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Abstract. We describe a necessary and sufficient condition for a toric manifold to admit
a spin structure. In particular, a toric manifold admits a spin structure if and only if its
real part is orientable. It is known that a Delzant polytope can be constructed from a
building set or pseudograph, so that one can associate a toric manifold to a building set or
pseudograph. In this paper, we characterize building sets and pseudographs whose associated
toric manifolds admit spin structures.

1. Introduction

A toric variety is a normal algebraic variety of complex dimension n with an effective
algebraic (C∗)n-action having an open dense orbit. The family of toric varieties one-to-one
corresponds to that of fans which are objects in combinatorics. In this paper, we deal with
nonsingular toric varieties called toric manifolds.

As is well-known, a smooth manifold M admits a spin structure if and only if its first
Stiefel-Whitney class w1(M) and second Stiefel-Whitney class w2(M) vanish. Using this
condition, we can describe a necessary and sufficient condition for a toric manifold M to
admit a spin structure in terms of the corresponding fan (Proposition 2.1). It turns out that
this is equivalent to its real toric manifold MR being orientable ([9]).

There are constructions of toric manifolds from two kinds of finite graphs (i.e. from simple
graphs ([3]) and from pseudographs ([2])), and the construction from simple graphs is gen-
eralized to that from building sets. Using Proposition 2.1, we can characterize finite simple
graphs and building sets whose associated toric manifolds admit spin structures (Theorem 3.8,
Corollary 3.9). Moreover, this characterization of simple graphs is generalized to pseudographs
which may have multiedges and loops (Theorem 4.13).

This paper is organized as follows. In section 2, we describe the necessary and sufficient
condition for a toric manifold to admit a spin structure and for a real toric manifold to be
orientable. In section 3, we review the construction of toric manifolds from finite simple
graphs and building sets on [n+1] := {1, . . . , n+1}, and characterize finite simple graphs and
building sets whose associated toric manifolds admit spin structures by applying the necessary
and sufficient condition above. In section 4, we similarly review the construction of toric
manifolds from finite pseudographs, and characterize finite pseudographs whose associated
toric manifolds admit spin structures.

2. Spin toric manifolds and the orientability of real toric manifolds

In this section, we give a necessary and sufficient condition for a projective toric manifold
to admit a spin structure and for a real toric manifold to be orientable. Let P be a Delzant
polytope of dimension n in Rn with m facets, λ be a function mapping each facet of P to its
facet vector (i.e. a normal primitive vector to the facet), and λ′ be the modulo 2 reduction
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of λ. A toric manifold constructed from P is written by M(P ), and its real part (i.e. its real
toric manifold) is written by MR(P ).

Proposition 2.1. The followings are equivalent.

(1) The toric manifold M(P ) admits a spin structure.
(2) The real toric manifold MR(P ) is orientable.
(3) There is a homomorphism ϵ from Zn

2 to Z2 = {0, 1} such that ϵ(λ′(F)) = {1}, where
F is the set of facets of the Delzant polytope P .

Proof. We prove the equivalence between (1) and (3). We can prove the equivalence between
(2) and (3) similarly, so we omit the proof. The equivalence between (2) and (3) was proved
by [9], however the following proof is different from their proof.

A manifoldM admits a spin structure if and only if its first Stiefel-Whitney class w1(M) and
second Stiefel-Whitney class w2(M) vanish. Since the cohomology group H1(M(P )) of the
projective toric manifold M(P ) is trivial, its first Stiefel-Whitney class w1(M(P )) vanishes.
So, it is enough to prove the equivalence between (3) and the vanishing of w2(M(P )).

Let Tn be a compact torus (S1)n, M = M(P ), and π : ETn ×Tn M → BTn be the Borel
construction of M . Since the Serre spectral sequence of π degenerates at the E2-level, we have
the following exact sequence.

(2.1) 0 −→ H2(BTn;Z2)
π∗
−→ H2

Tn(M ;Z2)
ρ∗−→ H2(M ;Z2) −→ 0,

where ρ∗ is the surjection induced from an inclusion of the fiber ρ : M → ETn ×Tn M .
Let F1, . . . , Fm be the facets of P and τ1, . . . , τm be elements in H2

Tn(M ;Z2) which are
Poincaré dual to the characteristic submanifolds of M corresponding to F1, . . . , Fm. Then,
π∗(u) is written as a linear combination of τ1, . . . , τm as follows (see [8] for example):

π∗(u) =

m∑
i=1

vi(u)τi.

Here, vi can be regarded as an element in Hom(H2(BTn);Z2) = H2(BTn;Z2). So, π
∗(u) is

written as follows:

π∗(u) =

m∑
i=1

⟨u, vi⟩τi,

where ⟨ , ⟩ denotes the natural pairing between cohomology and homology. Let λ′ be a
homomorphism F to H2(BTn;Z2) which maps Fi to vi. Then,

π∗(u) = ⟨u, λ′(F1)⟩τ1 + · · ·+ ⟨u, λ′(Fm)⟩τm.

It is known that the equivariant Stiefel-Whitney class wTn
(M) is of the form

wTn
(M) =

m∏
i=1

(1 + τi),

so we have wTn

2 (M) =
m∑
i=1

τi ([4]). The second Stiefel-Whitney class w2(M) is the image of

wTn

2 (M) by ρ∗ in (2.1). Since (2.1) is an exact sequence, the equation w2(M) = 0 is equivalent
to the existence of an element u in H2(BTn;Z2) such that π∗(u) = wTn

2 (M). So we have
m∑
i=1

⟨u, λ′(Fi)⟩τi =
m∑
i=1

τi.



SPIN TORIC MANIFOLDS ASSOCIATED TO FINITE GRAPHS 3

Therefore, w2(M) vanishes if and only if ⟨u, λ′(Fi)⟩ is 1 for each i = 1, . . . ,m, which implies
the equivalence between (1) and (3). □
Remark 2.2. The same proof as above shows that Proposition 2.1 holds for a toric manifold
whose realization of the underlying simplicial complex of the corresponding fan is a disk
([1, 7]), for a quasitoric manifold ([4]) and for a topological toric manifold ([6]).

A truncation of a Delzant polytope P along a face corresponds to blowing-up along the
submanifold of M(P ) corresponding to the face. To be precise, let F be a codimension k
face which is an intersection of k facets F1, . . . , Fk of a Delzant polytope P , and λ(Fi) be
the facet vector of the facet Fi for each i. A face truncation at F is to cut P along the face
F in such a way that the facet vector of the new facet is λ(F1) + · · · + λ(Fk) (Figure 1).
The projective toric manifold corresponding to the truncated Delzant polytope is formed by
blowing-up M(P ) along the submanifold corresponding to the face F .

Figure 1. face truncations and new facet vectors corresponding to blowing-up

3. Spin toric manifolds associated to finite simple graphs and building sets

We set [n+ 1] := {1, . . . , n+ 1}. In this section, we assume that a graph G is simple, and
review the construction of a toric manifold M(G) (resp. M(B)) from a finite simple graph
G (resp. a building set B on [n + 1]), and characterize a graph G (resp. a building set B)
whose associated toric manifold M(G) (resp. M(B)) admits a spin structure. There are two
kinds of constructions of a Delzant polytope from G (resp. B). One is to realize a Delzant
polytope in Rn+1 by Minkowski sum, and the other is to truncate faces of a simplex in Rn.
In this section, we use the second construction.

Let G be a simple graph with n+ 1 nodes, and its node set V (G) be [n+ 1]. We set

B(G) := {I ⊂ V (G) | G|I is connected},
where G|I is a maximal subgraph of G with the node set I (i.e. the induced subgraph). The
empty set ∅ is not in B(G). We call B(G) a graphical building set of G. A graphical building
set B(G) is a building set on V (G), so we review the construction of a toric manifold from a
building set.
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Definition 3.1. A building set B on [n+1] is a collection of nonempty subsets of [n+1] such
that
(1) B contains all singletons {i} for every i,
(2) if I, J ∈ B and I ∩ J ̸= ∅, then I ∪ J ∈ B.
If [n+ 1] ∈ B, then B is called a connected building set.

Example 3.2. We consider the following path graph P3.
Then,

B(P3) = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}},
which we simply express as follows:

B(P3) = {1, 2, 3, 12, 23, 123}.

When a building set B is connected, we construct a Delzant polytope PB in Rn as follows
([3]). We take an n-simplex in Rn such that its facet vectors are e1, . . . , en, and −e1−· · ·−en,
where e1, . . . , en are the standard basis of Rn. Each facet vector ei (1 ≤ i ≤ n) corresponds
to an element i in B, and the facet vector −e1 − · · · − en corresponds to an element n + 1
in B, where i in B means the singleton {i} in B. We truncate the n-simplex along faces in
increasing order of dimension. Let Fi denote the facet corresponding to an element i in B.
For every element I = i1 . . . ik in B \ [n+1] we truncate the simplex along a face Fi1 ∩· · ·∩Fik
in such a way that the facet vector of the new facet, denoted FI , is the sum of the facet
vectors of the facets Fi1 , . . . , Fik . Then the resulting polytope, denoted PB, is a Delzant
polytope, and called a nestohedron. The set B \ [n + 1] one-to-one corresponds to the set
of facets of PB. Let M(B)(MR(B)) denote a (real) toric manifold corresponding to PB. A
nestohedron constructed from a graphical building set B(G) is called a graph associahedron,
and the associated (real) toric manifold is denoted by M(G)(MR(G)). When a building set
B is disconnected, the corresponding nestohedron is defined as the product of nestohedrons
associated to connected building sets in B. The corresponding (real) toric manifold is also
defined as the product of (real) toric manifolds associated to connected building sets in B.

Remark 3.3. The size of an n-simplex is not important because the size does not affect the
topology of the associated toric manifolds. The important data are a simple polytope and its
facet vectors.

Example 3.4.
(1) When a graph G is a point, the associated (real) toric manifold is also a point. We
understand that a point is orientable and admits a spin structure.
(2) When G is a connected graph with 2 nodes, the corresponding graph associahedron PG in
R is an 1-simplex (Figure 2), and the associated (real) toric manifold is diffeomorphic to CP 1

(RP 1). CP 1 admits a spin structure and RP 1 is orientable.
(3) When G is a connected graph with 3 nodes, G is a path graph P3 or cycle graph C3.
If G is the path graph P3, then its graphical building set B(P3) is {1, 2, 3, 12, 23, 123}, and
the corresponding graph associahedron PP3 is a pentagon (Figure 2). So, the associated

toric manifold is diffeomorphic to CP 2♯2CP 2 and does not admit a spin structure. If G is
the cycle graph C3, then its graphical building set B(C3) is {1, 2, 3, 12, 23, 31, 123}, and the
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corresponding graph associahedron PC3 in R2 is a hexagon (Figure 2). So, the associated toric

manifold is diffeomorphic to CP 2♯3CP 2 and also does not admit a spin structure.

-

- -

-- -

- -

Figure 2. graph associahedrons and facet vectors in (2) and (3)

Example 3.5.
(1) A building set on [1] is only {1}, so the corresponding nestohedron P{1} is a point, and the
associated (real) toric manifold is a point.
(2) Building sets on [2] are {1, 2} and {1, 2, 12}. If B is {1, 2}, then its nestohedron PB is a
point, so the associated (real) toric manifold is a point. If B is {1, 2, 12}, then its nestohedron
PB is an 1-simplex, so the associated (real) toric manifold is diffeomorphic to CP 1 (RP 1).
(3) Building sets on [3] are essentially the following.

{1, 2, 3}, {1, 2, 3, 12}, {1, 2, 3, 12, 23, 123}, {1, 2, 3, 12, 23, 31, 123},

{1, 2, 3, 123}, {1, 2, 3, 12, 123}.
Each nestohedron PB is a point, 1-simplex, pentagon, hexagon, 2-simplex, and square. The
last two are not constructed from any graph, and the corresponding Delzant polytopes are
as in Figure 3. The toric manifolds M(B) (resp, real toric manifolds MR(B)) associated to

the building sets are respectively diffeomorphic to a point, CP 1,CP 2♯2CP 2,CP 2♯3CP 2, CP 2,
and CP 2♯CP 2 (resp, a point, RP 1, 3RP 2, 4RP 2,RP 2, and 2RP 2).

Lemma 3.6. Let B be a connected building set on [n+1]. Then the following are equivalent.
(1) The toric manifold M(B) admits a spin structure.
(2) The real toric manifold MR(B) is orientable.
(3) n+ 1 is even and any element in B\{[n+ 1]} has odd order.

Proof. Let F be the set of facets of the nestohedron PB, λ be a function mapping each facet
of PB to its facet vector, and λ′ be the modulo 2 reduction of λ. By Proposition 2.1, it is
enough to show the equivalence between (3) and the existence of a homomorphism ϵ from Zn

2

to Z2 = {0, 1} satisfying ϵ(λ′(F)) = {1}.
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Figure 3. nestohedrons corresponding to {1,2,3,123} and {1,2,3,12,123}

The nestohedron PB has e1, . . . , en, and e1 + · · ·+ en as facet vectors modulo 2, where the
facets associated to these facet vectors correspond to the singletons in B, that is, λ′(F1) =
e1, . . . , λ

′(Fn) = en, λ
′(Fn+1) = e1 + · · ·+ en. Suppose that there is a homomorphism ϵ from

Zn
2 to Z2 = {0, 1} such that ϵ(λ′(F)) = {1}. Then n is odd. We assume that there is an

element I with an even order in B\{[n+1]}, and let FI be the facet of PB corresponding to I.
Then, since ϵ(λ′(F1)) = · · · = ϵ(λ′(Fn+1)) = 1, we have ϵ(λ′(FI)) = 0. This is a contradiction.

If (3) holds, then we can take the homomorphism ϵ from Zn
2 to Z2 = {0, 1} mapping each

ei to 1. □

Lemma 3.7. Suppose that a smooth manifold M is diffeomorphic to the product of smooth
manifolds M1, . . . , Mk. Then the followings hold.
(1) M is orientable if and only if each factor Mi is orientable.
(2) M admits a spin structure if and only if each factor Mi admits a spin structure.

Proof. We use the following formula. Let ξ, η be vector bundles over base spaces B1, B2. Then
the l-th Stiefel-Whitney class of the product bundle ξ × η over B1 ×B2 is

(3.1) wl(ξ × η) =

l∑
i=0

wi(ξ)× wl−i(η).

In particular
w1(M) = w1(M1) + · · ·+ w1(Mk).

Therefore, w1(M) = 0 if and only if w1(M1) = · · · = w1(Mk) = 0 since there is no relation
among w1(M1), . . . , w1(Mk). This means (1).

If M admits a spin structure, then w1(M1) = · · · = w1(Mk) = 0 because of the orientability
of each Mi. So, it follows from (3.1) that

w2(M) = w2(M1) + · · ·+ w2(Mk).

Therefore w2(M) = 0 if and only if since there is no relation among w2(M1), . . . , w2(Mk),
w2(M1) = · · · = w2(Mk) = 0. This means (2). □

The following theorem follows from Lemmas 3.6 and 3.7.
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Theorem 3.8. Let B be an union of connected building sets B1, . . . , Bk on subsets S1, . . . , Sk

in [n+ 1]. Then the following are equivalent.
(1) The toric manifold M(B) admits a spin structure.
(2) The real toric manifold MR(B) is orientable.
(3) Each building set Bi satisfies either of the following.
(I) |Si| = 1.
(II) |Si| is even and any element in Bi\{Si} has an odd order.

Corollary 3.9. Let G be a finite simple graph.
(1) The toric manifold M(G) admits a spin structure if and only if M(G) is diffeomorphic to
(CP 1)k.
(2) The real toric manifold MR(G) is orientable if and only if MR(G) is diffeomorphic to
(RP 1)k.
Moreover, the corresponding graph is the disjoint union of k connected graphs with 2 nodes
and finitely many points.

. . . . . .

Proof. We assume that a graph G has k connected component G1, . . . , Gk. Then we can take
the graphical building set of G as B in Theorem 3.8, the graphical building set of Gi as Bi,
and the node set of Gi as Si. (3)(I) in Theorem 3.8 means that Gi is a point, and (3)(II)
means that Gi is a connected graph with 2 nodes. In fact, Gi has even nodes because |Si| is
even, and if Gi has more than or equal to 4 nodes, then Gi has a connected proper subgraph
with 2 nodes, which gives an even order element in Bi \ {Si}. □
Remark 3.10. A compact toric manifold M has trivial 1-st cohomology group ([5]), so that
M admits only one spin structure if M admits a spin structure.

4. Spin toric manifolds associated to finite pseudographs

In this section, we construct a toric manifold M(G) from a pseudograph G (i.e. a graph
may have multiedges and loops) ([2]), and characterize a pseudograph G whose associated
toric manifold M(G) admits a spin structure.

Definition 4.1. Let G be a finite pseudograph.
(1) A tube Gt of G is a proper connected subgraph of G such that if a pair of nodes of Gt is
connected by an edge of G, then Gt contains at least one edge connecting the pair.
(2) Two tubes are compatible, if one is included in the other, or they are disjoint and cannot
be connected by an edge of G.
(3) A tubing of G is the set of pairwise compatible tubes and the union of such tubes is not G.

Example 4.2. (a) and (b) in Figure 4 are tubings. However, (c) in Figure 4 is not a tubing
because two tubes are not compatible. (d) in Figure 4 is also not a tubing because the union
of the tubes is the whole graph.

Definition 4.3. Let G be a pseudograph.
(1) Suppose that a pair of nodes is connected by at least two edges. Then the set of all edges
connecting the pair of nodes is called a bundle.
(2) The underlying simple graph Gs of G is the graph obtained by deleting all loops and
replacing each bundle to an edge.
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Figure 4. tubings and non-tubings

Example 4.4. The underlying simple graph of the left pseudograph in Figure 5 is the right
simple graph. Here, B1 and B2 are bundles.

B1 B2
=⇒

Figure 5. underlying simple graph

For each tube Gt of a pseudograph G, we define a set S as follows.
(1) All nodes of Gt are in S.
(2) All edges of Gt except for edges not contained in bundles and all loops of Gt are in S.
(3) All edges in bundles of G not containing edges of Gt are in S.
(4) All loops not incident to any node of Gt are in S.
We call S a label of Gt.

Definition 4.5. A tube Gt is called full, if it is a subgraph that consists of some of the nodes
of the original graph and all of the edges that connect them in the original graph (i.e. an
induced subgraph of G).

Example 4.6. Figure 6 shows examples of full tubes of a graph and their associated labeling.
Here, 3abcd means the set {3, a, b, c, d}.

Let G be a pseudograph with n + 1 nodes and l loops, B1, . . . , Bk be bundles of G with
b1 + 1, . . . , bk + 1 edges, ∆s be an s-simplex, and ρ be a ray. We define

ΣG := ∆n ×
k∏

i=1

∆bi × ρl,

and label every face in ΣG as follows.
(1) Each facet of ∆n corresponds to a node of G. Each face of ∆n corresponds to a proper
subset of the node set of G and is the intersection of the facets associated to nodes in that
subset.
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Figure 6. full tubes and corresponding labels

(2) Each vertex of ∆bi corresponds to an edge of the bundle Bi. Each face of ∆bi corresponds
to a subset of an edge set of Bi defined by the vertices spanning the face.
(3) Each ρ corresponds to a loop of G.
Each face of ΣG is labeled by the product of each factor naturally.

Remark 4.7. Let Gt be a tube of G. Suppose that the label of Gt contains k nodes of G and
does not contain l edges in bundles and m loops. Then the face of ΣG corresponding to Gt is
of codimension k + l +m by the way of labeling faces of ΣG.

Facets of ΣG are

(facets of ∆n)×
k∏

i=1

∆bi × ρl,

∆n × (facets of ∆bj )×
k∏

i=1,i ̸=j

∆bi × ρl (j = 1, . . . , k), and

∆n ×
k∏

i=1

∆bi × (facets of ρl).
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The number of facets in each line above is n + 1,

k∑
j=1

(bj + 1), and l respectively. We embed

ΣG in an Euclidean space such that a facet vector of each facet is respectively

e1, . . . , en,−e1 − · · · − en,

en+1, . . . , en+b1 ,−en+1 − · · · − en+b1 ,

en+b1+1, . . . , en+b1+b2 ,−en+b1+1 − · · · − en+b1+b2 ,

...

en+b1+···+bk−1+1, . . . , en+b1+···+bk ,−en+b1+···+bk−1+1 − · · · − en+b1+···+bk ,

en+b1+···+bk+1, . . . , en+b1+···+bk+l.

Here, {ei}i is the standard basis in the Euclidean space of the dimension of ΣG.

Example 4.8. We consider the pseudograph G drawn below. We embed ΣG in R3 in such a
way that each facet vector is

1ab → e1, 2ab → e2, 3ab → −e1 − e2, 123a → e3, 123b → −e3.

Figure 7. ΣG and labels of faces

Then, we construct a pseudograph associahedron KG by truncating ΣG along some faces.
At first, one truncates ΣG along faces with labels corresponding to full tubes as follows. If a
face F of ΣG with a label corresponding to a full tube is denoted by F1 ∩ · · · ∩Fk, where each
Fi is a facet of ΣG, then truncate ΣG along the face F in such a way that the facet vector of
the new facet is the sum of the facet vectors of F1, . . . , Fk. We repeat this truncation from low
dimensional faces to high dimensional faces. The label corresponding to a full tube is (nodes
of this full tube)(every edge in bundles and every loop in G). Therefore, if we truncate ΣG

along all faces with labels corresponding to full tubes, then ΣG turns to

(4.1) PGs ×
k∏

i=1

∆bi × ρl,

where PGs is the graph associahedron corresponding to the underlying simple graph Gs of G.
Next, one truncates (4.1) along faces with labels corresponding to non-full tubes in the same
way as full tubes.
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Proposition 4.9. ([2]) Let G be a pseudograph, and KG be the pseudograph associahedron
constructed from G. If G does not have any loop, then KG is a Delzant polytope and if G has
a loop, then KG is a simple polyhedral cone. Its face poset is isomorphic to the set of tubings
of G, ordered under the reverse subset containment. In particular, there is a one-to-one
correspondence between facets of KG and tubes of G.

We denote the (real) toric manifold corresponding to KG by M(G)(MR(G)).

Example 4.10. We shall observe the pseudograph associahedron KG for the pseudograph
G in Example 4.8. Figure 8 indicates all tubes of G and the corresponding labels. The first
line indicates full tubes, and the second line indicates non-full tubes. Truncating ΣG along

Figure 8. tubes and corresponding labels

faces with labels corresponding to the full tubes, ΣG turns into the left in Figure 9. This is
the product of 1-simplex and the graph associahedron constructed from the underlying simple
graph of G. Moreover, truncating the left in Figure 9 along faces with labels corresponding to
non-full tubes, the left turns into the right in Figure 9. This is the pseudograph associahedron
KG associated to G. Each facet vector is as follows:

Figure 9. pseudograph associahedron

1ab → e1, 2ab → e2, 3ab → −e1 − e2, 12ab → e1 + e2, 23ab → −e1

23a → −e1 + e3, 23b → −e1 − e3, 123a → e3, 123b → −e3
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Example 4.11. When G is the disjoint union of n+1 nodes, the pseudograph associahedron
KG is as follows. The polytope ΣG is an n-simplex, and the nodes of G correspond to the
n + 1 facets of the n-simplex. Every tube of G is 1 node and full. Suppose that the tube
Gi of G is the node i of G, then the label of Gi is i. So, KG is an n-simplex since KG is a
polytope obtained by truncating the n-simplex along n+ 1 facets. Therefore, the associated
toric manifold M(G) is diffeomorphic to CPn.

Remark 4.12. The graph associahedron PG of G above is a point. If a simple graph G is
not connected, then the associated pseudograph associahedron KG is different from the graph
associahedron PG.

Theorem 4.13. Let G be a finite pseudograph.
(1) The toric manifold M(G) admits a spin structure if and only if M(G) is diffeomorphic to
one of CP k−1(k : 1 or even),CP 1,CP 1 × CP 1, and C.
(2) The real toric manifold MR(G) is orientable if and only if MR(G) is diffeomorphic to one
of RP k−1(k : 1 or even),RP 1,RP 1 × RP 1, and R.
Moreover, the associated pseudograph is respectively the disjoint union of k nodes, a connected
simple graph with 2 nodes, a connected pseudograph with 2 nodes and 2 multiedges, and 1 node
with 1 loop.

Remark 4.14. If G is a pseudograph with loops, then the realization of the underlying
simplicial complex which is dual to the boundary complex of KG is a disk. Because truncating
ΣG along faces preserves the homeomorphic type of a realization of the underlying simplicial
complex. So, by Remark 2.2, Proposition 2.1 can be applied even if G has loops.

Proof. If M(G) is diffeomorphic to one of CP k−1(k : 1 or even),CP 1,CP 1×CP 1, and C, then
M(G) admits a spin structure.

The toric manifold M(G) does not admit any spin structure unless the following two con-
ditions are satisfied:

The cardinality of the node set V (G) is 1 or even.(4.2)

The number of multiedges in any bundle is even.(4.3)

Because if the cardinality n + 1 of the node set V (G) is more than one, then KG has facet
vectors e1, . . . , en,−e1 − · · · − en, so (3) in Proposition 2.1 implies (4.2) if M(G) admits a
spin structure. A similar argument implies (4.3). If ΣG is truncated along a codimension 2
face, then (3) in Proposition 2.1 is not satisfied. Therefore, it is enough to consider G which
satisfies (4.2) and (4.3) and whose associated pseudograph associahedron KG is constructed
without truncating ΣG along any codimension 2 faces.

Suppose that G contains a proper full tube shown in Figure 10. The label of this full tube
is ij(all edges in all bundles and all loops), so this tube corresponds to a codimension 2 face of
ΣG by Remark 4.7. Therefore, G does not contain the proper full tube in Figure 10 if M(G)
admits a spin structure.

(1) Assume that G is a connected pseudograph in Figure 10 with the node set {1, 2} and has
more than or equal to 2 loops (Figure 11). Labels of two full tubes are 1a1 . . . akl1 . . . ls1 l

′
1 . . . l

′
s2

and 2a1 . . . akl1 . . . ls1 l
′
1 . . . l

′
s2 , and corresponding faces of ΣG are two facets. Since truncating

ΣG along facets does not change ΣG, a non-full tube obtained by removing 2 loops from G
corresponds to a codimension 2 face of ΣG. So, M(G) does not admit a spin structure.

(2) Assume thatG is a pseudograph with the node set {1, 2}, edges a1, . . . , ak (k is 1 or even)
and a loop l incident to the node 1 (Figure 12). Labels of two full tubes of G are 1a1 . . . akl
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Figure 10. proper full tube

Figure 11. pseudograph and non-full tube in (1)

and 2a1 . . . akl, and corresponding faces of ΣG are two facets. Similarly to (1), a non-full tube
which is the node 1 corresponds to a codimension 2 face of ΣG. So, M(G) does not admit a
spin structure.

Figure 12. pseudograph and non-full tube in (2)

(3) Assume that G is a pseudograph with the node set {1, 2} and multiedges a1, . . . , ak (k ≥
4, even) (Figure 13). Labels of full tubes are 1a1 . . . ak and 2a1 . . . ak, and corresponding faces
of ΣG are two facets. So, a non-full tube obtained by removing 2 edges from G corresponds
to a codimension 2 face of ΣG. So, M(G) does not admit a spin structure.

(4) If G is a pseudograph with the node set {1, 2} and has 1 or 2 multiedges but does not
have loops (Figure 14), then the associated toric manifolds CP 1 and CP 1 × CP 1 admit spin
structures.
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Figure 13. pseudograph and non-full tube in (3)

Figure 14. (4)

(5) Assume that G is a pseudograph with 1 node and s loops (s ≥ 2) (Figure 15). There
is no full tube, so a non-full tube obtained by removing 2 loops from G corresponds to a
codimension 2 face of ΣG. So, M(G) does not admit a spin structure.

(6) If G is a pseudograph with 1 node and 1 loop, then the associated toric manifold C
admits a spin structure. If G is 1 node, then the associated toric manifold is a point and
admits a spin structure (Figure 16).

Figure 15. pseudograph and
non-full tube in (5)

Figure 16. (6)

The above observation shows that if G is connected, then the associated toric manifold
admits a spin structure if and only if G is 1 node, 1 node with 1 loop, a path graph with 2
nodes, or a pseudograph with 2 nodes and 2 multiedges.

Suppose that G is not connected. Then each connected component of G has only 1 node
since G does not contain a proper full tube in Figure 10. If a connected component of G
has s loops (s ≥ 1), then a tube obtained by removing 1 loop from the connected component
corresponds to a codimension 2 face of ΣG. So, if G is not connected, then each connected
component of G is 1 node if M(G) admits a spin structure. □
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