ] ∈ T (S), z ∈ wµ(U)}.

Similarly, we have the isomorphism F (S) → T (Ṡ) and the real analytic bijection

T (Ṡ)×U → F (S), and we denote them by the same symbols φ and r, respectively.
The Teichmüller space T (S) can be regarded canonically as a bounded domain

of a complex Banach space B2(L,G) in the following way: let B2(L,G) consist of
all holomorphic functions ϕ defined on L such that

ϕ(g(z))g′(z)2 = ϕ(z) for g ∈ G and z ∈ L

and

∥ϕ∥∞ = sup
z∈L

|(Imz)2ϕ(z)| < ∞.

For any µ ∈ L∞(U,G)1, we denote by ϕµ the Schwarzian derivative of wµ in L,
that is,

ϕµ = {wµ, z} =
(wµ)′′′(z)

(wµ)′(z)
− 3

2

(
(wµ)′′(z)

(wµ)′(z)

)2

.

If µ ∈ L∞(U,G)1, then ϕµ ∈ B2(L,G) and the Bers embedding T (S) ∋ [Rµ, fµ] 7→
ϕµ ∈ B2(L,G) is a biholomorphic bijection of T (S) onto a holomorphically bounded
domain in B2(L,G). From now on, we will identify T (S) with its canonical image
in B2(L,G).
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Similarly, we define the Bers embedding of T (Ṡ) into B2(L, Ġ). Since F (S) is a

domain of B2(L,G)× Ĉ and T (Ṡ) is a bounded domain in B2(L, Ġ), we define the

topological boundaries of them naturally. Let F (G) denote the closure of F (G).
Zhang [13] proved the Bers isomorphism φ cannot be continuously extended to

F (S) if the dimension of T (S) is greater than zero. Then we have the following

question: is there a subset of F (S)−F (S) to which φ can be continuously extended
?

To consider this question, we will use results of Leininger, Mj and Schleimer
about the curve complexes of S and of Ṡ in [7]. To do this, first we compose the

isomorphism φ : F (S) → T (Ṡ) and the map r : T (S)× U → F (S), then we obtain

new map φ ◦ r : T (S)× U → T (Ṡ).
On the other hand, Leininger, Mj and Schleimer defined a map Φ : C(S)× U →

C(Ṡ), where C(S) and C(Ṡ) are the curve complexes of S and of Ṡ, respectively.
(For definitions and more details, see §3). Let A be a subset of ∂U consisting of
all points filling S. Then they proved that the map Φ(v, ·) can be continuously
extended to {v} × A for any v ∈ C(S).

To use their results, we define a map E : T (S) → C(S) by sending p to a
simple closed curve on S of the minimal extremal length Extp (similarly, define

Ė : T (Ṡ) → C(Ṡ)) then we conisder the following diagram

T (S)× U
ϕ◦r−−−−→ T (Ṡ)yE×id

ẏE
C(S)× U

Φ−−−−→ C(Ṡ)
Our main theorem is as follows:

Theorem 4.1 The map φ ◦ r : T (S)×U → T (Ṡ) has a limit in {p0}×A for any
point p0 ∈ T (S).

2. Gromov-hyperbolic spaces

In this section, we shall give the boundary at infinity of hyperbolic space. For
details, see Klarreich [6].

Let (∆, d) be a metric space. If ∆ is equipped with a basepoint 0, we define the
Gromov product ⟨x|y⟩ of points x and y in ∆ by

⟨x|y⟩ = ⟨x|y⟩0 =
1

2
{d(x, 0) + d(y, 0)− d(x, y)}.

For δ = 0, the metric space ∆ is said to be δ-hyperbolic if

⟨x|y⟩ = min{⟨x|z⟩, ⟨y|z⟩} − δ

holds for every x, y, z ∈ ∆ and for every choice of basepoint. We say that ∆ is
hyperbolic in the sense of Gromov if ∆ is δ-hyperbolic for some δ = 0.

If ∆ is a hyperbolic space, we can define a boundary of ∆ in the following way:
We say that a sequence {xn}∞n=1 of points in ∆ converges at infinity if it satisfies
limm,n→∞⟨xm|xn⟩ = ∞. Given two sequences {xn}∞n=1 and {yn}∞n=1 that converge
at infinity, they are called to be equivalent if limm,n→∞⟨xm|yn⟩ = ∞. Since ∆ is a
hyperbolic, we see that this is an equivalence relation (∼). We set

∂∞∆ = {{xn}∞n=1 | {xn}∞n=1converges at infinity}/ ∼
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and call ∂∞∆ the boundary at infinity of ∆. If ξ ∈ ∂∞∆, then we say that a
sequence of points in ∆ converges to ξ if the sequence belongs to the equivalence
class ξ. We set

∆ = ∆ ∪ ∂∞∆.

3. Leininger, Mj and Schleimer’s work

3.1. Curve Complex. Let S = U/G be a closed Riemann surface of genus g(= 2)
and π : U → S be the natural projection. We take a point z0 in U and set
ẑ0 = π(z0). Put Ṡ = S \ {ẑ0}.

We begin to define the curve complex C(S) of S in the following way: the vertices
of C(S) are homotopy classes of non-peripheral simple closed curves on S. Two
curves are connected by an edge if they can be realized disjointly on S, and in
general a collection of curves spans a simplex if the curves can be realized disjointly
on S. Similarly, we may define C(Ṡ).

We turn C(S)(resp C(Ṡ)) into a metric space by specifying that each edge has
length 1, and define the distance dC(S)(resp dC(Ṡ)) by taking shortest paths.

Theorem 3.1 (Masur and Minsky [9], Theorem 1.1). The spaces C(S) and C(Ṡ)
are δ-hypebolic for some δ > 0.

We put C(S) = C(S) ∪ ∂∞C(S) and C(Ṡ) = C(Ṡ) ∪ ∂∞C(Ṡ), respectively.

3.2. Definition of Φ. Denote by Diff+(S) the group of all orientation preserving
diffeomorphisms of S onto itself. Let Diff0(S) be a group which consists of all
elements in Diff+(S) isotopic to the identity map id.

We define the evaluation map

ev : Diff+(S) → S

by ev(f) = f(ẑ0). A theorem of Earle and Eells asserts that Diff0(S) is contractible.
Hence, for the map ev|Diff0(S), there is a unique lift

ẽv : Diff0(S) → U

under the condition that ẽv(id) = z0.

Next, we will define a map Φ̃ : C(S) × Diff0(S) → C(Ṡ). To give an idea

of the definition of Φ̃, we consider the case of C0(S) × Diff0(S). Take a point
(v, f) ∈ C0(S) × Diff0(S). Then there is an isotopy ft, t ∈ [0, 1], between f0 = id
and f1 = f . Setting C(t) = ft(ẑ0) for every t ∈ [0, 1], we have a path C from ẑ0 to
f(ẑ0) on S. Move a point in S from f(ẑ0) to ẑ0 along C and drag v back along the

moving point. Then we obtain new simple closed curve on Ṡ and denote the curve

by f−1(v). Thus we define Φ̃(v, f) = f−1(v).

However, when f(ẑ0) ∈ v, we can not define Φ̃(v, f) as above. We solve this
problem in the following way: Now choose {ϵ(v)}v∈C0(S) ⊂ R>0 so that the ϵ(v)-
neighborhood N(v) = Nϵ(v) of v has the following properties:

(i) N(v) is homeomorphic to S1 × [0, 1]
(ii) N(v1) ∩N(v2) = ∅ if v1 ∩ v2 = ∅.

Let N◦(v) be the interior of N(v) and v± the boundary components of N(v). For
instance, we may take ϵ(v) as the half of the width of the collar neighborhood of
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the geodesic representative of v. Notice that ϵ(v) is depending only on the length
of the geodesic representative of v (cf. [4]).

If v ⊂ C(S) is a simplex with vertices {v0, v1, · · · , vk}, then we consider the
barycentric coordinates for points in v:

{
k∑

j=0

sjvj |
k∑

j=0

sj = 1 and sj ≥ 0, for j = 0, 1, · · · , k}

For a point (v, f) with v a vertex of C(S), we can define Φ̃ in the following way:
If f(ẑ0) ̸∈ N◦(v), then we define

Φ̃(v, f) = f−1(v)

as above.
If f(ẑ0) ∈ N◦(v), then f−1(v+) and f−1(v−) are not isotopic in Ṡ. We set

t =
d(v+, f(ẑ0))

2ϵ(v)
,

where d(v+, f(ẑ0)) is the distance inside N(v) from f(ẑ0) to v+. Then we define

Φ̃(v, f) = tf−1(v+) + (1− t)f−1(v−)

in barycentric coordinates on the edge [f−1(v+), f−1(v−)].

In general, for a point (x, f) ∈ C(S) × Diff0(S) with x =
∑k

j=0 sjvj , we define

Φ̃(x, f) as follows: If f(ẑ0) ̸∈
∪k

j=0 N
◦(vj), then we define

Φ̃(x, f) =
∑
j

sjf
−1(vj).

If f(ẑ0) ∈ N◦(vi) for exactly one i, we set

t =
d(v+, f(ẑ0))

2ϵ(vi)
,

and define

Φ̃(x, f) = si(tf
−1(v+i ) + (1− t)f−1(v−i )) +

∑
j ̸=i

sjf
−1(vj).

Finally, by Proposition 2.2 in [7], if ẽv(f1) = ẽv(f2) in U , then we see that

Φ̃(x, f1) = Φ̃(x, f2). From this, we have a map Φ : C(S) × U → C(Ṡ) satisfying

Φ̃ = Φ ◦ (id× ẽv).

3.3. Properties of Φ. A subsurface of S is said to be an essential if it is either a
component of the complement of a geodesic multicurve in S, the annular neighbor-
hood N(v) of some geodesic v ∈ C0(S), or else S.

If a point x ∈ ∂U has the following properties,

(i) for every geodesic ray r ⊂ U ending at x and for every v ∈ C0(S) which
nontrivially intersects an essential subsurface Y, we have π(r) ∩ v ̸= ∅ and

(ii) there is a geodesic ray r ⊂ U ending at x such that π(r) ⊂ Y ,

we call such a point x a filling point for Y (or simply, x fills Y ). We set

A = {x ∈ ∂U | x fills S}.
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Next, we take a geodesic ℓ in U whose projection π(ℓ) is a non-simple closed
geodesic. Let {ℓn}∞n=1 be a set of all pairwise distinct π1(S)-translates of ℓ such
that

H(ℓ1) ⊃ H(ℓ2) ⊃ · · · ,
where H(ℓk) is the half space bounded by ℓk. We denote the closure of H(ℓk) in

U ∪ ∂U by H(ℓk). Since ℓ are all distinct and π1(S) acts properly discontinuously
on U , we see that

∞∩
n=1

H(ℓn) = {x}

for some x ∈ ∂U .
We have the following results.

Proposition 3.1 ([7], Proposition 3.4). If {ℓn}∞n=1 is a sequence nesting down to

a point x ∈ A, then for any choice of basepoint u0 ∈ C(Ṡ),

dC(Ṡ)(Φ(C(S)×H(ℓn)), u0) → ∞

as n → ∞.

Theorem 3.2 ([7], Theorem 3.5). For any v ∈ C(S), the map

Φ(v, ·) : U → C(Ṡ)

can be continuously extended to

Φ(v, ·) : U ∪ A → C(Ṡ).

4. Main Theorem

Let α be a nontrivial simple closed curve on a Riemann surface R. Denote by
Mod(A) the modulus of an annulus in R whose core curve is homotopic in R to α.
We define the extremal length Ext(α) of α on R by

ExtR(α) = inf
A

1/Mod(A),

where the infimum is over all annuli A ⊂ R whose core curve is homotopic in R to
α.

Given any point p = (R, f) ∈ T (S) and a nontrivial simple closed curve γ on S,
we define the extremal length Extp(γ) by

Extp(γ) = ExtR(f(γ)).

Then there is a natural map E : T (S) → C(S) which sends any p ∈ T (S) to an

element of C0(S) of minimal Extp, Similarly, we define a map Ė : T (Ṡ) → C(Ṡ).
By virtue of Bers’ theorem and Maskit’s comparizon theorem, there is a constant

E0 depending only on the topology of S such that

(4.1) Extp0(E(p0)) ≤ E0

([2] and [8]). Henceforth, we fix such E0 and we may suppose that such E0 is

available for simple closed curves on both S and Ṡ.

Theorem 4.1. The map φ ◦ r : T (S)×U → T (Ṡ) has a limit in {p0} ×A for any
point p0 ∈ T (S).
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Proof.
We may assume that p0 is the base point (S, id) of T (S). Let {(pm, zm)}∞m=1 be

any sequence in T (S) × U converging to (p0, z∞) ∈ T (S) × A. We set (ξm, zm) =
(E × id)(pm, zm) and qm = φ ◦ r(pm, zm). Moreover, put

δm = Φ(ξm, zm)

and γm = Ė(qm).

By filling at the puncture ẑ0 of Ṡ, for each m there is an element γ0,m ∈ C(S)
such that

γm = Φ(γ0,m, zm).

We first check the following lemma.

Lemma 4.1. limm→∞ δm = limn→∞ γn in ∂∞C(Ṡ), that is,
(4.2) lim

m,n→∞
⟨δm|γn⟩0 = ∞.

Proof. To show this, we begin with the following two claims.

Claim 1. dC(Ṡ)(δm, 0) → ∞ and dC(Ṡ)(γm, 0) → ∞ as m → ∞.

Proof of Claim 1. Let {ℓn}∞n=1 be a sequence nesting down to the point z∞ ∈ A.
Then there is a sequence of half spaces {H(ℓn)}∞n=1 having following properties

H(ℓ1) ⊃ H(ℓ2) ⊃ · · ·
and

∞∩
n=1

H(ℓn) = {z∞}.

For a sufficiently large number N0, there is a number n0 such that zm (m = n0, n0+
1, n0 +2, · · · ) are all contained in H(ℓN0). For each m, there is a number Nm such
that zm is contained in H(ℓNm) but not in H(ℓNm+1). From δm = Φ(ξm, zm) and
γm = Φ(γ0,m, zm), we see

δm ∈ Φ(C(S)×H(ℓNm)),

γm ∈ Φ(C(S)×H(ℓNm)).

Since Theorem 3.1 shows that

dC(Ṡ)(Φ(C(S)×H(ℓm)), 0) → ∞ (m → ∞),

we have dC(Ṡ)(δm, 0) → ∞ and dC(Ṡ)(γm, 0) → ∞ as m → ∞, as desired.

Claim 2. dC(Ṡ)(δm, γm) = O(1) as m → ∞.

Proof of Claim 2. To clarify the argument, we first assume that pm = p0 for all m.
Take fm ∈ Diff0(S) with (id × ẽv)(ξ, fm) = (ξ, zm). Let N(ξ) as §3.2. Since

ξ = E(p0) and (4.1), we have

(4.3) Mod(N(ξ)) ≥ 1/E1

where E1 > 0 is a constant depending only on the topology of S.
Suppose first that ẑm = fm(ẑ0) ̸∈ N◦(ξ). Then, by definition, δm is homotopic

to f−1
m (ξ) on Ṡ. By the assumption, the interior of the annulus N(ξ) is embedded

in S − {zm}. Therefore, by (4.3), we have

Extqm(δm) ≤ 1/Mod(N(ξ)) ≤ E1.



8 HIDEKI MIYACHI AND TOSHIHIRO NOGI

Meanwhile, Extqm(γm) 5 E0 because γm = Ė(qm). Thus by Minsky and Masur’s
lemma [9] and Minsky’s lemma [10], we get

dC(Ṡ)(γm, δm) 5 2i(γm, δm) + 1 ≤ 2(E1E0)
1/2 + 1,

which is what we desired.
Suppose ẑm ∈ N◦(ξ). Let ξ∗ be the core geodesic of N(ξ). Take a conformal

(not isometric) coordinates

hm : ξ∗ × [−ϵ(ξ), ϵ(ξ)] → N(ξ)

such that ξ∗ × {0} maps to the core geodesic of N(ξ) and for each t, ξ∗ × {t} is
sent to the equidistant circle to the core geodesic. Let tm ∈ [−ϵ(ξ), ϵ(ξ)] such that
ẑm ∈ hm(ξ∗ × {tm}). Then, by definition,

δm =

(
1 +

tm
2ϵ(ξ)

)
f−1
m (ξ+) +

(
1− tm

2ϵ(ξ)

)
f−1
m (ξ−)

where ξ± is the components of ∂N(ξ). Henceforth, we suppose tm > 0. The case
tm = 0 can be dealt with the same manner.

Let Am be the component of N(ξ) \ hm(ξ∗ × {tm}) which containing ξ∗. Since
hm is conformal,

Mod(Am) = (ModN(ξ))/2.

and the core of Am is homotopic to ξ− in S − {ẑm}. Therefore,

Extqm(ξ−) 5 2E1,

where we recognize ξ− as a simple closed curve on S − {ẑm}. Therefore, we have

dC(Ṡ)(f
−1
m (ξ−), γm) 5 2i(f−1

m (ξ−), γm) + 1

5 2Extqm(ξ−)1/2Extqm(γm)1/2 + 1

5 2
√
2(E1E0)

1/2 + 1.

Thus we deduce

dC(Ṡ)(γm, δm) 5 dC(Ṡ)(γm, f−1
m (ξ−)) + dC(Ṡ)(f

−1
m (ξ−), δm)

5 2
√
2(E1E0)

1/2 + 2,

which implies Claim 2 holds when pm = p0 for all m.
We next deal with the general case. Let Sm be the underlying Riemann surface

for pm. Let wm ∈ Qnorm be a quasiconformal deformation from p0 to pm, and
Gm = wmGw−1

m . We let ẑ′m ∈ Sm be the projection of zm via the covering projection
H → H/Gm = Sm. Let Nm(ξm) ⊂ Sm be the collar neighborhood of the geodesic
representative of ξm on Sm. Since ξm = E(pm), the modulus of Nm(ξm) is bounded
by a constant independent of m. By the same argument as above, we can find an
essential subannulus Bm in Nm(ξm) \ {ẑ′m} such that the core of Bm is homotopic
to ξm on Sm and the modulus of Bm is uniformly bounded above and below.

Let ηm ∈ C(Ṡ) be the element corresponding to the core of Bm. Since γm =

Ė(qm) and the argument above, the extremal lengths of γm and ηm on qm is uni-
formly bounded above. Therefore, by Minsky’s inequality, we have

dC(Ṡ)(ηm, γm) = O(1)
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for all m. On the other hand, Since ηm is the core of an essential subannulus Bm

of Nm(ξm), ηm is homotopic to one of the components of ∂Nm(ξm) in Sm − {ẑ′m}.
Hence, by the definition of δm, we get

dC(Ṡ)(ηm, δm) = O(1).

Therefore, we conclude that

dC(Ṡ)(δm, γm) 5 dC(Ṡ)(δ, ηm) + dC(Ṡ)(ηm, δm) = O(1),

which is what we desired.

We now check that the equation (4.2) holds. From two claims above, we get

lim
m→∞

⟨δm|γm⟩ = ∞.

Since C(Ṡ) is δ-hyperbolic,

⟨δm|γn⟩ = min{⟨δm|γm⟩, ⟨γm|γn⟩} − δ

holds. Therefore we conclude limm,n→∞⟨δm|γn⟩ = ∞. Namely,

lim
m→∞

Φ ◦ (E × id)(pm, zm) = lim
n→∞

Ė ◦ (φ ◦ r)(pn, zn),(4.4)

holds, which implies Lemma 4.1.

We now return to the proof of Theorem 4.1. Since (4.4) holds for any sequence
{(pm, zm)}∞m=1 in T (S)× U converging to (p0, z∞) ∈ T (S)× A, from now we may
consider the case of pm = p0 for every m = 1. For a sequence {(p0, zm)}∞m=1

converging to (p0, z∞) ∈ {p0} × A, we assume {φ ◦ r(p0, zm)} converges to q∞.
Then by using (4.4), we obtain

lim
m→∞

Ė ◦ (φ ◦ r)(p0, zm) = lim
m→∞

Φ ◦ (E × id)(p0, zm)

= lim
m→∞

Φ(ξ, zm),

where ξ = E(p0) ∈ C(S). Theorem 3.2 shows that there is a γ∞ in ∂∞C(Ṡ) such
that

lim
m→∞

Φ(ξ, zm) = γ∞.

By Klarreich’s work of [6], we can identify ∂∞C(Ṡ) with the space of ending lami-

nation EL(Ṡ). Thus γ∞ is an ending lamination.
Put qm = φ ◦ r(p0, zm). We regard {qm}∞m=1 as the sequence in a Bers slice

T (Ṡ) × {q0}. For each pair (qm, q0), there is a unique quasifuchsian group Γm up

to conjugation such that Ω(Γm)/Γm = Ṡqm ∪ Ṡq0 , where Ω(Γm) is the region of

discontinuity of Γm and the symbol Ṡq means the Riemann surface corresponding

to q ∈ T (Ṡ). Since {qm}∞m=1 converges to q∞, by using Ending lamination theorem
for surface groups of [3], there is a unique Kleinian group Γ∞ up to conjugation
such that {Γm}∞m=1 converges to Γ∞ algebraically. This implies that the sequence
{qm}∞m=1 converges to q∞ without depending on the choice of a convergent sequence
to (p0, z∞). This shows φ ◦ r has a limit in {p0} × A.
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