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Abstract. In this paper, we concern a weighted version of the
Hardy inequality, which is a special case of the more general Caffarelli-
Kohn-Nirenberg inequalities. We improve the inequality on the
whole space or on a bounded domain by adding various remainder
terms. On the whole space, we show the existence of a remain-
der term which has the form of ratio of two weighted integrals.
Also we give a simple derivation of the remainder term involving
a distance from the manifold of the “virtual extremals”. Finally
on a bounded domain, we prove the existence of remainder terms
involving the gradient of functions.

1. Introduction

In this paper, we are concerned with the weighted version of the
Hardy inequality:

(1.1)

∫
Ω

|∇u|p|x|−padx ≥
(
N − p− pa

p

)p ∫
Ω

|u|p

|x|p(a+1)
dx

for all u ∈ C∞
0 (Ω), where Ω is a smooth bounded domain in RN (N ≥ 3)

with 0 ∈ Ω, or Ω = RN , 1 < p < N and −∞ < a < N−p
p

. Actually,

much more general weighted type inequalities are shown by Caffarelli,
Kohn and Nirenberg [4] and (1.1) is one of the special cases. Let
D1,p

0,a(Ω) and W
1,p
0,a (Ω) be the completion of C∞

0 (Ω) with respect to each
norm

∥u∥D1,p
0,a(Ω) =

(∫
Ω

|∇u|p|x|−padx

)1/p

,

∥u∥W 1,p
0,a (Ω) =

(∫
Ω

(|∇u|p + |u|p) |x|−padx

)1/p

,
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respectively. Then (1.1) holds true for all u ∈ D1,p
0,a(Ω). If Ω is bounded,

the Poincaré type inequality implies that D1,p
0,a(Ω) = W 1,p

0,a (Ω). Also the

constant
(

N−p−pa
p

)p
in (1.1) is known optimal and never attained in

D1,p
0,a(Ω).
When a = 0, (1.1) becomes the classical Hardy inequality

(1.2)

∫
Ω

|∇u|pdx ≥
(
N − p

p

)p ∫
Ω

|u|p

|x|p
dx,

again the equality in (1.2) is never achieved by any function in D1,p
0,0(Ω).

There are many papers up to now that treat the improvement of (1.2)
when Ω is a smooth bounded domain (see [2], [3], [6], [8], [10], [11], [12],
[17], [18], and references therein). On the other hand, when Ω = RN ,
Ghoussoub and Moradifam [11] show that there is no strictly positive
V ∈ C1((0,∞)) such that the inequality∫

RN

|∇u|2dx ≥
(
N − 2

2

)2 ∫
RN

|u|2

|x|2
dx+

∫
RN

V (|x|)|u|2dx

holds for all u ∈ W 1,2(RN). Therefore we cannot expect the same type
of remainder terms as in the bounded domain case, one of the reasons
of what is a lack of the Poincaré inequality in the whole space. In-
stead, Cianchi and Ferone [7] provided the following “non-standard”
remainder term: Let p∗ = Np

N−p
be the critical Sobolev exponent,

u0(x) = |x|−
N−p

p for x ∈ RN , and define

dp(u) = inf
c∈R

∥u− cu0∥Lp∗,∞(RN )

∥u∥Lp∗,p(RN )

(1 < p < N).

Here Lτ,σ(RN) (0 < τ ≤ ∞, 1 ≤ σ ≤ ∞) is the Lorentz space with the
norm

∥u∥Lτ,σ(RN ) = ∥s
1
τ
− 1

σu∗(·)∥Lσ(0,∞),

where u∗ denotes the (one-dimensional) decreasing rearrangement of u.
Then in [7] it is shown that for any 1 < p < N there exists a constant
C = C(p,N) such that∫

RN

|∇u|pdx ≥
(
N − p

p

)p ∫
RN

|u|p

|x|p
dx
(
1 + Cdp(u)

2p∗
)

holds for every real-valued weakly differentiable function u in RN de-
caying to zero at infinity with |∇u| ∈ Lp(RN). Recently, the authors of
this paper have succeeded to obtain a remainder term for the classical
Hardy inequality (1.2) on the whole space [16]. Our method consists
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of the well-known Brezis-Vázquez transformation [3] and the use of the
Gagliardo-Nirenberg inequality.

Concerning the inequality (1.1), on the other hand, Wang andWillem
[19] obtained the following improved version of (1.1) on a bounded do-
main Ω ⊂ RN : Assume Ω ⊂⊂ BR(0) for some R > 0. Then

∫
Ω

|∇u|2|x|−2adx−
(
N − 2− 2a

2

)2 ∫
Ω

|u|2

|x|2(a+1)
dx

≥ C

∫
Ω

(
log

(
R

|x|

))−2

|x|−2a|∇u|2dx

holds for all u ∈ D1,2
0,a(Ω), where C = C(Ω, a) is a positive constant.

Their method consists of the use of a conformal transformation in-
troduced by Catrina and Wang [5], which transforms the problem on
a bounded domain of RN to that of a cylinder C = R × SN−1; see
§4. Later, Abdellaoui, Colorado and Peral [1] obtained the following
improvement of (1.1): Let |Ω| denote the volume of Ω. Then for all
1 < q < p, there exists a positive constant C = C(N, p, q, a, |Ω|) such
that the inequality

∫
Ω

|∇u|p|x|−padx−
(
N − p− pa

p

)p ∫
Ω

|u|p

|x|p(a+1)
dx

≥ C

(∫
Ω

|x|−ra|∇u|qdx
)p/q

holds true for all u ∈ D1,p
0,a(Ω), where r is any number such that q ≤

r < ∞ if a ≤ 0 and 1 ≤ r < p + ρ for some positive constant ρ when
a > 0. Their method is based on the Picone type inequality for the
operator div(|x|−pa|∇u|p−2∇u). Note that from the proof of [1], the
constant C(N, p, q, a, |Ω|) → 0 as |Ω| → ∞.

In this paper, firstly we improve the inequality (1.1) when Ω = RN by
adding a remainder term of the form of ratio of two weighted integrals
to (1.1).

Theorem 1. (A remainder term of the form of ratio on the whole
space) Let N ≥ 3, 2 ≤ p < N and −∞ < a < N−p

p
. For given n ∈ N,

t ∈ (0, 1) and γ < min{1−t, p−n
p
}, set δ = n−N+ n

1−t−γ

(
γ + N−p−pa

p

)
.



4 MEGUMI SANO AND FUTOSHI TAKAHASHI

Then there exists a constant C > 0 such that the inequality∫
RN

|∇u|p|x|−padx−
(
N − p− pa

p

)p ∫
RN

|u|p

|x|p(a+1)
dx

≥ C

(∫
RN |x|δ|u|

n
1−t−γ dx

) p(1−t−γ)
nt

(∫
RN |x|−pa|u|pdx

) 1−t
t

(1.3)

holds for all radially symmetric function u ∈ W 1,p
0,a (RN), u ̸≡ 0.

Remark 1. If we put FA,B(u) =
∫
RN |u|A|x|Bdx for constants A,B,

and put uλ(x) = λCu(λx) for x ∈ RN and C ∈ R, then a simple
computation shows that FA,B(uλ) = λAC−B−NFA,B(u). The remainder
term in Theorem 1 can be written as

R(u) =

(∫
RN |u|

n
1−t−γ |x|δdx

) p(1−t−γ)
nt

(∫
RN |u|p|x|−padx

) 1−t
t

=

{
F n

1−t−γ
,δ(u)

} p(1−t−γ)
nt

{Fp,−pa(u)}
1−t
t

,

therefore it satisfies

R(uλ) =

{
F n

1−t−γ
,δ(uλ)

} p(1−t−γ)
nt

{Fp,−pa(uλ)}
1−t
t

=

{
λ(

n
1−t−γ

)C−δ−NF n
1−t−γ

,δ(u)
} p(1−t−γ)

nt

{λpC+pa−NFp,−pa(u)}
1−t
t

.

If we put C = N−p−pa
p

, we see

R(uλ) =

{
λ(

n
1−t−γ

)(N−p−pa
p

)−δ−N
} p(1−t−γ)

nt

{
λp(

N−p−pa
p

)+pa−N
} 1−t

t

R(u) =

(
λ−p( 1−t

t
)

λ−p( 1−t
t

)

)
R(u)

= R(u).

Thus the remainder term is invariant under the scaling u(x) 7→ uλ(x) =

λ
N−p−pa

p u(λx).

Remark 2. If we choose n, t, γ satisfying n
1−t−γ

= p, then (1.3) in Theo-

rem 1 also holds even for non-radial functions. Indeed, for a non-radial
function u, let us consider the radial function

U(r) =

(
ω−1
N

∫
SN−1

|u(rω)|pdSω

) 1
p

.

Then Hölder’s inequality implies that

U
′
(r) ≤

(
ω−1
N

∫
SN−1

|∂ru(rω)|pdSω

) 1
p

,
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so we obtain

(1.4) ωN

∫ ∞

0

|U ′
(r)|prN−1−pa dr ≤

∫
RN

∣∣∣∣∇u · x|x|
∣∣∣∣p |x|−padx.

Also we have

(1.5)

∫
RN

|U(|x|)|p|x|Adx =

∫
RN

|u|p|x|Adx

for any A ∈ R. Thus when n
1−t−γ

= p, (1.3) for U , (1.4) and (1.5) imply

that the same inequality holds for all non-radial functions.

Note that the standard rearrangement argument, see for example
[13], is not applicable because of the presence of weights, since a may
be negative and |x|−p(a+1) may be an increasing function. Thus, dif-
ferently from [16], here we use another type of pointwise estimate for
the expansion of |a − b|p, see Lemma 1. The use of full version of the
Caffarelli-Kohn-Nirenberg inequality, see Proposition 1, is another key
point. Since the technique used here is different from that of [16], the
remainder term obtained in Theorem 1 is also different from that in
[16] even when a = 0.

In §3, we improve (1.1) on the whole space by adding a remain-
der term which involves a distance from “the manifold of the virtual
extremals” {cua | c ∈ R}, where ua(x) = |x|−

N−p−pa
p . For the proof,

differently from that of Cianchi-Ferone [7], we use a new inequality re-
cently obtained by Machihara, Ozawa and Wadade [14]. It is surprising
for the authors that a direct use of the Machihara-Ozawa-Wadade in-
equality leads to the existence of “non-standard” type remainder terms
for (1.1) very simply, at least in the radially symmetric case.

In §4, we will show some improvements of (1.1) when p = 2:∫
Ω

|∇u|2|x|−2adx ≥
(
N − 2− 2a

2

)2 ∫
Ω

|u|2

|x|2(a+1)
dx,

where Ω is a bounded domain in RN (N ≥ 3). In this part, the method
of the proof is to combine two ideas: One is to transform the problem to
the one on a cylinder, which was initiated by Catrina and Wang [5] in
this context, and the another is to improve the one-dimensional Hardy
(weighted Poincaré) inequality by the method of Picone’s identity see
[11], [12] for p = 2 case and [1] for p ̸= 2 case.

2. Proof of Theorem 1.

In this section, we prove Theorem 1. For the proof, we need the
following lemma.
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Lemma 1 ([9]). Let p ≥ 2 and a, b be real numbers. Then there exists
cp > 0 such that

|a− b|p ≥ |a|p − p|a|p−2ab+ cp|b|p

holds true. cp is explicitly given as cp = min0<t≤1/2 ((1− t)p − tp + ptp−1)
and sharp in this inequality.

We recall here the following inequality obtained by Caffarelli, Kohn
and Nirenberg [4] in its full version:

Proposition 1. (Caffarelli-Kohn-Nirenberg [4]) Let n ∈ N and let
p, q, r, α, β, σ and t be real constants such that p, q ≥ 1, r > 0, 0 ≤
t ≤ 1, and

1

p
+
α

n
,

1

q
+
β

n
,

1

r
+
γ

n
> 0

where γ = tσ + (1− t)β. Then there exists a positive constant C such
that

(2.1)
∥∥∥|x|γu∥∥∥

Lr(Rn)
≤ C

∥∥∥|x|α|∇u|∥∥∥t
Lp(Rn)

∥∥∥|x|βu∥∥∥1−t

Lq(Rn)

holds for all u ∈ C∞
0 (Rn), if and only if the following conditions hold:

(1) (balance of dimension)

1

r
+
γ

n
= t

(
1

p
+
α− 1

n

)
+ (1− t)

(
1

q
+
β

n

)
,

(2) 0 ≤ α− σ if t > 0,
(3) 1 ≥ α− σ if t > 0 and 1

r
+ γ

n
= 1

p
+ α−1

n
.

Proof of Theorem 1. We show Theorem 1 for a radial function u ∈
C∞

0 (RN). Then a density argument implies the desired result. Since
u is radial, u can be written as u(x) = ũ(|x|) for some function ũ ∈
C∞

0 ([0,+∞)). Appealing to Brezis-Vázquez’s idea, we put

(2.2) ṽ(r) = r
N−p−pa

p ũ(r).
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We see ṽ(0) = 0 since a < N−p
p

and ṽ(+∞) = 0, since ũ ≡ 0 near

r = +∞. Put v(y) = ṽ(|y|) for y ∈ Rn, n ∈ N. Calculation shows that

J :=

∫
RN

|∇u|p|x|−padx−
(
N − p− pa

p

)p ∫
RN

|u|p

|x|p(a+1)
dx

= ωN

∫ ∞

0

|ũ′(r)|pr−parN−1dr − ωN

(
N − p− pa

p

)p ∫ ∞

0

|ũ(r)|pr−p(a+1)rN−1dr

= ωN

∫ ∞

0

∣∣∣∣(N − p− pa

p

)
r−

N−pa
p ṽ(r)− r−

N−p−pa
p ṽ′(r)

∣∣∣∣p rN−1−padr

− ωN

(
N − p− pa

p

)p ∫ ∞

0

|ṽ(r)|pr−1dr.

We apply Lemma 1 to the integrand of the first term:∣∣∣∣(N − p− pa

p

)
r−

N−pa
p ṽ(r)− r−

N−p−pa
p ṽ′(r)

∣∣∣∣p rN−1−pa

≥
[(N − p− pa

p

)p

r−N+pa|ṽ(r)|p

− p

(
N − p− pa

p

)p−1

|ṽ(r)|p−2ṽ(r)ṽ′(r)r−(
N−pa

p )(p−1)r−(
N−p−pa

p )

+ cp|ṽ′(r)|pr−N+p+pa
]
rN−1−pa

=

(
N − p− pa

p

)p

r−1|ṽ(r)|p − p

(
N − p− pa

p

)p−1

|ṽ(r)|p−2ṽ(r)ṽ′(r)

+ cp|ṽ′(r)|prp−1.

By using the fact ṽ(0) = ṽ(+∞) = 0 and p ≥ 2, we see

p

∫ ∞

0

|ṽ(r)|p−2ṽ(r)ṽ′(r) dr =

∫ ∞

0

d

dr
(|ṽ(r)|p) dr = 0.

Finally, we note that the terms involving
∫∞
0

|ṽ(r)|pr−1dr cancel out
by subtracting each other. Thus we obtain

(2.3) J ≥ cpωN

∫ ∞

0

|ṽ′(r)|p rp−1 dr = cp
ωN

ωn

∫
Rn

|∇v(y)|p|y|p−ndy.

From now on, we estimate the right hand side of (2.3) by using the
Caffarelli-Kohn-Nirenberg inequality (2.1) (Proposition 1) for v on Rn.
We take

q = p and α = β =
p− n

p
.



8 MEGUMI SANO AND FUTOSHI TAKAHASHI

By these choices, we see

1

p
+
α

n
=

1

q
+
β

n
=

1

n
> 0.

The first condition of the Proposition 1 (balance of dimension) reduces
to

1

r
+
γ

n
=

1− t

n
, i.e., r =

n

1− t− γ
.

Thus 1
r
+ γ

n
> 0 if t < 1, and by the assumption γ < min{1− t, p−n

p
}, r

is positive and the condition α ≥ σ = γ−(1−t)β
t

when t > 0 is fulfilled.

Also under the choice 0 < t < 1, we see 0 = 1
p
+ α−1

n
̸= 1

r
+ γ

n
= 1−t

n
,

thus we do not need to consider the third condition. In conclusion, we
assure that the following inequality holds true for v:∥∥∥|y|γv∥∥∥

L
n

1−t−γ (Rn)
≤ C

∥∥∥|y| p−n
p |∇v|

∥∥∥t
Lp(Rn)

∥∥∥|y| p−n
p v
∥∥∥1−t

Lp(Rn)
,

that is,(∫
Rn

|y|
nγ

1−t−γ |v|
n

1−t−γ dy

) p(1−t−γ)
nt

≤ C

(∫
Rn

|y|p−n|∇v|pdy
)(∫

Rn

|y|p−n|v|pdy
) 1−t

t

.

Combining this to (2.3), we have

(2.4) J ≥ C ′

(∫
Rn |y|

nγ
1−t−γ |v|

n
1−t−γ dy

) p(1−t−γ)
nt

(∫
Rn |y|p−n|v|pdy

) 1−t
t

where C ′ = C−1cp
ωN

ωn
. By the definition v(y) = ṽ(|y|), y ∈ Rn and the

assumption that u ∈ W 1,p
0,a (RN), we have∫

Rn

|y|p−n|v|pdy = ωn

∫ ∞

0

rN−p−pa|ũ(r)|prp−nrn−1dr

=
ωn

ωN

∫
RN

|u|p|x|−padx <∞.

On the other hand,∫
Rn

|y|
nγ

1−t−γ |v|
n

1−t−γ dy = ωn

∫ ∞

0

(
r

N−p−pa
p |ũ(r)|

) n
1−t−γ

r
nγ

1−t−γ rn−1dr

= ωn

∫ ∞

0

|ũ(r)|
n

1−t−γ r
n

1−t−γ (γ+
N−p−pa

p )+n−NrN−1dr

=
ωn

ωN

∫
RN

|u|
n

1−t−γ |x|δdx.

Inserting these into (2.4), we obtain the desired conclusion. □
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Remark 3. If we assume that the function u ∈ W 1,p
0,a (RN) is nonnegative,

radially symmetric and radially decreasing, then we can apply the same
argument in [16] also in our situation. In this case we obtain the
following theorem, the proof of it is exactly the same as in [16].

Theorem 2. For given N ≥ 3, 2 ≤ p < N and q > 2, set α =

α(p, q,N) = 2−N + q(N−p−pa)
2

. Then there exists D = D(p, q,N) > 0
such that the inequality∫

RN

|∇u|p|x|−padx−
(
N − p− pa

p

)p ∫
RN

|u|p

|x|p(a+1)
dx

≥ D

( ∫
RN |u| pq2 |x|αdx∫

RN |u|p|x|2−p−padx

) 2
q−2

holds for all nonnegative, radially symmetric and radially decreasing
function u ∈ W 1,p

0,a (RN), u ̸≡ 0.

3. A remainder term involving a distance from the
virtual extremals

For −∞ < a < N−p
p

, let ua(x) = |x|−
N−p−pa

p . Note that ua is a solu-

tion to the Euler-Lagrange equation associated with the best constant
of the inequality (1.1)

−div
(
|x|−pa|∇u|p−2∇u

)
=

(
N − p− pa

p

)p

|x|−p(a+1)up−1,

u ≥ 0 in RN ,

however, ua ̸∈ D1,p
0,a(BR(0)) for any R > 0. Thus ua is not a gen-

uine minimizer for the best constant of (1.1) in the admissible class
D1,p

0,a(RN), but just approximates the non-existing extremals on the
whole space.

In this section, we prove an improved version of (1.1), which in-
volves a sort of the “distance” of the associated function u from the
one-dimensional space of “virtual extremals” {cua | c ∈ R}. For the
(sub-critical, also the critical) Hardy, or higher order Hardy-Rellich
inequalities, see [15].

For R > 0, let us define

(3.1) dR(f, g) =

∫
RN

|f(x)− g(x)|p∣∣∣log R
|x|

∣∣∣p |x|p(a+1)
dx

1/p

for functions f, g, for which the right hand side is finite.
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Theorem 3. Let N ≥ 3, 2 ≤ p < N and assume −∞ < a < N−p
p

.

Then ∫
RN

|∇u|p|x|−padx−
(
N − p− pa

p

)p ∫
RN

|u|p

|x|p(a+1)
dx

≥ cp

(
p− 1

p

)p

sup
R>0

inf
c∈R

dR(u, cua)
p(3.2)

holds for any radially symmetric function u ∈ D1,p
0,a(RN). Here cp is a

constant in Lemma 1 and dR(·, ·) is defined in (3.1).

For the proof, we need the following result.

Proposition 2. (Machihara-Ozawa-Wadade [14]:Theorem 1.1) Let N ∈
N, 1 < α <∞ and max{1, α− 1} < β <∞. Then for any R > 0, the
inequality
(3.3)∫

RN

|f(x)− f(R x
|x|)|

β∣∣∣log R
|x|

∣∣∣α |x|N dx ≤
(

β

α− 1

)β ∫
RN

∣∣∣ x
|x| · ∇f(x)

∣∣∣β
|x|N−β

∣∣∣log R
|x|

∣∣∣α−β
dx

holds for all f ∈ W 1LN,β,β−α
β
(RN). Also the constant

(
β

α−1

)β
is best

possible in (3.3).

Remark 4. Here, W 1Lp,q,λ(RN) denotes the Sobolev-Lorentz-Zygmund
spaces. For the precise definition of these spaces, we refer to [14].
However, we note that if

∫
RN (|∇u|p + |u|p) |x|p−Ndx < ∞, then the

function u ∈ W 1LN,p,0(RN).

Proof of Theorem 3. First, we prove Theorem for a radial function
u ∈ C∞

0 (RN). Let u ∈ C∞
0 (RN), u(x) = ũ(r), r = |x| be a radial

function. Define v(x) = ṽ(|x|) for x ∈ RN where ṽ(r) is defined in
(2.2). As in the proof of Theorem 1, we obtain

J(u) =

∫
RN

|∇u|p|x|−padx−
(
N − p− pa

p

)p ∫
RN

|u|p

|x|p(a+1)
dx

≥ cpωN

∫ ∞

0

|ṽ′r|prp−1dr = cp

∫
RN

|∇v|p|x|p−Ndx,(3.4)

since we assume p ≥ 2, see (2.3). Here we claim that if u ∈ C∞
0 (RN) ⊂

W 1,p
0,a (RN), v satisfies∫

RN

(|∇v|p + |v|p) |x|p−Ndx <∞.
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In particular, v ∈ W 1LN,p,0(RN) by the above remark. Indeed, from
(3.4), we have

∫
RN |∇v|p|x|p−Ndx ≤ J(u)/cp < ∞. Also by the defini-

tion of v, we see
∫
RN |x|p−N |v|pdx =

∫
RN |x|−pa|u|pdx < ∞. Thus we

have obtained the claim.
By the claim, we can apply Proposition 2 to v ∈ W 1LN,p,0(RN).

Then we derive

J(u) ≥ cp

∫
RN

|∇v|p|x|p−Ndx ≥ cp

(
p− 1

p

)p ∫
RN

∣∣∣v(x)− v(Rx
|x| )
∣∣∣p∣∣∣log R

|x|

∣∣∣p |x|N dx

= cp

(
p− 1

p

)p ∫
RN

∣∣∣|x|N−p−pa
p u(x)−R

N−p−pa
p u(Rx

|x| )
∣∣∣p∣∣∣log R

|x|

∣∣∣p |x|N dx

= cp

(
p− 1

p

)p ∫
RN

∣∣∣u(x)−R
N−p−pa

p ũ(R)|x|−
N−p−pa

p

∣∣∣p∣∣∣log R
|x|

∣∣∣p |x|p(a+1)
dx(3.5)

≥ cp

(
p− 1

p

)p

inf
c∈R

∫
RN

∣∣∣u(x)− c|x|−
N−p−pa

p

∣∣∣p∣∣∣log R
|x|

∣∣∣p |x|p(a+1)
dx

for any R > 0, here we have used (3.4) in the first inequality, (3.3) with
f = v and α = β = p in the second inequality, the definition of v in the
first equality, and the fact that u is radially symmetric in the second
equality. This proves Theorem for a radial function u ∈ C∞

0 (RN).
Next, we prove Theorem for a radial function u ∈ D1,p

0,a(RN). Here
we follow an argument by Machihara, Ozawa and Wadade [14]. Let
{um}∞m=1 ⊂ C∞

0 (RN) be a sequence of radially symmetric functions
such that um → u in D1,p

0,a(RN) as m → ∞. Then there exists a
subsequence {umj

}∞j=1 such that

umj

|x|a+1
→ u

|x|a+1
in Lp(RN),

umj
→ u a.e. in RN

by (1.1). Now, define

wR(x) =
w(x)−R

N−p−pa
p w̃(R)|x|−

N−p−pa
p

|x|a+1| log R
|x| |

for a radial function w ∈ L1
loc(RN), w(x) = w̃(|x|), and R > 0. Since

the inequality (3.5) holds for umj
− umk

∈ C∞
0 (RN), we observe that

{(umj
)R}∞j=1 is a Cauchy sequence in Lp(RN). Since (umj

)R → uR a.e.
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in RN , we easily see that (umj
)R → uR in Lp(RN) as j → ∞. Therefore,

for any R > 0, we have

J(u) = lim
j→∞

J(umj
)

≥ cp

(
p− 1

p

)p

lim
j→∞

∫
RN

|umj
(x)−R

N−p−pa
p ũmj

(R)|x|−
N−p−pa

p |p∣∣∣log R
|x|

∣∣∣p |x|p(a+1)
dx

= cp

(
p− 1

p

)p ∫
RN

|u(x)−R
N−p−pa

p ũ(R)|x|−
N−p−pa

p |p∣∣∣log R
|x|

∣∣∣p |x|p(a+1)
dx

for all radial functions u ∈ D1,p
0,a(RN), here we have used (3.5) for umj

∈
C∞

0 (RN). As before, this ends the proof. □

4. Improved Caffarelli-Kohn-Nirenberg type inequalities
on a bounded domain

In this section, we revisit the idea by Catrina and Wang [5], Wang-
Willem [19] to improve the inequality

(4.1)

∫
Ω

|∇u|2|x|−2adx ≥
(
N − 2− 2a

2

)2 ∫
Ω

|u|2

|x|2(a+1)
dx

on a smooth bounded domain Ω in RN (N ≥ 3) with 0 ∈ Ω. Here u is a
function in C∞

0 (Ω\{0}) and−∞ < a < N−2
2

is always assumed. We can

check that under the assumption a < N−2
2

, D1,2
0,a(Ω) is identical to the

completion of C∞
0 (Ω\{0}) with respect to the norm ∥·∥D1,2

0,a(Ω). The idea

of Catrina and Wang consists of the use of a conformal transformation
which converts a problem to an equivalent one in a domain on a cylinder
C = R× SN−1. More precisely, for a function u ∈ C∞

0 (Ω \ {0}), let us
associate v ∈ C∞

0 (Ω̃) by the transformation

(4.2) u(x) = |x|−
N−2−2a

2 v

(
− log |x|, x

|x|

)
,

where Ω̃ is a domain on the cylinder C defined as

Ω̃ =

{
(t, θ) ∈ R× SN−1 : t = − log |x|, θ = x

|x|
, x ∈ Ω

}
.

Catrina and Wang proved in [5] that when Ω = RN and a < N−2
2

,
the transformation (4.2) provides an isomorphism between two Hilbert
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spaces D1,2
0,a(RN) and H1(C), the inner product of the latter is given by

(v, w)H1(C) =

∫
C

{
∇v · ∇w +

(
N − 2− 2a

2

)2

vw

}
dµ.

Here |∇v|2 = v2t + |∇θv|2 and dµ = dtdSθ = |x|−Ndx are the length of
the gradient vector and the volume element on C. By a direct compu-
tation, we see

∇u(x) = −|x|−
N−2a

2

[{
vt(t, θ) +

(
N − 2− 2a

2

)
v

}
θ +∇θv(t, θ)

]
,

and since ⟨θ,∇θv⟩ ≡ 0, it holds
(4.3)

|∇u(x)|2 = |x|−N+2a

[{
vt(t, θ) +

(
N − 2− 2a

2

)
v

}2

+ |∇θv(t, θ)|2
]
.

Furthermore, we have

∫
Ω̃

|∇v|2dµ =

∫
Ω

|∇u|2|x|−2adx−
(
N − 2− 2a

2

)2 ∫
Ω

u2

|x|2(a+1)
dx,

(4.4)

∫
Ω̃

v2dµ =

∫
Ω

u2

|x|2(a+1)
dx.

(4.5)

On the other hand, Wang and Willem [19] proved the weighted
Poincaré inequality of the form∫

Ω̃

|∇v|2dµ ≥ 1

4

∫
Ω̃

v2

t2
dµ

for v ∈ C∞
0 (Ω̃). Using this inequality and the transformation (4.2),

they obtained the improved inequality mentioned in the Introduction,
See [5], [19].

Following their arguments, we prove the next theorem.

Theorem 4. Let V = V (t) is nonnegative, monotone decreasing func-
tion on t ∈ (0,+∞) and assume that there exists a strictly positive
function ϕ = ϕ(t) ∈ C2((0,+∞)) such that −ϕ′′(t) ≥ V (t)ϕ(t) holds
on (0,+∞). Let Ω be a domain in RN such that Ω ⊂⊂ BR(0) for some
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R > 0. Then there exists a constant C = C(a,Ω, V ) > 0 such that∫
Ω

|∇u|2|x|−2adx−
(
N − 2− 2a

2

)2 ∫
Ω

|u|2

|x|2(a+1)
dx

≥ C

∫
Ω

V

(
log

(
R

|x|

))
|x|−2a|∇u|2dx(4.6)

holds for all u ∈ D1,2
0,a(Ω).

For example, V (t) = 1
4t2

satisfies the assumption of Theorem 4 with

ϕ(t) = t1/2, t ∈ (0,+∞).
As a corollary, we obtain the following improved inequalities.

Corollary 1. Let Ω be a domain in RN such that Ω ⊂⊂ BR(0) for
some R > 0. Assume −∞ < a < N−2

2
. Then for any integer k ∈ N,

there exists a constant C = C(a,Ω, k) > 0 such that the followings
hold.

(i) Define the functions Xi = Xi(s) for s ∈ (0, 1] iteratively as
X1(s) = (1− log s)−1, Xi(s) = X1(Xi−1(s)) for i ≥ 2. Then∫

Ω

|∇u|2|x|−2adx−
(
N − 2− 2a

2

)2 ∫
Ω

|u|2

|x|2(a+1)
dx

≥ C

k∑
i=1

∫
Ω

1

|x|2a
X2

1

(
|x|
R

)
X2

2

(
|x|
R

)
· · ·X2

i

(
|x|
R

)
|∇u|2dx

holds for all u ∈ D1,2
0,a(Ω).

(ii) Let e−1 = 0, e0 = 1, ei = eei−1 for i ≥ 1, and define functions

iteratively as log(1) s = log s, log(i)(s) = log(1)
(
log(i−1) s

)
for i ≥ 2,

those are well defined when s > ei−2 and positive when s > ei−1. For
any integer k ∈ N, take ρ ≥ Rek−1. Then there exists a constant
C = C(a,Ω, k) > 0 such that∫

Ω

|∇u|2|x|−2adx−
(
N − 2− 2a

2

)2 ∫
Ω

|u|2

|x|2(a+1)
dx

≥ C

k∑
i=1

∫
Ω

1

|x|2a

(
log(1)

ρ

|x|

)−2(
log(2)

ρ

|x|

)−2

· · ·
(
log(i)

ρ

|x|

)−2

|∇u|2dx

holds for all u ∈ D1,2
0,a(Ω).

For the proof of Theorem 4, first we show a lemma.

Lemma 2. (The weighted Poincaré inequality on a cylinder) Let Ω̃ ⊂
C+ be a bounded domain where C+ = {(t, θ) ∈ R × SN−1 : t > 0}. Let
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V = V (t) satisfy the assumptions in Theorem 4. Then it holds

(4.7)

∫
Ω̃

|∇v|2dµ ≥
∫
Ω̃

V (t)v2dµ

for all v ∈ C∞
0 (Ω̃).

Proof. Put ψ(t, θ) = v(t, θ)/ϕ(t) where ϕ(t) > 0, ϕ = ϕ(t) ∈ C2((0,+∞))
such that −ϕ′′(t) ≥ V (t)ϕ(t) on (0,+∞). Then ψ ≡ 0 near t = 0 and
t = ∞, since v ∈ C∞

0 (Ω̃). Thus

∫ ∞

0

v2t (t, θ)dt =

∫ ∞

0

(ϕtψ + ϕψt)
2 dt =

∫ ∞

0

(
ϕ2
tψ

2 + ϕ2ψ2
t + ϕϕt(ψ

2)t
)
dt

=

∫ ∞

0

(
ϕ2
tψ

2 + ϕ2ψ2
t

)
dt+

[
ψ2ϕϕt

]∞
0
−
∫ ∞

0

ψ2(ϕϕt)tdt

=

∫ ∞

0

ϕ2ψ2
t dt−

∫ ∞

0

ψ2ϕϕttdt ≥ −
∫ ∞

0

ψ2ϕϕttdt

=

∫ ∞

0

v2
(
−ϕ

′′(t)

ϕ(t)

)
dt ≥

∫ ∞

0

V (t)v2dt.

Integrating both sides on SN−1 with respect to dSθ and adding
∫
Ω̃
|∇θv|2dtdSθ

to the right hand side, we obtain (4.7). □

The inequality (4.7) also holds for v ∈ H1
0 (Ω̃) by a density argument.

Proof of Theorem 4. By using a scaling x 7→ x/R, it is enough to
prove Theorem when R = 1. In this case, Ω̃ ⊂ C+ where C+ = {(t, θ) ∈
R× SN−1 : t > 0}. Now, we will prove
(4.8)∫

Ω̃

|∇v|2dµ ≥ C

∫
Ω̃

V (t)

[
|∇θv|2 +

{
vt(t, θ) +

(
N − 2− 2a

2

)
v

}2
]
dµ

for some C > 0 independent of v. Indeed, since r0 = supx∈Ω |x| < 1,

we have t = − log |x| ≥ − log r0 > 0 on Ω̃. Then the positivity and the
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decreasing property of V imply that∫
Ω̃

V (t)

[
|∇θv|2 +

{
vt(t, θ) +

(
N − 2− 2a

2

)
v

}2
]
dµ

≤ 2

∫
Ω̃

V (t)|∇v|2dµ+ 2

(
N − 2− 2a

2

)2 ∫
Ω̃

V (t)v2dµ

≤ 2V (− log r0)

∫
Ω̃

|∇v|2dµ+ 2

(
N − 2− 2a

2

)2 ∫
Ω̃

V (t)v2dµ

≤

(
2V (− log r0) + 2

(
N − 2− 2a

2

)2
)∫

Ω̃

|∇v|2dµ,

where we have used the weighted Poincaré inequality (4.7) in the last
inequality. Thus we get (4.8). Simple computation using (4.3), (4.4),
(4.5) in (4.8) yields the desired inequality (4.6). □

Remark 5. The constant C in Theorem 4 can be chosen that

C =

(
2V (− log r0) + 2

(
N − 2− 2a

2

)2
)−1

.

Proof of Corollary 1. We follow the computation in [17].

(i) We may assume R = 1. Note that Xi is well-defined and Xi(0) = 0,
Xi(1) = 1, 0 < Xi(s) < 1 for s ∈ (0, 1). We compute

X ′
1(s) =

1

s
X1(s)

2, X ′
i(s) =

X1(s) · · ·Xi−1(s)

s
Xi(s)

2,

(X1 · · ·Xk)
′(s) =

(X1 · · ·Xk)(s)

s
{X1(s) + (X1X2)(s) + · · ·+ (X1 · · ·Xk)(s)} .

Define Yi(t) = Xi(e
−t) for t ∈ [0,+∞). Then we obtain

Y ′
1(t) = −Y1(t)2, Y ′

i (t) = − (Y1 · · ·Yi) (t)Yi(t),
(Y1 · · ·Yk)′(t) = (Y1 · · ·Yk)(t) {Y1(t) + (Y1Y2)(t) + · · ·+ (Y1 · · ·Yk)(t)} .

Now, define

ϕk(t) = (Y1 · · ·Yk)−1/2 (t) > 0.

Then by differentiating log ϕk(t) = −1
2

∑k
i=1 log Yi(t), we check that

ϕ′
k(t) =

ϕk(t)

2

k∑
i=1

(Y1 · · ·Yi) (t), ϕ′′
k(t) = −ϕk(t)

4

k∑
i=1

(Y1 · · ·Yi)2 (t),
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thus ϕk is a solution of −ϕ′′
k(t)

ϕk(t)
= 1

4

∑k
i=1 (Y1 · · ·Yi)

2 (t). It is easy to

check that Vk(t) =
1
4

∑k
i=1 (Y1 · · ·Yi)

2 (t) is nonnegative and decreasing
on (0,+∞). Applying Theorem 4, we obtain the result.

(ii) We compute(
log(i) s

)′
= s−1

(
log(1) s

)−1 (
log(2) s

)−1

· · ·
(
log(i−1) s

)−1

for i = 1, 2, · · · , k. Put Li(t) = log(i)(ρet) and Wi(t) = (L1 · · ·Li)
−1(t)

for i = 1, 2, · · · , k. We see Li(t) > 0 if ρ > e−tei−1 and obtain

L′
1(t) = 1, L′

i(t) = (L1 · · ·Li−1)
−1 (t) for i = 2, 3, . . . , k,

W ′
i (t) = −Wi(t)

i∑
j=1

(L1 · · ·Lj)
−1(t).

Define
ψk(t) = (L1 · · ·Lk)

1/2 (t) > 0.

Then we check that

ψ′
k(t) =

ψk(t)

2

k∑
i=1

(L1 · · ·Li)
−1 (t) =

ψk(t)

2

k∑
i=1

Wi(t),

ψ′′
k(t) =

ψk(t)

4

(
k∑

i=1

Wi(t)

)2

− ψk(t)

2

k∑
i=1

Wi(t)
i∑

j=1

Wj(t),

− ψ′′
k

ψk

(t) =
1

4

k∑
i=1

Wi(t)
2.

On the way of computation, we have used the identity

2
k∑

i=1

ai

i∑
j=1

aj −

(
k∑

i=1

ai

)(
k∑

j=1

aj

)
=

k∑
i=1

a2i

for any a1, · · · , ak ∈ R. Again Vk(t) =
1
4

∑k
i=1 (L1 · · ·Li)

−2 (t) is non-
negative and decreasing on (0,+∞), so we may apply Theorem 4 to
obtain the result. □
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