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MEGUMI SANO

Abstract. We introduce a new scaling in the logarithmic Hardy inequal-
ity. Our inequality has the quasi-scale invariance under the scaling. By
using a scaling argument, we also show that there is no minimizer for an
associated minimizing problem.

1. Introduction

LetΩ be a smooth bounded domain with 0∈ Ω in RN(orΩ = RN). The
classical Hardy inequality

(1.1)

(
N − p

p

)p ∫
Ω

|u(x)|p
|x|p dx≤

∫
Ω

|∇u(x)|p dx

holds for allu ∈ W1,p
0 (Ω), whereN ≥ 2, 1 ≤ p < N. It is known that, for

1 < p, the best constant (N−p
p )p is not attained inW1,p

0 (Ω). Furthermore, the
inequality (1.1) can be improved by adding remainder terms in (1.1) (see
[1], [3], [5], [6], [8], [9], [10], [11], [13], [16] and the references therein).
One of the novelties of the inequality (1.1) is its scale invariance under the
scaling

(1.2) uλ(x) = λ−
N−p

p u
( x
λ

)
for λ > 0 whenΩ = RN. Indeed, one can easily check that∫

RN
|∇uλ(x)|p dx=

∫
RN
|∇u(y)|p dy,

∫
RN

|uλ(x)|p
|x|p dx=

∫
RN

|u(y)|p
|y|p dy.

On a bounded domain case, the inequality (1.1) does not have its scale in-
variance under the scaling (1.2) due to change in the domain of integration
by the scaling. Indeed, one can see that∫

λΩ

|∇uλ(x)|p dx=
∫
Ω

|∇u(y)|p dy,
∫
λΩ

|uλ(x)|p
|x|p dx=

∫
Ω

|u(y)|p
|y|p dy.
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However, if we admit change in the domain of integration, we can say that
the inequality (1.1) in a bounded domain also has scale invariance under the
scaling (1.2). Here we call this property asthe quasi-scale invariance.

On the critical casep = N, the inequality (1.1) fails for every constant
and instead of (1.1) the inequality

(1.3)

(
N − 1

N

)N ∫
Ω

|u(x)|N

|x|N(log eR
|x| )

N
dx≤

∫
Ω

∣∣∣∣∣∇u(x) · x
|x|

∣∣∣∣∣N dx

holds for allu ∈ W1,N
0 (Ω), whereR := supx∈Ω |x| (see [1], [17], Proposition

7 in Appendix). We call (1.3) asthe Hardy inequality in a limiting case.
It is also known that the best constant (N−1

N )N is not attained inW1,N
0 (Ω) by

adding remainder terms in (1.3) (see [2], [15], Proposition 7 in Appendix).
On the other hand, the critical Hardy inequality

(1.4)

(
N − 1

N

)N ∫
Ω

|u(x)|N

|x|N(log R
|x| )

N
dx≤

∫
Ω

∣∣∣∣∣∇u(x) · x
|x|

∣∣∣∣∣N dx

holds for allu ∈ W1,N
0 (Ω) (see [12], [17]). It is also known that the best

constant (N−1
N )N is not attained inW1,N

0 (Ω) (see [12], [16]).
In this paper, we focus on the Hardy inequality in a limiting case (1.3).

In author’s opinion, the attainability of (N−1
N )N in (1.3) have been showed

by using adding remainder terms in (1.3) or by using the attainability of
( N−1

N )N in (1.4). The main aim of this paper is to provide another proof of
the attainability of (N−1

N )N in (1.3) by using the property which the inequality
(1.3) has. We do not need remainder terms of (1.3) and results of (1.4).

Note that the inequalities (1.3), (1.4) are not the invariant under the scal-
ing uλ(x) = u(λx) due to the logarithmic term. However Cassani-Ruf-Tarsi
[4] and Ioku-Ishiwata [12] introduced the scaling

(1.5) uλ(x) = λ−
N−1

N u
(
|x|λ−1x

)
for λ > 0 whenΩ is a unit ball. One can observe that the inequality (1.4)
has its scale invariance under the scaling (1.5) whenΩ is a unit ball (see
[12]). Ioku-Ishiwata [12] proved that the best constant (N−1

N )N in (1.4) is not
attained inW1,N

0 (Ω) whenΩ is a ball. One of key tools in their proof is its
scale invariance in the inequality (1.4). However, our inequality (1.3) does
not have its scale invariance under the scaling (1.5). Instead of (1.5), we
introduce the following scaling

(1.6) uλ(x) = λ−
N−1

N u

( |x|eR

)λ−1

x


for λ > 0 to the Hardy inequality in a limiting case (1.3). One of key tools
in our proof is its quasi-scale invariance in (1.3) under the scaling (1.6).
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Before starting main results let us introduce the following notations:B(R)
is a ball centered 0 with radiusR in RN, |A| denotes the measure of a set
A ⊂ RN,ωN is the area of the unit sphere inRN, andW1,N

0,rad(B(R)) is a class of

radially symmetric functions which is contained inW1,N
0 (B(R)). Moreover,

we set

(1.7) CH := inf
0,u∈W1,N

0 (Ω)

∫
Ω

∣∣∣∣∇u(x) · x
|x|

∣∣∣∣N dx∫
Ω

|u(x)|N

|x|N
(
log eR

|x|
)N dx

.

Note thatCH = ( N−1
N )N from Proposition 7 in Appendix. Our main result is

as follows:

Theorem 1. The optimal constantCH is not attained for any bounded do-
mainΩ.

Remark2. The inequality (1.3) has the quasi-scale invariance under the
scaling (1.6) (see Proposition 8 in Appendix).

2. Proof of Theorem 1

For a while, letΩ = B(R). We assume thatCH is attained by ˜u ∈
W1,N

0 (B(R)) and derive a contradiction. At first, we show the existence of
a radial minimizer ofCH. This lemma can be proved by using the same
method as one of [12].

Lemma 3 ([12]). Let ũ ∈ W1,N
0 (B(R)) be a minimizer ofCH. Then there

exists a radial minimizeru ∈W1,N
0,rad(B(R)) of CH.

Proof of Lemma 3. Sinceũ ∈ W1,N
0 (B(R)) is a minimizer ofCH, then the

forth inequality in (3.2) should be an equality:∫
B(R)

|ũ(x)|N−1

|x|N−1
(
log eR

|x|

)N−1

∣∣∣∣∣ x
|x| · ∇ũ(x)

∣∣∣∣∣ dx

=
N

N − 1

(∫
B(R)

∣∣∣∣∣∇ũ(x) · x
|x|

∣∣∣∣∣N dx

) 1
N
∫

B(R)

|ũ(x)|N

|x|N(log eR
|x| )

N
dx


N−1

N

.

By the equality condition for the Ḧolder inequality, there exists a constant
α ∈ R such that ∣∣∣∣∣ x

|x| · ∇ũ(x)
∣∣∣∣∣ = α |ũ(x)|

|x|(log eR
|x| )

(2.1)

holds for almost everyx ∈ B(R). Sinceũ is a minimizer ofCH, we have
α = (CH)

1
N .
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On the other hand, by using polar coordinatesx = (r, θ) (r ∈ (0,R), θ ∈
SN−1) and Fubini’s theorem together with the fact ˜u ∈W1,N

0 (B(R)), we obtain∫ R

0
|∂r ũ(r, θ)|NrN−1 dr < ∞,

∫ R

0

|ũ(r, θ)|
r(log eR

r )N
dr < ∞.(2.2)

for almost everyθ ∈ SN−1. Combining (2.1) and (2.2), we observe that there
existsθ0 ∈ SN−1 such that

0 <
∫ R

0
|∂r ũ(r, θ0)|NrN−1 dr = CH

∫ R

0

|ũ(r, θ0)|
r(log eR

r )N
dr < ∞.

Here we putu(x) := ũ(|x|, θ0). Then we can observe thatu satisfies

CH =

∫
SN−1 dθ

∫ R

0
|∂r ũ(r, θ0)|N rN−1 dr∫

SN−1 dθ
∫ R

0
|ũ(r,θ0)|N

r(log eR
r )N dr

=

∫
B(R)

∣∣∣∣∇u(x) · x
|x|

∣∣∣∣N dx∫
B(R)

|u(x)|N

|x|N
(
log eR

|x|
)N dx

which implies thatu ∈W1,N
0,rad(B(R)) is a radial minimizer ofCH. □

Next lemma is concerning the quasi-scale invariance of the inequality
(1.3) for radial functions. Recall that the scale invariance of the inequality
(1.4) plays a essential role for proving the nonexistence of minimizers of
(1.4) in [12]. In our inequality (1.3), the quasi-scale invariance of (1.3)
plays a essential role for the proof of Theorem 1.

Lemma 4. Let u = u(s) ∈ W1,N
0,rad(B(R)) anduλ = uλ(r) be defined by (1.6).

Thenuλ ∈W1,N
0,rad(B(e1− 1

λR)) and there hold∫ e1− 1
λR

0
|∂ruλ(r)|NrN−1 dr =

∫ R

0
|∂su(s)|NsN−1 ds(2.3)

and ∫ e1− 1
λR

0

|uλ(r)|N

r(log eR
r )N

dr =
∫ R

0

|u(s)|N

s(log eR
s )N

ds.(2.4)

Especially, ifu ∈ W1,N
0,rad(B(R)) is a radial minimizer ofCH, then uλ ∈

W1,N
0,rad(B(e1− 1

λR)) ⊂ W1,N
0,rad(B(R)) is also a radial minimizer ofCH for all

0 < λ ≤ 1.

Proof of Lemma 4. Since (1.6), there holds∫ e1− 1
λR

0
|∂ruλ(r)|NrN−1 dr = λ1−N

∫ e1− 1
λR

0
|∂ru(rλ(eR)1−λ)|NrN−1 dr.
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Now applying the change of variabless = s(r) = rλ(eR)1−λ(i.e. r = r(s) =
s

1
λ (eR)1− 1

λ ), we obtain∫ e1− 1
λR

0
|∂ruλ(r)|NrN−1 dr = λ1−N

∫ R

0
|u′(s)|N(s′(r) r(s))N−1 ds

=

∫ R

0
|u′(s)|NsN−1 ds

which implies (2.3). On the other hand, by the change of variabless =
s(r) = rλ(eR)1−λ(i.e. r = r(s) = s

1
λ (eR)1− 1

λ ), we get∫ e1− 1
λR

0

|uλ(r)|N

r(log eR
r )N

dr = λ1−N

∫ e1− 1
λR

0

|u(rλ(eR)1−λ)|N

r(log eR
r )N

dr

= λ1−N

∫ R

0

|u(s)|N

λs(1
λ

log eR
s )N

ds

=

∫ R

0

|u(s)|N

s(log eR
s )N

ds

which yields (2.4). □

Remark5. In fact, we can prove Lemma 4 for even non-radially symmetric
functions (see Proposition 8 in Appendix). However, in that case, we must
use the JacobianJ

(
∂(x1,··· ,xN)
∂(y1,··· ,yN)

)
in (3.7) calculated by Ioku-Ishiwata [12]. In

present proof, we do not need the complicated Jacobian thanks to restrict
functions to radial ones.

Lemma 6. Let u ∈ W1,N
0,rad(B(R)) be a nonnegative minimizer ofCH. Then

u ∈ C1(B(R) \ {0}) andu > 0 in B(R) \ {0}.
Proof of Lemma 6. For the sake of simplicity, we put

E(v) :=
∫ R

0
|∂rv(r)|NrN−1 dr, G(u) :=

∫ R

0

|v(r)|N

r(log eR
r )N

dr.

wherev ∈W1,N
0,rad(B(R)). Forv, ϕ ∈W1,N

0,rad(B(R)), we have

E
′
(v)ϕ :=

d
dt

∣∣∣∣∣
t=0

E(v+ tϕ) =
∫ R

0
|∂rv(r)|N−2∂rv(r)∂rϕ(r)r

N−1 dr

G
′
(v)ϕ :=

d
dt

∣∣∣∣∣
t=0

G(v+ tϕ) =
∫ R

0

|v(r)|N−2v(r)ϕ(r)

r(log eR
r )N

dr.

By using this notations, the optimal constantCH is written by

CH = inf
0,v∈W1,N

0,rad(B(R))

E(v)
G(v)

= inf
v∈W1,N

0,rad(B(R)),G(v)=1
E(v).
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By the method of Lagrange multiplier, a minimizeru satisfies∫ R

0
|∂ru(r)|N−2∂ru(r)∂rϕ(r) rN−1 dr = CH

∫ R

0

|u(r)|N−2u(r)ϕ(r)

r(log eR
r )N

dr

for all ϕ ∈W1,N
0,rad(B(R)). This means thatu is a weak solution of−∆Nu = CH

|u|N−2u(
|x| log eR

|x|
)N in B(R)

u = 0 on ∂B(R)

where−∆Nv :=div (|∇v|N−2∇v) is the N-Laplacian. Particularly, forε > 0,

the function

(
|x| log

eR
|x|

)−N

is bounded inB(R) \ B(ε).(2.5)

Furthermore Sobolev embeddingW1,N(B(R)) ↪→ Lq(B(R)) (1 ≤ ∀q < ∞)
yields that

u ∈ Lq(B(R)) for all 1 ≤ q < ∞.(2.6)

Thus we see that∆Nu ∈ Lq(B(R) \ B(ε)) for all 1 ≤ q < ∞ by (2.5) and
(2.6). If we takeq > N2

N−1, thenu ∈ C1(B(R) \ B(ε)). (see [7]) Hence,
by applying the strong maximum principle for the distributional solution
u ∈ C1(B(R) \ B(ε)) to the inequality−∆Nu ≥ 0 in B(R) \ B(ε), we obtain
u > 0 in B(R) \ B(ε). (see [14] Theorem 2.5.1.) Sinceε > 0 is arbitrary, we
have provedu ∈ C1(B(R) \ {0}) andu > 0 in B(R) \ {0}. □

At last, we shall prove Theorem 1 by using three Lemmas. Proof of The-
orem 1 consists of two Steps. In Step 1, we show the nonexistence of min-
imizers ofCH whenΩ is a ballB(R). In Step 2, we show the nonexistence
of minimizers ofCH whenΩ is a general bounded domain.

Proof of Theorem 1. (Step 1) : First we will show the optimal constant
CH is not attained whenΩ = B(R). Now we assume that ˜u ∈ W1,N

0 (B(R))
is the minimizer ofCH and derive a contradiction. From Lemma 3, there
exists a radial minimizeru ∈ W1,N

0,rad(B(R)) of CH. Furthermore we suppose
that u is nonnegative without loss of generality. LetRS > 0 be such that
RS < R. From Lemma 4, if we takeλ > 0 as satisfyinge1− 1

λR = RS, then
uλ ∈W1,N

0,rad(B(RS)) and there hold∫ RS

0
|∂ruλ(r)|NrN−1 dr =

∫ R

0
|∂su(s)|NsN−1 ds(2.7)

and ∫ RS

0

|uλ(r)|N

r(log eR
r )N

dr =
∫ R

0

|u(s)|N

s(log eR
s )N

ds.(2.8)
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Here we put

uλ(r) :=

uλ(r) if 0 < r ≤ RS

0 if RS < r < R.

Thusuλ ∈W1,N
0,rad(B(R)) is also a radial minimizer ofCH. However, by using

Lemma 6, we haveuλ > 0 in 0< r < R. Sinceuλ(r) ≡ 0 in RS ≤ r ≤ R, this
is a contradiction. Therefore the optimal constantCH is not attained when
Ω is a ball.
(Step 2) : Next we will show the optimal constantCH is not attained when
Ω is a general bounded domain. We assume thatCH is attained byv ∈
W1,N

0 (Ω). Then we put

v(x) :=

v(x) if x ∈ Ω
0 if x ∈ B(R) \Ω.

Sincev ∈ W1,N
0 (B(R)), CH is attained byv ∈ W1,N

0 (B(R)) whenΩ is a ball
B(R). This contradicts to Step 1.

The proof of Theorem 1 is now complete. □

3. Appendix

For the reader’s convenience, we give a proof of the inequality (1.3) with
its optimal constant.

Proposition 7. LetΩ ⊂ RN be a smooth bounded domain with0 ∈ Ω and
N ≥ 2. Then the inequality (1.3):(

N − 1
N

)N ∫
Ω

|u(x)|N

|x|N(log eR
|x| )

N
dx≤

∫
Ω

∣∣∣∣∣∇u(x) · x
|x|

∣∣∣∣∣N dx

holds for allu ∈ W1,N
0 (Ω), whereR= supx∈Ω |x|. Furthermore, the constant

( N−1
N )N is optimal, namely there holds

(3.1) CH = inf
0,u∈W1,N

0 (Ω)

∫
Ω

∣∣∣∣∇u(x) · x
|x|

∣∣∣∣N dx∫
Ω

|u(x)|N

|x|N
(
log eR

|x|
)N dx

=

(
N − 1

N

)N

.

Proof of Proposition 7. First we will describe the simple proof of (1.3) by
F.Takahashi [17]. Since

div

 x

|x|N
(
log eR

|x|

)N−1

 = N − 1

|x|N
(
log eR

|x|

)N
for |x| , 0,R,
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we have∫
Ω

|u(x)|N

|x|N(log eR
|x| )

N
dx=

1
N − 1

∫
Ω

div

 x

|x|N
(
log eR

|x|

)N−1

 |u(x)|Ndx

=
N

N − 1

∫
Ω

|u(x)|N−2u(x)

|x|N−1
(
log eR

|x|

)N−1

(
− x
|x| · ∇u(x)

)
dx

≤ N
N − 1

∫
Ω

|u(x)|N−1

|x|N−1
(
log eR

|x|

)N−1

∣∣∣∣∣ x
|x| · ∇u(x)

∣∣∣∣∣ dx

≤ N
N − 1

(∫
Ω

∣∣∣∣∣∇u(x) · x
|x|

∣∣∣∣∣N dx

) 1
N
∫
Ω

|u(x)|N

|x|N(log eR
|x| )

N
dx


N−1

N

.(3.2)

Hence the inequality (1.3) holds for allu ∈W1,N
0 (Ω).

Next we will give a proof of (3.1) by using the quasi-scale invariance in
the Hardy inequality in a limiting case (1.3). Let 0< ℓ ≪ 1 andN−1

N < δ <
1. We define the functionuℓ,δ as follows:

uℓ,δ(r) =


(
log e

ℓ

)δ
− 1, 0 ≤ r ≤ ℓR(

log eR
r

)δ
− 1, ℓR≤ r ≤ R.

wherer = |x|, and

u
′

ℓ,δ(r) =

0, 0 ≤ r ≤ ℓR
−δ

(
log eR

r

)δ−1
r−1, ℓR≤ r ≤ R.

Therefore, one can easily check thatu ∈ W1,N
0,rad(B(R)). Direct calculations

show that∫
B(R)

∣∣∣∣∣∇uℓ,δ(x) · x
|x|

∣∣∣∣∣N dx= ωNδ
N

∫ R

ℓR
|u′ℓ,δ(r)|NrN−1dr

= ωN δ
N

∫ R

ℓR

(
log

eR
r

)Nδ−N dr
r

= ωN δ
N

∫ 1

ℓ

(
log

e
r

)Nδ−N dr
r

= ωN δ
N

∫ log e
ℓ

1
tNδ−N dt

= ωN
δN

Nδ − N + 1

((
log

e
ℓ

)Nδ−N+1

− 1

)
.(3.3)
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On the other hand, we have

∫
B(R)

|uℓ,δ(x)|N

|x|N
(
log eR

|x|

)N
dx

= ωN

((
log

e
ℓ

)δ
− 1

)N ∫ ℓR

0

(
log

eR
r

)−N dr
r

+ ωN

N∑
k=0

(−1)k
(

N
k

) ∫ R

ℓR

(
log

eR
r

)(N−k)δ−N dr
r

= ωN

∫ ℓ

0

(
log

e
r

)−N dr
r
+ ωN

N∑
k=0

(−1)k
(

N
k

) ∫ 1

ℓ

(
log

e
r

)(N−k)δ−N dr
r

= ωN

N∑
k=0

(−1)k
(

N
k

) (
log

e
ℓ

)(N−k)δ
∫ ∞

log e
ℓ

t−N dt

+ ωN

N∑
k=0

(−1)k
(

N
k

) ∫ log e
ℓ

1
t(N−k)δ−N dt

= ωN

N∑
k=0

(−1)k
(

N
k

)
1

N − 1

(
log

e
ℓ

)(N−k)δ+1−N

+ ωN

N∑
k=0

(−1)k
(

N
k

)
1

(n− k)δ − N + 1

((
log

e
ℓ

)(N−k)δ−N+1

− 1

)
= ωN

(
Nδ

(N − 1)(Nδ − N + 1)

(
log

e
ℓ

)Nδ+1−N

+

N∑
k=1

Ck,N,ℓ

(
log

e
ℓ

)(N−k)δ+1−N

+

N∑
k=0

Dk,N,δ

)(3.4)

where

Ck,N,δ := (−1)k
(

N
k

)
(N − k)δ

(N − 1)( (N − k)δ − N + 1 )

Dk,N,δ := (−1)k
(

N
k

)
1

(N − k)δ − N + 1
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From (3.3) and (3.4), we obtain∫
B(R)

∣∣∣∣∇uℓ,δ(x) · x
|x|

∣∣∣∣N dx∫
B(R)

|uℓ,δ(x)|N

|x|N
(
log eR

|x|
)N dx

→ (N − 1)δN−1

N
asℓ → 0

→
(
N − 1

N

)N

asδ→ N − 1
N
.(3.5)

Now applying Lemma 4, we have∫
B(R)

∣∣∣∣∇uℓ,δ(x) · x
|x|

∣∣∣∣N dx∫
B(R)

|uℓ,δ(x)|N

|x|N
(
log eR

|x|
)N dx

=

∫
B(e1− 1

λR)

∣∣∣∣∇(uℓ,δ)λ(x) · x
|x|

∣∣∣∣N dx∫
B(e1− 1

λR)

|(uℓ,δ)λ(x)|N

|x|N
(
log eR

|x|
)N dx

(3.6)

for all λ > 0. Here, if we takeλ > 0 as satisfyingB(e1− 1
λR) ⊂ Ω, then

(uℓ,δ)λ ∈ W1,N
0,rad(Ω). Consequently, from (3.5) and (3.6), we can observe

that the constant (N−1
N )N is optimal in the inequality (1.3) for any bounded

domainΩ. □

Proposition 8. The inequality (1.3) has quasi-scale invariance under the
scaling (1.6).

Proof of Proposition 8. Let y =
( |x|

eR

)λ−1
x
(
i.e.x =

( |y|
eR

) 1
λ−1

y
)

and

Ωλ :=

x =

(
|y|
eR

) 1
λ−1

y

∣∣∣∣∣∣ y ∈ Ω
 .

Ioku-Ishiwata [12] calculated the JacobianJ
(
∂(x1,··· ,xN)
∂(y1,··· ,yN)

)
as follows:

J

(
∂(x1, · · · , xN)
∂(y1, · · · , yN)

)
:= det


∂x1
∂y1

∂x1
∂y2
· · · ∂x1

∂yN
∂x2
∂y1

∂x2
∂y2
· · · ∂x2

∂yN
...

...
. . .

...
∂xN

∂y1

∂xN

∂y2
· · · ∂xN

∂yN

 =
(
|y|
eR

)( 1
λ−1)N 1

λ
.(3.7)

Since

∇xuλ(x) · x
|x| = λ

1
N

(
|x|
eR

)λ−1

∇yu(y) · x
|x| ,

there holds∫
Ωλ

∣∣∣∣∣∇uλ(x) · x
|x|

∣∣∣∣∣N dx=
∫
Ω

λ

(
|x|
eR

)(λ−1)N ∣∣∣∣∣∇yu(y) · x
|x|

∣∣∣∣∣N dx.
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Thus we obtain∫
Ωλ

∣∣∣∣∣∇uλ(x) · x
|x|

∣∣∣∣∣N dx=
∫
Ω

(
|y|
eR

)(1− 1
λ )N

λ

∣∣∣∣∣∇yu(y) · y
|y|

∣∣∣∣∣N J

(
∂(x1, · · · , xN)
∂(y1, · · · , yN)

)
dy

=

∫
Ω

∣∣∣∣∣∇u(y) · y
|y|

∣∣∣∣∣N dy.(3.8)

On the other hand, by the change of variablesx =
( |y|

eR

) 1
λ−1

y, we have∫
Ωλ

|uλ(x)|N

|x|N
(
log eR

|x|

)N
dx= λ1−N

∫
Ω

|u(y)|N

(eR)(1− 1
λ )N|y| Nλ

(
1
λ

log eR
|y|

)N
J

(
∂(x1, · · · , xN)
∂(y1, · · · , yN)

)
dy

=

∫
Ω

|u(y)|N

|y|N
(
log eR

|y|

)N
dy.(3.9)

Therefore we have proved Proposition 8 by (3.8) and (3.9). □
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