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Abstract. The oriented Gordian distance between two oriented links is the minimal
number of crossing changes needed to deform one into the other. We compile a table
of oriented Gordian distances between 2-component non-splittable links with up to six
crossings. In particular, we give a criterion of oriented Gordian distance two using
a special value of the Jones polynomial, which allows us to prove that the unlinking
number of the 2-component link 92

3 is 3. This is one of the 5 links for which Kohn
could not compute the unlinking number.

1. Introduction

The oriented Gordian distance between two links L and M is the minimal number of
crossing changes needed to deform L into M , which we denote by ~d(L,M). The main
result in this note is Table 1, which lists the oriented Gordian distances of the non-
splittable 2-component links with up to 6 crossings; these are links as shown in Fig. 1
and their relatives; the mirror images and the links obtained by reversing the orientation
of the component.

H− = 22
1 T4 = 42

1 52
1 31#H−

T6 = 62
1 62

2 62
3 41#H−

Figure 1. 2-compoent oriented links with up to 6 crossings.
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Table 1. Oriented Gordian distances of links with up to six crossings.

H− T4 T ′
4 52

1 31#H− 31#H+ T6 T ′
6 62

2 62
3 62

3
′

41#H−

U2 1 2 2 1 2 2 3 3 3 2 2 2
H− = 22

1 0 1 3 1 1 3 2 4 2 1 3 1
H+ 2 3 1 1 3 1 4 2 4 3 1 3
T4 = 42

1 0 4 2 2 4 1 5 1 1 4 2
T4! 4 1 2 4 2 5 2 5 4 2 4
T ′

4 0 2 4 2 5 1 5 4 1 4
T ′

4! 2 2 4 2 5 1 2 4 2

52
1 = 52

1
′

0 2 2 3 3 3 2 2 2
52
1! 2 2 2 3 3 3 2 2 2

31#H− 0 2 3 5 3 2 4 2
31!#H+ 4 2 5 3 5 4 2 4
31#H+ 0 5 3 5 4 2 4
31!#H− 3 5 3 2 4 2
T6 = 62

1 0 6 1 1 5 3
T6! 6 2 6 5 3 5
T ′

6 0 6 5 1 5
T ′

6! 1 3 5 3
62
2 0 2 5 3

62
2! = 62

2
′

6 5 2 5
62
3 0 4 2

62
3! 4 2 4

62
3
′

0 4

62
3
′
! 2

41#H+ 2

Table 2. Unoriented Gordian distances of links with up to six crossings.
H T4 52

1 31#H T6 62
2 62

3 41#H

U2 1 2 1 2 3 3 2 2
H = 22

1 0 1 1 1 2 2 1 1
T4 = 42

1 0 2 2 1 1 1 2
T4! 1 2 2 2 1 2 2
52
1 0 2 3 3 2 2

52
1! 2 2 3 3 2 2

31#H 0 3 3 2 2
31!#H 2 3 3 2 2
T6 = 62

1 0 1 1 3
T6! 2 1 3 3
62
2 0 2 3

62
3 0 2

62
3! 2 2

We denote by U c the trivial c-component link; in particular, we denote the trivial
knot by U(= U1). For a link L, we denote by L! its mirror image. For oriented links L
and M we denote their split union and product by L tM and L#M , respectively. For
knots and links with up to 9 crossings we use Rolfsen notations [12]; more precisely, c2

n

denotes oriented 2-component links of non-positive linking number with diagram as in
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Appendix C of [12], and c2
n
′ denotes the oriented links obtained from c2

n by reversing the
orientation of one component. Specifically, we denote the positive and negative Hopf
links by H+ and H−, respectively, and so H+ = 22

1! = 22
1
′ and H− = 22

1 = 22
1!
′. Also, T2n

denotes the torus link of type (2, 2n) with linking number −n and parallel orientation,
and T ′

2n and T ′
2n! denote the torus links of type (2, 2n) obtained from T2n and T2n!,

respectively, by changing the orientation of one component, and so T4 = 42
1 and T6 = 62

1;
cf. [4, Sec. 5.1], [5, Table 2], [6, Table 6].

Notice that for links L and M in Table 1 the following hold: ~d(L,M) = ~d(L!,M !) =
~d(L′,M ′) = ~d(L′!,M ′!).

Similarly, for unoriented links we define the unoriented Gordian distance; we denote
by d(L,M) the Gordian distance of unoriented links L and M . For links L and M in
Table 1 we have d(L,M) = min{~d(L,M), ~d(L′,M)}, which yields Table 2 compiling the
unoriented Gordian distances of non-splittable 2-component links with up to 6 crossings,
where H denotes the unoriented Hopf link.

For many pairs of 2-component links with up to 6 crossings we can decide the Gordian
distances by the linking numbers and Gordian distances of components (Proposition 2.1).
Other cases are decided by the signature (Propositions 2.3 and 2.4), the special value of
the Jones polynomial (Proposition 3.1 and Theorem 3.4), and the criterion for 2-bridge
links with unoriented Gordian distance one (Proposition 4.1) due to Torisu [15] and
Darcy and Sumners [1].

Traczyk [16] has proved that the unknotting number of the knot 74 is two using the
special value of the Jones polynomial as follows: Suppose that the knot 74 is unknotted
by a single crossing change. Then since the signature of 74 is 2, that crossing should be
negative. However, since the value of the Jones polynomial of 74 at t = eiπ/3 is i

√
3,

that crossing should be positive, a contradiction. Developing such a discussion, we have
several criteria for the unknotting number and Gordian distance for knots and links as
well as the band-unknotting number and band-Gordian distance using the value of the
Jones polynomial at t = eiπ/3; see [4, 5, 6, 8, 14] and also compare [9]. In particular,
Theorem 3.4 is a criterion of oriented Gordian distance two, which allows us to prove
that the unlinking number of the 2-component link 92

3 is 3 (Fig. 4). This link is one of
the five 2-component prime links with up to 9 crossings whose unlinking number had
not been settled in the table of unlinking numbers compiled by Kohn [7].

This note is organized as follows: In Sect. 2 we give an elementary lower bound of the
Gordian distance and some properties of the signature. In Sect. 3 we give some methods
to give a lower bound of the Gordian distance using the Jones polynomial. In Sect. 4 we
review Torisu, Darcy and Sumners’ criterion for 2-bridge links with unoriented Gordian
distance one. In Sect. 5 we explain the method for compiling Table 1, the table of the
oriented Gordian distances of 2-component links with up to 6 crossings.

2. Oriented Gordian distance

Given two oriented links L and M with the same number of components, we define
the oriented Gordian distance of L and M , ~d(L,M), to be the minimal number of
crossing changes needed to deform L into M . Similarly, for unoriented links we define
the (unoriented) Gordian distance, which we denote by d(L,M), where the orientations
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of L and M are ignored, and thus, d(L,M) ≤ ~d(L,M). In particular, the unlinking
number of L (or the unknotting number if L is a knot), u(L), is the Gordian distance
from L to the trivial link; u(L) = d(L,U c) = ~d(L,U c), where U c is the c-component
trivial link with c the number of the components of L.

For three oriented links L, M , N , the triangle inequality holds:

(1) ~d(L,M) ≤ ~d(L,N) + ~d(N,M).

In particular, we have:

(2) ~d(L,M) ≤ u(L) + u(M).

The following is a generalization of Eq. (1) in [7].

Proposition 2.1. Let L = L1 ∪ L2 and M = M1 ∪M2 be oriented 2-component links.
Then

~d(L,M) ≥ min{~d(L1,M1) + ~d(L2,M2), ~d(L1,M2) + ~d(L2,M1)}+ |lk(L)− lk(M)|,(3)

where lk(L) is the linking number of L; lk(L) = lk(L1, L2).

If K1 or K2 is an invertible knot, then ~d(K1,K2) = d(K1,K2). In this paper, we
consider knots and links with small crossing numbers, and so we treat only an invertible
knot.

Two oriented links L and M are related by a coherent band surgery if there exists an
embedding b : I×I → S3 such that L∩b(I×I) = b(I×∂I) and M ∩b(I×I) = b(∂I×I),
and that L \ b(I ×∂I) and M \ b(∂I × I) have the compatible orientation, where I is the
unit interval [0, 1]. The following are basic properties of the link signature (Lemmas 7.1,
7.2 and Corollary 7.4 in [10]).

Proposition 2.2. (i) If two links L and M are related by a coherent band surgery, then

(4) |σ(L)− σ(M)| ≤ 1.

(ii) For oriented links L and M , we have

σ(L tM) = σ(L) + σ(M);(5)

σ(L#M) = σ(L) + σ(M).(6)

A skein triple is an ordered set of three oriented links that are identical except near
one point where they are as in Fig. 2, which we denote by (L+, L−, L0). Then we have
the following; cf. [13, Eqs. (7) and (8)].

Proposition 2.3. Let (L+, L−, L0) be a skein triple. Then

σ(L±)− σ(L0) ∈ {−1, 0, 1};(7)

σ(L−)− σ(L+) ∈ {0, 1, 2}.(8)

Proof. Equation (7) is just Proposition 2.2(i). Since the link L− is obtained from L+ by
changing a positive crossing, L+ yields the product link L−#H+ by doing a coherent
band surgery as shown in Fig. 3, where H+ is the positive Hopf link. Then by Eq. (4)
we have

(9) |σ(L+)− σ(L−#H+)| ≤ 1.
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Since

(10) σ(L−#H+) = σ(L−) + σ(H+) = σ(L−)− 1

by Eq. (6), we obtain Eq. (8). �

L+ L− L0

Figure 2. Skein triple.

L+ L−#H+

Figure 3. Two links L+ and L−#H+ are related by a coherent band surgery.

The following is immediate from Eq. (8) in Proposition 2.3; cf. Theorem 10.1 in [10].

Proposition 2.4. For two oriented links L, M with the same number of components,
we have

~d(L,M) ≥ |σ(L)− σ(M)|/2.(11)

Example 2.5. ~d(T4!, T ′
6) > 1. Let L = T4! and M = T ′

6. Suppose that ~d(L,M) = 1. Since
lk(L) = 2, lk(M) = 3, L is obtained from M by changing a positive crossing. However,
since σ(L) = −3 and σ(M) = −1, by Eq. (8) in Prosposition 2.3 L is obtained from M
by changing a negative crossing, a contradiction. So, only using either Proposition 2.1
or Proposition 2.4, we cannot obtain the result.

On the other hand, ~d(L′,M ′) > 1 is obtained only from Proposition 2.4. In fact,
σ(L′) = 1, σ(M ′) = 5. Notice that for a link L, the value σ(L) + lk(L) is an invariant of
an unoriented link type (Theorem 1 of [11]), which implies that σ(L′) = σ(L) + 2lk(L).

~d(62
3!, T

′
6) = ~d(62

3
′!, T6) > 1 is similarly obtained. In fact, σ(62

3) = σ(T4) = 3 and
lk(62

3) = lk(T4) = −2.
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3. Jones polynomial

The Jones polynomial V (L; t) ∈ Z[t±1/2] [2] of an oriented link L is defined by the
following formulas:

V (U ; t) = 1;(12)

t−1V (L+; t)− tV (L−; t) =
(
t1/2 − t−1/2

)
V (L0; t);(13)

where U is the unknot and (L+, L−, L0) is a skein triple.
Jones [3] has shown:

(14) V (L;ω) = ±ic−1(i
√

3)δ,

where ω = eiπ/3, V (L;ω) means the value of V (L; t) at t1/2 = eiπ/6, c is the number of
the components of L, and δ = dim H1(Σ2(L);Z3) with Σ2(L) the 2-fold covering space
of S3 branched over L.

The following criterion is useful to decide the oriented Gordian distance; (i) is Propo-
sition 4.2 in [8]; cf. [6, 14, 16], and (ii) is Theorem 5.2(ii) in [6].

Proposition 3.1. (i) If a link M is obtained from a link L by changing a positive
crossing of L, then

(15) V (L;ω)/V (M ;ω) ∈ {±1, i
√

3
±1}.

(ii) Suppose that two c-component links L and M are related by a crossing change. If
V (L;ω) = ηV (M ;ω) = ±ic−1(i

√
3)δ, η = ±1, then ic−1V (L;−1) ≡ ic−1ηV (M ;−1)

(mod 3δ+1).

Example 3.2. (i) ~d(62
2, 6

2
3) > 1. Let L = 62

2 and M = 62
3. Suppose that ~d(L,M) = 1.

Then since lk(L) = −3 and lk(M) = −2, L is obtained from M by changing a positive
crossing. Then V (M ;ω)/V (L;ω) = −i

√
3 contradicts Proposition 3.1(i).

(ii) ~d(T ′
4, 6

2
3!) > 1. Let L = T ′

4 and M = 62
3!. Suppose that ~d(L,M) = 1. Then since

σ(L) = −1 and σ(M) = −3, L is obtained from M by changing a positive crossing.
Then V (M ;ω)/V (L;ω) = −i

√
3 contradicts Proposition 3.1(i).

(iii) ~d(62
3!, 6

2
3
′) > 1. Let L = 62

3! and M = 62
3
′. Suppose that ~d(L,M) = 1. Since

V (L;ω) = V (M ;ω) =
√

3, we have iV (L;−1) ≡ iV (M ;−1) (mod 32) by Proposi-
tion 3.1(ii). However, iV (L;−1) = −12 and iV (M ;−1) = 12, a contradiction.

Remark 3.3. (i) We can prove d(62
2, 6

2
3) > 1 by applying Proposition 7.1(i) in [6], a

criterion using a special value of the Q polynomial; this method is due to Stoimenow
[13, Theorem 4.1].

(ii) We can prove ~d(T ′
4, 6

2
3!) > 1 by applying Proposition 6.4(ii)(a) in [6], a crite-

rion using a special value of the HOMFLYPT polynomial. However, this cannot prove
~d(T4, 62

3
′!) > 1.

Theorem 3.4. Let L and M be oriented c-component links with ~d(L,M) = 2 and
σ(L) − σ(M) > 2. If V (L;ω) = V (M ;ω) = ±ic−1(i

√
3)δ, we have ic−1V (L;−1) ≡

ic−1V (M ;−1) (mod 3δ+1).
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Proof. Let N be an oriented link obtained from both L and M by a crossing change.
Since σ(L)−σ(M) > 2, we have σ(L)−σ(N), σ(N)−σ(M) > 0, and so by Proposition 2.3
N is obtained from L by changing a negative crossing and also N is obtained from M
by changing a positive crossing. Let v0 = V (L;ω) = V (M ;ω) = ±ic−1(i

√
3)δ. Then by

Proposition 3.1(i) we have:

(16) V (N ;ω) ∈
{
±v0, i

√
3
±1

v0

}
∩

{
±v0,−i

√
3
±1

v0

}
= {±v0} .

Thus put V (N ;ω) = ηv0, η = ±1. Applying Proposition 3.1(ii), we have ηic−1V (N ;−1) ≡
ic−1V (L;−1) ≡ ic−1V (M ;−1) (mod 3δ+1), completing the proof. �

Example 3.5. ~d(T6, 62
3
′!) > 2. Let L = T6 and M = 62

3
′!. In Example 2.5, we have seen

~d(L,M) > 1. Suppose that ~d(L,M) = 2. We have σ(L) = 5, σ(M) = 1, V (L;ω) =
V (M ;ω) =

√
3, iV (L;−1) = −6, iV (M ;−1) = −12, contradicting Theorem 3.4.

In Table 3 we give some pairs of links to which we can apply Theorem 3.4. The
pairs (31, 74) and (31, 31!#41) are only examples of knots with up to 7 crossings. For
2-component prime links with up to 9 crossings there remained five links whose unlinking
number had not been settled in the table of Kohn [7] and using Theorem 3.4 we may
prove u(92

3) = 3; see Fig. 4, where by changing the 3 crossings near the asterisk “∗” in
the diagram we obtain the trivial link.

Table 3. Pairs of links L and M with ~d(L,M) = 3.

L M σ(L) σ(M) V (L;ω) = V (M ;ω) V (L;−1) V (M ;−1)
31 74 2 −2 −i

√
3 −3 −15

31 31!#41 2 −2 −i
√

3 −3 −15
92
3 U2 3 0

√
3 30i 0

9^2_3(l=-1)

*

* *

Figure 4. The link 92
3.

4. Torisu-Darcy-Sumners’ criterion

For relatively prime integers p, q, we let S(p, q) denote any 2-bridge knot or link such
that the 2-fold covering space of S3 branched over S(p, q) is homeomorphic to the lens
space of type (p, q). Notice that S(p,−q)(= S(−p, q)) is the mirror image of S(p, q).
Two unoriented 2-bridge link S(p, q) and S(r, s), p, r > 0, are isotopic if and only if
p = r and q ≡ s±1 (mod p).

The following was independently proved by Darcy and Sumners [1] and Torisu [15].
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Proposition 4.1. Two unoriented 2-bridge knots or links S(p, q) and S(r, s) are related
by a crossing change if and only if: there exist pairs of relatively prime integers (m,n)
and (a, b) such that n 6= 0; rm + an 6= 0; rb− sa = 1 and S(p; q) is isotopic to S(2an2 +
r(2mn± 1), 2bn2 + s(2mn± 1)).

Example 4.2. d(52
1, 5

2
1!) > 1. Suppose that d(52

1, 5
2
1!) = 1. Then since 52

1 = S(8, 3)
and 52

1! = S(8, 5), there exist pairs of prime integers (m,n) and (a, b) such that n 6= 0;
8m+an 6= 0; 8b−5a = 1 and S(8, 3) is isotopic to S(2an2+8(2mn±1), 2bn2+5(2mn±1)).
Then |2an2 + 8(2mn± 1)| = 8. Since 8m + an 6= 0, we have 8mn + an2 = ±8. Then n
is a divisor of 8. However, since a is odd, this cannot occur.

5. Decision of the oriented Gordian distances

Table 1 lists the oriented Gordian distances between two links with up to six crossings,
which we compile according to the following procedures.

Step 1. Combining Eqs. (3) and (2), we have the inequalities:

max
{

1,min{~d(L1,M1) + ~d(L2,M2), ~d(L1,M2) + ~d(L2,M1)}+ |lk(L)− lk(M)|
}

≤ ~d(L,M) ≤ u(L) + u(M)
(17)

where L = L1 ∪L2 and M = M1 ∪M2 are inequivalent oriented 2-component links. We
have the table of unlinking numbers for prime links with up to 9 crossings in [7], and
u(31#H−) = u(41#H−) = 2 are easy. Further, using the signature (Eq. (11)) we obtain
sharper lower bounds:

• ~d(T4
′!, T6) = ~d(T4

′, T6!) > 1, which implies ~d(T4!, T6
′) = ~d(T4, T6

′!) > 1 (Exam-
ple 2.5).

• ~d(62
3
′!, T6) = ~d(62

3
′
, T6!) > 1, which implies ~d(62

3!, T6
′) = ~d(62

3, T6
′!) > 1 (Exam-

ple 2.5).
• ~d(T6, T6

′!) = ~d(T6
′, T6!) > 1.

We have the table of signatures of links in [5, Table 2]. This yields Table 4, which
lists ~d(L,M) for the link L in the column and M in the row, and p-q means that
p ≤ ~d(L,M) ≤ q.

Step 2. We examine the pairs (L,M) with 1 ≤ ~d(L,M) ≤ q, q > 1, in Table 4. Then
we obtain Table 5, where:

1) Changing a crossing in a minimal diagram of L (resp. M), we obtain M (resp.
L).

2) See Fig. 5, where L → M means that the link M is obtained from L by changing
the crossing near the asterisk “∗” in the diagram of L shown there.

3) See Example 4.2.
4) See Example 3.2.
5) See Example 3.5.
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*

*

*

(a) (b) (c)

Figure 5. (a) T ′
4 → T4!, (b) T6 → 62

2, (c) 62
3 → T6.

Step 3. We examine the pairs (L,M) with 2 ≤ ~d(L,M) ≤ q, q > 2, in Table 5. Then
we see they all are of oriented Gordian distance two since ~d(L,N) = ~d(N,M) = 1 for
some link N . This yields Table 6, where:

6) N = H−.
7) N = H+.
8) N = 31 t U .
9) N = 31! t U .

10) N = T4.
11) N = T4!.
12) N = T ′

4.
13) N = T ′

4!.
14) N = 41 t U .
15) N = 62

2.
16) N = 62

2!.

Step 4. We examine the pairs (L,M) with 3 ≤ ~d(L,M) ≤ q, q > 3, in Table 6. Then
we see they all are of oriented Gordian distance three since ~d(L,M) ≤ ~d(L,H±) +
~d(H±,M) = 3. This yields Table 1.
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