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Abstract We study minimization problems on Hardy-Sobolev type inequality. We consider
the case where singularity is in interior of bounded domain Ω ⊂ RN . The attainability of
best constants for Hardy-Sobolev type inequalities with boundary singularities have been
studied so far, for example [5] [6] [9] etc. . . . According to their results, the mean curvature
of ∂Ω at singularity affects the attainability of the best constants. In contrast with the case
of boundary singularity, it is well known that the best Hardy-Sobolev constant

µs(Ω) :=

{∫
Ω
|∇u|2dx

∣∣∣∣∣u ∈ H1
0 (Ω),

∫
Ω

|u|2∗(s)

|x|s
= 1

}

is never achieved for all bounded domain Ω if 0 ∈ Ω . We see that the position of singularity
on domain is related to the existence of minimizer. In this paper, we consider the attainability
of the best constant for the embedding H1(Ω) ↪→ L2∗(s)(Ω) for bounded domain Ω with
0 ∈ Ω . In this problem, scaling invariance doesn’t hold and we can not obtain information
of singularity like mean curvature.
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Mathematics Subject Classification (2000) 35J20

1 Introduction

We study the minimization problems for the Hardy-Sobolev type inequalities. Let N ≥ 3, Ω
is bounded domain in RN , 0 ∈ Ω , 0 < s < 2, and 2∗(s) := 2(N − s)/(N − 2). The Hardy-
Sobolev inequality asserts that there exists a positive constant C such that

C

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫

Ω
|∇u|2dx (1)
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for all u ∈ H1
0 (Ω). For s = 0, the inequality (1) is called Sobolev inequality and for s = 2,

the inequality (1) is called Hardy inequality.
In the non-singular case (s = 0), it is well known that the best Sobolev constant S is

independent of domain Ω and S is never achieved for all bounded domains. But if Ω = RN

and H1(Ω) is replaced by the function space of u ∈ L2N/(N−2)(Ω) with ∇u ∈ L2(Ω), then
S is achieved by the function u(x) = c(1 + |x|2)(2−N)/2 and hence the value S = N(N −
2)π[Γ (N/2)/Γ (N)]2/N explicitly (see [1], [13] and [16]).

In the case of s = 2, the best constant for the Hardy inequality is [(N − 2)/2]2 and
this constant is never achieved for all bounded domains and RN . This fact suggests that it
is possible to improve this inequality. For example Brezis and Vazquez [2], many people
research the optimal inequality of (1). In other words, the best remainder term for (1) is
studied actively.

In the case of 0 < s < 2, the best Hardy-Sobolev constant is defined by

µs(Ω) :=

{∫
Ω
|∇u|2dx

∣∣∣∣∣u ∈ H1
0 (Ω),

∫
Ω

|u|2∗(s)

|x|s
= 1

}
.

This constant has some similar properties to these of the best Sobolev constant. Indeed, due
to scaling invariance, µs(Ω) is independent of Ω , and thus µs := µs(Ω) = µs(RN) is not
attained for all bounded domains. If Ω = RN , then µs is attained by

ya(x) = [a(N − s)(N −2)]
N−2

2(2−s) (a+ |x|2−s)
2−N
2−s

for some a > 0 and hence

µs = (N −2)(N − s)

(
ωN−1

2− s
Γ 2(N−s

2−s )

Γ ( 2(N−s)
2−s )

) 2−s
N−s

(see [9] and [13]) where ωN−1 is the area of the unit sphere in RN .
On the other hand, for 0 ∈ ∂Ω , the result of the attainability for µs(Ω) is quite different

from that in the situation of 0 ∈ Ω . By Ghoussoub-Robert [6], it has proved that if Ω has
smooth boundary and the mean curvature of ∂Ω at 0 is negative, then the extremal of µs(Ω)
exists for all N ≥ 3. Recently, Lin and Wadade [14] have studied the following minimization
problem;

µλ
s,p(Ω) := inf

{∫
Ω
|∇u|2dx+λ

(∫
Ω
|u|pdx

) 2
p
∣∣∣∣∣u ∈ H1

0 (Ω),
∫

Ω

|u|2∗(s)

|x|s
dx = 1

}

where λ ∈R and 2≤ p≤ 2N/(N−2). Furthermore, as related results, Hsia, Lin and Wadade
[10] studied the existence of the solution of double critical elliptic equations related with
µλ

s,2∗(Ω), that is, they have showed the existence of the solution for{
−∆u+λu2∗−1 + u2∗(s)−1

|x|s = 0, u > 0, in Ω
u = 0 on ∂Ω

under the appropriate conditions where 2∗ = 2N/(N−2). To prove these results, we use the
theorem of Egnell [4]. He showed that the existence of the extremal for µs(Ω) if Ω is a
half space RN

+ or an open cone. The open cone C is written of the form C := {x ∈ RN |x =
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rθ , θ ∈ Σ} where Σ is connected domain on the unit sphere S N−1 in RN . By this result,
µs(C )> µs(RN) and there is a positive solution for{

−∆u = |u|2∗(s)−1

|x|s in C ,

u = 0 on ∂C , and u(x) = o(|x|2−N) as x → ∞.

The Neumann case also has been studied. Let Ω has C2 boundary and the mean curva-
ture of ∂Ω at 0 is positive. Ghoussoub and Kang [5] have showed that there is a least energy
solution for {

−∆u+λu = |u|2∗(s)−1

|x|s in Ω ,
∂u
∂ν = 0 on ∂Ω

for N ≥ 3, λ > 0.
Like these results, if 0 ∈ ∂Ω , we can use the benefit of the mean curvature of ∂Ω at 0

to show the results. However if 0 ∈ Ω , we cannot obtain the information of singularity such
the mean curvature, and the fact causes some technical difficulties.

In this paper, we consider the attainability for the following minimization problem

µN
s (Ω) := inf

{∫
Ω
(|∇u|2 +u2)dx

∣∣∣∣∣u ∈ H1(Ω),
∫

Ω

|u|2∗(s)

|x|s
dx = 1

}
.

The main theorem is as follows.

Theorem 1 Let ∂Ω has a smoothness which the Sobolev embeddings hold, then the follow-
ing statements hold true.

(I) If Ω is sufficiently small, then µN
s (Ω) is attained. Especially, if Ω satisfies the following;

|Ω |
(∫

Ω
|x|−sdx

)− 2
2∗(s)

≤ µs

then µN
s (Ω) is attained, where |Ω | is the N-dimensional Lebesgue measure of domain

Ω .
(II) There is a positive constant M which depends on only Ω such that µN

s (rΩ) is never
attained if r > M.

Eventually, the size of domain affects the attainability of µN
s (Ω).

The rest of the paper is organized as follows. In Section 2 we introduce three lemmas
to prove Theorem 1. Then in Section 3 we prove Theorem 1 using the lemmas in Section
2. In Section 4, as an application, we consider the case when singularity is in the boundary
of domain. Then we introduce a new result concerning the attainability of µN

s (Ω) with
boundary singularity.

2 Preparation

In this section, we prepare some lemmas to prove Theorem 1.
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Lemma 1 For r > 0, the value µN
s,r(Ω) is defined by

µN
s,r(Ω) := inf

{∫
Ω
(|∇u|2 + ru2)dx

∣∣∣∣∣u ∈ H1(Ω),
∫

Ω

|u|2∗(s)

|x|s
dx = 1

}
.

We have
µN

s,r(Ω) = µN
s (rΩ).

Proof For r > 0 and u∈H1(Ω), ur is defined by the scaling of u, that is ur(x) := r
2−N

2 u(x/r)∈
H1(rΩ). Note that ∫

rΩ
|∇ur|2dx =

∫
Ω
|∇u|2dx,∫

rΩ
u2

r dx = r2
∫

Ω
u2dx,∫

rΩ

ur
2∗(s)

|x|s
dx =

∫
Ω

u2∗(s)

|x|s
dx.

With these facts in mind, taking u ∈ H1(Ω) such that

∫
Ω

u2∗(s)

|x|s
dx = 1,

∫
Ω
(|∇u|2 + r2u2)dx ≤ µN

s,r(Ω)+ ε

for ε > 0 sufficiently small, we have

µN
s (rΩ)≤

∫
rΩ

(|∇ur|2 +u2
r )dx =

∫
Ω
(|∇u|2 + r2u2)dx ≤ µN

s,r(Ω)+ ε.

Hence we have µN
s (rΩ)≤ µN

s,r(Ω).
The inverse also holds by replacing Ω with rΩ .

Lemma 2 There exists a positive constant C which depends on only Ω such that

µs

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫

Ω
|∇u|2dx+C

∫
Ω

u2dx (u ∈ H1(Ω)). (2)

Before beginning the proof, we make a remark. H. Jaber [12] has shown that the follow-
ing theorem.

Theorem 2 ([12]) If (M,g) is a compact Riemannian manifold without boundary and 0 ∈
M, there is a constant C =C(M,g) such that

µs

(∫
M

|u|2∗(s)

dg(x,0)s dvg

) 2
2∗(s)

≤
∫

M
|∇u|2dvg +C

∫
Ω

u2dvg (u ∈ H1(M))

where dg is the Riemannian distance on M.

Different from Theorem 2, Ω is bounded domain of RN and therefore Ω has a boundary,
thus we can show the inequality (2) simply.
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Proof Let 0 ∈ Ω1 ⊂ Ω2 ⊂ Ω and these two subdomain are taken suitable again later. A
cut-off function is defined by ϕ which satisfies

ϕ ∈C∞
c (RN), 0 ≤ ϕ ≤ 1 in Ω , ϕ = 1 on Ω1, ϕ = 0 on Ω \Ω2.

Here, we construct a partition of unity η1, η2 defined by

η1 :=
ϕ 2

ϕ 2 +(1−ϕ)2 , η2 :=
(1−ϕ)2

ϕ 2 +(1−ϕ)2 .

Note that η
1
2

1 , η
1
2

2 ∈C2(Ω) by the definition. We may assume that u ∈C∞(Ω)∩H1(Ω) by
density. We have

µs

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

= µs
∥∥u2∥∥

L2∗(s)/2(Ω ,|x|−s)
= µs

∥∥∥∥∥ 2

∑
i=1

ηiu2

∥∥∥∥∥
L2∗(s)/2(Ω ,|x|−s)

≤ µs

2

∑
i=1

∥∥ηiu2∥∥
L2∗(s)/2(Ω ,|x|−s)

= µs

2

∑
i=1

∫
Ω

|η
1
2

i u|2∗(s)

|x|s
dx

 2
2∗(s)

= I1 + I2.

We estimate I1, I2 for each.
For I1, since suppη1 ⊂ Ω we can use the Hardy-Sobolev inequality. We get that

I1 = µs

∫
Ω

|η
1
2

1 u|2∗(s)

|x|s
dx

 2
2∗(s)

≤
∫

Ω
|∇(η

1
2

1 u)|2dx

=
∫

Ω
|∇u|2η1dx+

∫
Ω

∇(η
1
2

1 ) ·∇(η
1
2

1 u2)dx.

Since η
1
2

1 ∈C2(Ω) we may integrate by parts the second term and hence we obtain

I1 ≤
∫

Ω
|∇u|2η1dx−

∫
Ω

∆(η
1
2

1 )η
1
2

1 u2dx (3)

For I2, since 0 ̸∈ suppη2 and taking account to that η = 0 on Ω1 we have

I2 = µs

∫
Ω

|η
1
2

2 u|2∗(s)

|x|s
dx

 2
2∗(s)

= µs

∫
Ω\Ω1

|η
1
2

2 u|2∗(s)

|x|s
dx

 2
2∗(s)

≤ µs ·a
(∫

Ω\Ω1

|η
1
2

2 u|2∗(s)dx
) 2

2∗(s)

≤ µs ·a · |Ω \Ω1|
2

2∗(s)−
2

2∗
(∫

Ω\Ω1

|η
1
2

2 u|2∗dx
) 2

2∗

≤ µs ·a · |Ω \Ω1|
2

2∗(s)−
2

2∗ S(Ω ,Ω1)
−1
∫

Ω\Ω1

|∇(η
1
2

2 u)|2dx

= µs ·a · |Ω \Ω1|
2

2∗(s)−
2

2∗ S(Ω ,Ω1)
−1
∫

Ω
|∇(η

1
2

2 u)|2dx
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where a := dist(0,∂Ω1)
−2s/2∗(s) and

S(Ω ,Ω1) := inf
{∫

Ω\Ω1

|∇u|2dx
∣∣∣∣u ∈ H1(Ω), u = 0 on ∂Ω1,

∫
Ω\Ω1

|u|2∗ = 1
}
.

Here, let us take Ω0 ⊂ Ω1. It is clearly that a ≤ dist(0,∂Ω0)
−2s/2∗(s). On the other hand,

for u ∈ H1(Ω \Ω1) such that u = 0 on ∂Ω1, we define v ∈ H1(Ω \Ω0) by

v :=

{
u in Ω \Ω1

0 in Ω1 \Ω0.

By identifying u ∈ H1(Ω \ Ω1) with v ∈ H1(Ω \ Ω0) concerning the calculation of the
Sobolev quotient, we may see that

{u ∈ H1(Ω \Ω1)|u = 0 on ∂Ω1} ⊂ {u ∈ H1(Ω \Ω0)|u = 0 on ∂Ω0}.

Hence we obtain S(Ω ,Ω1) ≥ S(Ω ,Ω0). Consequently, if Ω1 is sufficiently large, a and
S(Ω ,Ω1)

−1 is bounded from above uniformly. By choosing Ω1 and Ω2 close to Ω we obtain

I2 ≤
1
2

∫
Ω
|∇(η

1
2

2 u)|2dx.

Therefore
I2 ≤

∫
Ω
|∇u|2η2dx+

∫
Ω
|∇η

1
2

2 |2u2dx. (4)

Here, since η
1
2

1 , η
1
2

2 ∈C2(Ω) there is a positive constant C such that

max
x∈Ω

|∆(η
1
2

1 )| ≤ C
2
, max

x∈Ω
|∇η

1
2

2 |2 ≤ C
2
. (5)

This constant depends on only Ω .
Consequently (3), (4) and (5) yield that

µs

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤ I1 + I2 ≤
∫

Ω
|∇u|2dx+C

∫
Ω

u2dx.

Lemma 3 µN
s (Ω)≤ µs holds (see [9], Lemma 11.1). Furthermore, the following statements

hold true;

(I) If µN
s (Ω)< µs, then µN

s (Ω) is attained.
(II) If µN

s (Ω) = µs, then µN
s (rΩ) is not attained for all r > 1.

Firstly, we prove Lemma 3 (I).

Proof (Proof of Lemma 3 (I))
Assume {un}∞

n=1 ⊂ H1(Ω) is a minimizing sequence of µN
s (Ω). Without loss of gener-

ality, we may assume ∫
Ω

|un|2
∗(s)

|x|s
dx = 1 (6)

for all n ∈ N and which implies∫
Ω
(|∇un|2 +u2

n)dx = µN
s (Ω)+o(1) (n → ∞). (7)
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Thus un is bounded in H1(Ω). So we can suppose, up to a subsequence,

un ⇀ u in H1(Ω)

un → u in Lp(Ω) (1 ≤ p < 2∗)

un → u in Lq(Ω , |x|−s) (1 ≤ q < 2∗(s))

un → u a.e. in Ω

as n → ∞.
For this limit function u, we show that u ̸≡ 0 a.e. in Ω . Assume that u ≡ 0 a.e. in Ω . By

the inequality (2) in Lemma 2,

µs

(∫
Ω

|un|2
∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫

Ω
|∇un|2dx+C

∫
Ω

u2
ndx (8)

holds for all n. Thus (6), (7), (8) and un → u in L2(Ω) yield

µs ≤ µN
s (Ω)+o(1).

Letting n tend to infinity, we obtain µs ≤ µN
s (Ω) and which is contradiction in the assump-

tion of µN
s (Ω)< µs. Consequently u ̸≡ 0.

By the theorem of Brezis and Lieb (see [3]), we obtain

∫
Ω

|un|2
∗(s)

|x|s
dx =

∫
Ω

|u|2∗(s)

|x|s
dx+

∫
Ω

|un −u|2∗(s)

|x|s
dx+o(1)

and it follows that

1 =

(∫
Ω

|un|2
∗(s)

|x|s
dx

) 2
2∗(s)

=

(∫
Ω

|u|2∗(s)

|x|s
dx+

∫
Ω

|un −u|2∗(s)

|x|s
dx

) 2
2∗(s)

+o(1)

≤

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω

|un −u|2∗(s)

|x|s
dx

) 2
2∗(s)

+o(1).

On the other hand, we have

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω

|un −u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫

Ω (|∇u|2 +u2)dx
µN

s (Ω)
+

∫
Ω (|∇(un −u)|2 +(un −u)2dx

µN
s (Ω)

=

∫
Ω (|∇un|2 +u2

n)dx
µN

s (Ω)
+o(1)

= 1+o(1).
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Hence there exist a limit and we obtain

lim
n→∞

(∫
Ω

|u|2∗(s)

|x|s
dx+

∫
Ω

|un −u|2∗(s)

|x|s
dx

) 2
2∗(s)

= lim
n→∞

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω

|un −u|2∗(s)

|x|s
dx

) 2
2∗(s)


= 1.

By the equality condition of the above, we get either

u ≡ 0 a.e. in Ω or un → u ̸≡ 0 in L2∗(s)(Ω , |x|−s).

Since u ̸≡ 0 we obtain un → u ̸≡ 0 in L2∗(s)(Ω , |x|−s) and hence this u is the minimizer of
µN

s (Ω).

Next, we prove Lemma 3 (II).

Proof (Proof of Lemma 3 (II)) We assume the existence of the minimizer of µN
s (rΩ) and

derive a contradiction. Let u ∈ H1(rΩ) be a minimizer of µN
s (rΩ), then we have

µN
s (rΩ) =

∫
rΩ

(|∇u|2 +u2)dx >
∫

rΩ
(|∇u|2 + 1

r2 u2)dx ≥ µN
s,1/r(rΩ).

By Lemma 1, the assumption µN
s (Ω) = µs and µN

s (rΩ)≤ µs, we have

µs ≥ µN
s (rΩ)> µN

s,1/r(rΩ) = µN
s (Ω) = µs.

This is a contradiction.

3 Proof of Theorem 1

In this section, we prove Theorem 1.

Proof (Proof of Theorem 1 (I)) We recall that

µN
s (Ω) := inf

{∫
Ω
(|∇u|2 +u2)dx

∣∣∣∣∣u ∈ H1(Ω),
∫

Ω

|u|2∗(s)

|x|s
dx = 1

}
.

Taking a constant C such that
∫

Ω
C2∗(s)
|x|s = 1 and u ≡C as a test function, it follows that

µN
s (Ω)≤ |Ω |

(∫
Ω
|x|−s

)− 2
2∗(s)

.

If this C is a minimizer of µN
s (Ω), then by Lagrange multiplier theorem C is a classical

solution of {
−∆u+u = µN

s (Ω) u2∗(s)
|x|s in Ω

∂u
∂ν = 0 on ∂Ω .

This contradicts and therefore

µN
s (Ω)< |Ω |

(∫
Ω
|x|−s

)− 2
2∗(s)

.

Combining this estimate and Lemma 3 (I), Theorem 1 (I) holds true.
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Proof (Proof of Theorem 1 (II)) Since Lemma 2, We can define a constant m by

m := inf{C > 0| (2) holds.} .

M is defined by M :=
√

m. In inequality (2), C is replaced by M2 and hence we have

µs ≤
∫

Ω (|∇u|2 +M2u2)dx(∫
Ω

|u|2∗(s)
|x|s dx

) 2
2∗(s)

(9)

for all u ∈ H1(Ω). Therefore by Lemma 1 we obtain

µs ≤ inf
u∈H1(Ω)\{0}

∫
Ω (|∇u|2 +M2u2)dx(∫

Ω
|u|2∗(s)
|x|s dx

) 2
2∗(s)

= µN
s,M(Ω)

= µN
s (MΩ).

Recall that µN
s (Ω) ≤ µs holds for all bounded domain Ω and thus µN

s (MΩ) = µs. Conse-
quently we obtain the result of Theorem 1 (II) by Lemma 3 (II).

4 Singularity on the boundary

Throughout this section, assume that 0 ∈ ∂Ω . If the mean curvature of ∂Ω at 0 is positive,
we have obtained the results in Section 1. However, if the mean curvature of ∂Ω at 0 van-
ishes, we don’t obtain results so far, even if the attainability of µN

s (Ω). In this section, we
show the following results by using the strategy in Section 2 and Section 3.

Theorem 3 Let Ω ⊂RN is bounded domain with smooth boundary, 0 ∈ ∂Ω and ∂Ω is flat
near the origin. Then the following statements hold;

(I) If Ω is sufficiently small, then µN
s (Ω) is attained. Especially, if Ω satisfies the following;

|Ω |
(∫

Ω
|x|−sdx

)− 2
2∗(s)

≤ µs

2
2−s
N−s

then µN
s (Ω) is attained.

(II) There is a positive constant M which depends on only Ω such that µN
s (rΩ) is never

attained if r > M.

This condition of the boundary in this theorem is a special case of vanishing of the mean
curvature of ∂Ω at 0.

We prove the theorem in the same way as in Section 2 and Section 3. Different from the
proof of Theorem 1, we need the following lemma instead of Lemma 2.

Lemma 4 There is a positive constant C depends on only Ω such that

µs

2
2−s
N−s

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
∫

Ω
|∇u|2dx+C

∫
Ω

u2dx (u ∈ H1(Ω)). (10)
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Proof We introduce some notation. BR(0) is an open ball which center is origin and radius
is R. RN

+ is a half space which is defined by RN
+ := {(x′,xN) ∈ RN |xn > 0} where x′ :=

(x1, . . . ,xN−1) ∈ RN−1.
Since ∂Ω is flat near the origin, by rotating coordinate there is a constant r > 0 such

that Br(0)∩Ω = B+
r (0) := Br(0)∩RN

+. For u ∈ H1(Ω) we have

(∫
Ω

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

=

(∫
B+

r (0)

|u|2∗(s)

|x|s
dx+

∫
Ω\B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤

(∫
B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

+

(∫
Ω\B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

= J1 + J2.

For u ∈ H1(B+
r (0)), ũ ∈ H1(Br(0)) is defined by the even reflection for the direction xN , that

is,

ũ(x′,xN) :=

{
u(x′,xN) if 0 ≤ xN < 1
u(x′,xN) if −1 < xN < 0.

Concerning J1, by Lemma 2 we have

J1 =

(∫
B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

=

(
1
2

) 2
2∗(s)

(∫
Br(0)

|ũ|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
(

1
2

) 2
2∗(s)

µ−1
s

(∫
Br(0)

|∇ũ|2dx+C1

∫
Br(0)

ũ2dx
)

=

(
1
2

) 2
2∗(s)

µ−1
s ·2

(∫
B+

r (0)
|∇u|2dx+C1

∫
B+

r (0)
u2dx

)
=

(
µs

2
2−s
N−s

)−1(∫
B+

r (0)
|∇u|2dx+C1

∫
B+

r (0)
u2dx

)

for some positive constant C1 depends on only Br(0).
Next, we estimate J2. Let δ > 0 for sufficiently small. We consider {ϕi}m

i=1 a partition

of unity on Ω \B+
r (0) such that ϕ

1
2

i ∈ C1 and |suppϕi| ≤ δ for all i. Since |x|−s ≤ r−s for
x ∈ Ω \B+

r (0) we have

J2 =

(∫
Ω\B+

r (0)

|u|2∗(s)

|x|s
dx

) 2
2∗(s)

≤
m

∑
i=1

∫
Ω\B+

r (0)

|ϕ
1
2

i u|2∗(s)

|x|s
dx

 2
2∗(s)

≤ r−
2s

2∗(s)
m

∑
i=1

(∫
Ω\B+

r (0)
|ϕ

1
2

i u|2∗(s)dx
) 2

2∗(s)
.
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By Hölder inequalities it follows that(∫
Ω\B+

r (0)
|ϕ

1
2

i u|2∗(s)dx
) 2

2∗(s)
≤ |suppϕi|

2
2∗(s)−

2
2∗ ∥ϕ

1
2

i u∥2
L2∗ (Ω\B+

r (0))

≤ δ
2

2∗(s)−
2

2∗ ∥ϕ
1
2

i u∥2
L2∗ (Ω\B+

r (0))

for each i ∈ N. Since δ is sufficiently small, by using the Sobolev inequalities (If necessary
we use the Sobolev inequalities of mixed boundary condition version.) we have

J2 ≤
(

µs

2
2−s
N−s

)−1

· 1
2

m

∑
i=1

∫
Ω\B+

r (0))
|∇(ϕ

1
2

i u)|2dx.

Consequently we have

J2 ≤
(

µs

2
2−s
N−s

)−1(∫
Ω\B+

r (0)
|∇u|2dx+C2

∫
Ω\B+

r (0)
u2dx

)
.

for some positive constant C2 depends on only Ω \B+
r (Ω). Combining the estimates of J1

and J2 we obtain(∫
Ω

|u|2∗(s)

|x|s

) 2
2∗(s)

≤ J1 + J2 ≤
(

µs

2
2−s
N−s

)−1(∫
Ω
|∇u|2dx+C

∫
Ω

u2dx
)

for some positive constant C depends on Ω .
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