ANOTHER PROOF OF THE HARDY INEQUALITY IN A
LIMITING CASE WITH THE QUASI-SCALE INVARIANCE

MEGUMI SANO

AsstracT. We introduce a new scaling in the logarithmic Hardy inequal-
ity. Our inequality has the quasi-scale invariance under the scaling. By
using a scaling argument, we also show that there is no minimizer for an
associated minimizing problem.

1. INTRODUCTION

Let Q be a smooth bounded domain witre@ in RN(or Q = RN). The
classical Hardy inequality

N-p\" [ lux)IP
(1.1) ( p ) o IXP

holds for allu € WyP(Q), whereN > 2, 1 < p < N. Itis known that, for

1 < p, the best constanﬁﬁp)p is not attained irWé’p(Q). Furthermore, the
inequality (1.1) can be improved by adding remainder terms in (1.1) (see
[1], [3], [5], [6], [8], [9], [10], [11], [13], [16] and the references therein).
One of the novelties of the inequality (1.1) is its scale invariance under the
scaling

dx < f [Vu(x)[P dx
Q

(1.2) u(X) = /l‘¥u(%()
for A > 0 whenQ = RN. Indeed, one can easily check that

Uy (X)[P lu(y)IP
Vu, (X Iodx:f Vu(y)[P dy, ———dx= d
[ mucorax= [ ivuray [ H2tex= [ A

On a bounded domain case, the inequality (1.1) does not have its scale in-
variance under the scaling (1.2) due to change in the domain of integration
by the scaling. Indeed, one can see that

[u(x)IP lu(y)[P
Vu, (X pdx:fVu Pdy, dx=
l;|l(n wuPay, [ B v
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However, if we admit change in the domain of integration, we can say that
the inequality (1.1) in a bounded domain also has scale invariance under the
scaling (1.2). Here we call this property th& quasi-scale invariance

On the critical cas@ = N, the inequality (1.1) fails for every constant
and instead of (1.1) the inequality

1

N

vu(x) - X dx

X

holds for allu € W2N(Q), whereR := sup,,, [X| (see [1], [17], Proposition

7 in Appendix). We call (1.3) athe Hardy inequality in a limiting case

It is also known that the best constaBg¥)N is not attained inW;™(Q) by

adding remainder terms in (1.3) (see [2], [15], Proposition 7 in Appendix).
On the other hand, the critical Hardy inequality

N - 1\" Ju(x)|N
oo (5 [ e =,

holds for allu € W;N(Q) (see [12], [17]). Itis also known that the best
constant £&2)N is not attained in\;™(Q) (see [12], [16]).

In this paper, we focus on the Hardy inequality in a limiting case (1.3).
In author’s opinion, the attainability ofﬂﬁl)'\‘ in (1.3) have been showed
by using adding remainder terms in (1.3) or by using the attainability of
(%)N in (1.4). The main aim of this paper is to provide another proof of
the attainability of %)N in (1.3) by using the property which the inequality
(1.3) has. We do not need remainder terms of (1.3) and results of (1.4).

Note that the inequalities (1.3), (1.4) are not the invariant under the scal-
ing u,(X) = u(1x) due to the logarithmic term. However Cassani-Ruf-Tarsi
[4] and loku-Ishiwata [12] introduced the scaling

(1.5) U(x) = A"~ u (lxl”‘lx)

for 2 > 0 whenQ is a unit ball. One can observe that the inequality (1.4)
has its scale invariance under the scaling (1.5) w®@s a unit ball (see
[12]). loku-Ishiwata [12] proved that the best constéﬁﬂQN in (1.4) is not
attained inwg’N(Q) whenQ is a ball. One of key tools in their proof is its
scale invariance in the inequality (1.4). However, our inequality (1.3) does
not have its scale invariance under the scaling (1.5). Instead of (1.5), we
introduce the following scaling

-1
(1.6) u(X) = A‘NNlu((lellg) x)

for A > 0O to the Hardy inequality in a limiting case (1.3). One of key tools
in our proof is its quasi-scale invariance in (1.3) under the scaling (1.6).

N

Vu(x) - X dx

X
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Before starting main results let us introduce the following notati&(R)
is a ball centered 0 with radiR in RN, |A| denotes the measure of a set
A C RN, wy is the area of the unit spherelirY, andW ) (B(R)) is a class of

radially symmetric functions which is contained\Ng’N(B(R)). Moreover,

we set
N

dx

Ix ‘Vu(x) Sk
luGIN o
(log £5)

Note thatCy = (NT‘l)N from Proposition 7 in Appendix. Our main result is
as follows:

1.7) Ch = in}‘N
0£ueW2N (@) fQ -

Theorem 1. The optimal constanty is not attained for any bounded do-
mainQ.

Remark2. The inequality (1.3) has the quasi-scale invariance under the
scaling (1.6) (see Proposition 8 in Appendix).

2. ProoF oF THEOREM 1

For a while, letQ = B(R). We assume thaty is attained byu™ e
Wé’N(B(R)) and derive a contradiction. At first, we show the existence of
a radial minimizer ofCy. This lemma can be proved by using the same
method as one of [12].

Lemma 3 ([12]). Let&i € W,N(B(R)) be a minimizer oCy. Then there
exists a radial minimizen € W, ,(B(R)) of Cy..

Proof of Lemma 3. Sinceu’ € W2"(B(R)) is a minimizer ofCy, then the
forth inequality in (3.2) should be an equality:

™~ N-1
Jﬁ U9 Nq_ﬁz-VGOQ‘dx
— R
B(R) x|N 1(Iog |e7|)
N f x| )ﬁ(f AN )N_l
= — Vi(x) - —| dx ——dX .
N—l( BR) ¥ x s® [XN(log §)N

By the equality condition for the &lder inequality, there exists a constant
a € R such that

|G(x)|
Xi(log £

1]
holds for almost everx € B(R). Sinceu’is a minimizer ofCy, we have
a = (Cpy)V.

2.1) '% - Vﬂ(x)‘ —a
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On the other hand, by using polar coordinates (r,0) (r € (O,R),0 €
sN-1) and Fubini’s theorem together with the faict W, (B(R)), we obtain

R R |~
(2.2) f 10, a(r, O)NrNdr < Oo’f Le@NN dr < oo
0 o r(log =)

for almost every € SN-1. Combining (2.1) and (2.2), we observe that there
existsd, € SNt such that

RJ(r, 60)]
o r(log €N

Here we put(x) := (x|, ). Then we can observe thasatisfies

R
0< f 10,0(r, 6)NrN -1 dr = Cy
0

N
R ~
o bt 08 e Joo |[TU09 - 2| dlx
H= R Ju(r.oo)N - JuEIN
jéN-l d@f r(log eR) ‘[I‘?’(R) |X|N(|0g %)N dx
which implies thati € W, (B(R)) is a radial minimizer oC,. u

Next lemma is concerning the quasi-scale invariance of the inequality
(1.3) for radial functions. Recall that the scale invariance of the inequality
(1.4) plays a essential role for proving the nonexistence of minimizers of
(2.4) in [12]. In our inequality (1.3), the quasi-scale invariance of (1.3)
plays a essential role for the proof of Theorem 1.

Lemma 4. Letu = u(s) € W, rNad(B(R)) andu, = u,(r) be defined by (1.6).
Thenu, € Wy, (B(e*"TR)) and there hold

1

e 1R R
(2.3) f 10, uy(N)NrNLdr :f 1osu(s)NsVtds
0 0
and
IR N R N
(2.4) f |u4(r)|R dr = IU(S)IR ds
o  r(log N o Slog £)N

Especially, ifu € W3, (B(R)) is a radial minimizer ofCy, thenu, €
WM (B TR) ¢ W,r(B(R) is also a radial minimizer oy for all

0,ral O,ra

0<aA<1.

Proof of Lemma 4. Since (1.6), there holds

1-1 -1

e 1R 1R
f () dr = A5 f 9ru(r(eR™ )M r*dr.
0 0
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Now applying the change of variables= s(r) = r{(eR*(i.e. r = r(s) =
si(eR¥1), we obtain

e 1R R
f BN dr = N f WOMNED 1) ds
0 0

R
= f u(s)NsNtds
0

which implies (2.3). On the other hand, by the change of variables
s(r) = ri(eR**(i.e.r = r(s) = s1(eR 1), we get

e-iR N e-iR 2 1-A\|N
f [u(r)l dr :/ll—Nf lu(r‘(eR*) dr
0 0

r(log )N r(log )N
— N fR Ju(s) ™ ds
o As(;log SN
(T
o Sllog )"
which yields (2.4). m|

Remarks. In fact, we can prove Lemma 4 for even non-radially symmetric
functions (see Proposition 8 in Appendix). However, in that case, we must
use the Jacobiad( 5524} in (3.7) calculated by loku-Ishiwata [12]. In
present proof, we do not need the complicated Jacobian thanks to restrict

functions to radial ones.

Lemma 6. Letu € Wy, (B(R)) be a nonnegative minimizer @f;. Then
ue CYB(R)\ {0}) andu > 0in B(R) \ {0}.

Proof of Lemma 6. For the sake of simplicity, we put
E(V) = leav(r)lNrN‘ldr G(u) = fR MO,
= o r s — . r(log%?)N

wherev e W (B(R)). Forv, ¢ € W) (B(R)), we have

Ora 0,ra

E W=

R
il cV ) = f 9N 20 v(r)B, (1) di
0

o d _ RN A(N)$(r)
G(v)¢ = d—t‘t:OG(v+t¢)— o T(log EN dr.

By using this notations, the optimal const&ht is written by

. E(v .
Cu = inf Q = inf E(v).
orvewN (BR) G(V)  vewt! (BR).G(=1

t=0
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By the method of Lagrange multiplier, a minimiagsatisfies

| o2, unaem idr = ¢, [ MOPU0E0) o
0 0 r(log &N

for all ¢ € Wy, (B(R)). This means that is a weak solution of

{—ANu - Cy : L in B(R)

x| log \x|)N
u=0 on dB(R)

where—AyV :=div (|VV{N-2VV) is the N-Laplacian. Particularly, far> 0,
. R . .
(2.5) the function (|x| log %I) is bounded iNB(R) \ B(g).

Furthermore Sobolev embeddivg-N(B(R)) — LYB(R)) (1 < g < )
yields that

(2.6) ue LYB(R)) forall 1 < q< .

Thus we see thatyu € LYB(R) \ B(g)) forall 1 < g < « by (2.5) and
(2.6). If we takeq > -, thenu € CY(B(R) \ B(s)). (see [7]) Hence,
by applying the strong maximum principle for the distributional solution
u € CY{B(R) \ B(¢)) to the inequality-Ayu > 0 in B(R) \ B(g), we obtain
u> 0inB(R) \ B(e). (see [14] Theorem 2.5.1.) Sinee> O is arbitrary, we
have provedi € C}(B(R) \ {0}) andu > 0 in B(R) \ {0}. O

At last, we shall prove Theorem 1 by using three Lemmas. Proof of The-
orem 1 consists of two Steps. In Step 1, we show the nonexistence of min-
imizers ofCy whenQ is a ballB(R). In Step 2, we show the nonexistence
of minimizers ofCy whenQ is a general bounded domain.

Proof of Theorem 1. (Step 1) : First we will show the optimal constant
Cy is not attained whe® = B(R). Now we assume that & W,"(B(R))

is the minimizer ofCy and derive a contradiction. From Lemma 3, there
exists a radial minimizen € W, (B(R)) of Cy. Furthermore we suppose
thatu is nonnegative without loss of generality. LR$ > O be such that
Rs < R. From Lemma 4, if we taka > 0 as satisWin@*%R = Rg, then

u, € WA (B(Rs)) and there hold

O,rad

Rs R

(2.7) f It?rua(r)lNrN‘ldr:f 1Ou(s)NsNds
0 0

and

28 fop\g wOM (e

r(og =N~ Jo log N
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Here we put

— v jwa(r) ifO<r<Rs
Ui(r) = {o if Rs<r <R

Thusu, Wé’gd(B(R)) is also a radial minimizer . However, by using
Lemma 6, we hav@, > 0in0<r <R. Sincel,(r) =0inRs <r <R, this
is a contradiction. Therefore the optimal const@ntis not attained when
Qs a ball.

(Step 2) : Next we will show the optimal consta®y is not attained when
Q is a general bounded domain. We assume @hais attained by €
WMN(Q). Then we put

—n . JV(X) if xeQ
v = {o if x € B(R)\ Q.

Sincev € WXN(B(R)), Cy is attained by € WX"(B(R)) whenQ is a ball
B(R). This contradicts to Step 1.
The proof of Theorem 1 is now complete. O

3. APPENDIX

For the reader’s convenience, we give a proof of the inequality (1.3) with
its optimal constant.

Proposition 7. LetQ c RN be a smooth bounded domain witke Q and
N > 2. Then the inequality (1.3):

N - 1\" Ju(x|N
( N ) fmxw(loge—R)N dngg

1

N

Vu(x) - X dx

X

holds for allu € WXN(Q), whereR = sup,, |x|. Furthermore, the constant
(N1)N is optimal, namely there holds

N
dx N -1\"
(5

_ I 'Vu(x) Tk
(3.2) Cu= inf R

1N
0£UeW; ™ (Q) fQ \xIN(|°gT7'\R)N

Proof of Proposition 7. First we will describe the simple proof of (1.3) by
F.Takahashi [17]. Since

div[ X Nl]— N=1 forx#0R
(XM (log £F)

log f—XFl* IX|N (Iog %‘)
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we have

U™ 1 f | X "
——dx= div| ————— [lu()I"dx
L |X|N(|Og_R N N-1o |X|N (lOg @)N 1

X
1 X

_ON L ueMPu (_1. )
TN - 1L IX|N-1 (|Og %T)N_l X Vu(x) | dx

v |u(x>|N-1)N_l X vu] ax

" N-1 |X|N—l (|OgT7T

N XN\ Ju(x)" "
3.2 < vu(x) - —| dx N &N OX|
(3.2) N—l(fg ) IX] ) [LIXINUOQ%N

Hence the inequality (1.3) holds for alle W>"(Q).

Next we will give a proof of (3.1) by using the quasi-scale invariance in
the Hardy inequality in a limiting case (1.3). Le0f <« 1 and% <0<
1. We define the function, s as follows:

Ugs(r) = (|°g%)6_l’ O<r<(R
es\l) = (log e_R)‘5 -1, (R<r<R

r

wherer = |x|, and

/ 0, 0<r<¢(R
Uy 5(r) = -
5,5( ) _5('09 e_R)6 lr_l’ fRS r< R

r

Therefore, one can easily check that W7 (B(R)). Direct calculations
show that

fB(R)

N R
N ’ N.N-1
dx = wyd f U, s (r)[Frdr
{R

R N6—N
R eR™ dr
= wNO fm(mg rR) r
1 e No6—N dr
= wy oV f (Iog —) —
¢ r r

log ¢
= wN 5N f tNé_N dt
1

s 6N | e\No-N+1 1
(3.3) _wNNé——I\Hl((ng) - )

X
Vugs(X) - M
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On the other hand, we have

U, s ()N
[,
e\’ N R eR\"™N dr
=N (('ng) - 1) f (0o%) T
N R (N-K)6-N
N e dr
+w —1k( )f lo —R) —
Né( ) k [R( 9 r r
fr ey Ndr N w N (Y e\(N-Ke-N gr
_a)Nfo (logF) T+wN kZ:(;(—l) ( K )‘ﬁ (IOgF) T
N
N e\(N-Ks e
= wN (—1)k( )(Iog—) f t~N dt
kzz(; k t log &
N log &
+ Wy Z(—l)k( 'E ) f NN gy
k=0 1
N
N 1 e\(N-K)5+1-N
=on (| ) (o0)
N
K N 1 9)(N—k)§—N+l B
+kaZ=;( 1)(k)(n—k)6—N+1((|09€ 1

Né‘ e No+1-N
B “’N((N “D(N6-N+1) ('ogZ)
(3.4)

N
e\(N-KJg+1-N
+ Z Ck,N’[ (|Og z)
k=1

N
+ Z Dk,N,é)
k=0

where

_ N (N -K)

Clns = (_l)k( k ) (N-1)((N-Ks-N+1)
_ N 1

Dins 2= (_1)k( k ) (N-Ks-N+1
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From (3.3) and (3.4), we obtain

N
fB(R) ‘VUM(X) : ﬁ

dx (N _ 1)6N_1
H

f |U[5(X)|N N ast -0
B(R) |X|N Iog
N -1\ N-1
3.5 —_— —_
(3.5) - ( N ) aso — N
Now applying Lemma 4, we have
N
Jogo | P60 ﬁ AX ot [P0 - 2] dx
(3.6) IUM(X)lN - (a1 OO
1 B d X
J;B(R) IXN(log 2F) fB(elfiR) IXN(log %'T)N
for all A > 0. Here, if we takel > O as satisfyingB(e""1R) c Q, then
(Urs)a € Orad(Q) Consequently, from (3.5) and (3.6), we can observe
that the constant”ﬁ)'\l is optimal in the inequality (1.3) for any bounded
domainQ. O

Proposition 8. The inequality (1.3) has quasi-scale invariance under the
scaling (1.6).

Proof of Proposition 8. Lety = ('X') - (lex_('yF'e) y) and

i1
Q= {x:(%) y | yeQ}.

loku-Ishiwata [12] calculated the JacobiafiZXe- XN)) as follows:

ay:
o ox L O
dyr Oy YN
0 0 d 1_1)N
(3.7) J(—a(xl’”"x’“))::det m o :(M)(ﬂ "1
oY1, ,YN) : i : eR A
ayr Oy YN
Since
A-1
X 1 (X X
Vi (X) - = =Av [ —| Vyuly) - —,
there holds
(A-1)N N
x [N X X
Vu,(x) - — dx:f/l(—) voauly) - —| dx
fg [ruco- s [P0
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Y

Vu(x) - — v

Thus we obtain
~HN
X" A
dx = — A
L&

fm X
N
vu(y) - =

_ y
(3.8) - j; lyl dy

On the other hand, by the change of variabdes(%{)r1 y, we have

f de: /ll—Nf |u(y)|N J(a(xl,--- ,XN)) dy
Q) |X|N (Iog %IQ)N Q (er(l—%)NM% (/_1{ |Og %F)N a(YL S yN)

luy)
3.9 = | L _qy
& fﬂ N (log &) ’

Therefore we have proved Proposition 8 by (3.8) and (3.9). O

8(yl’ e ’yN)
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