SOME IMPROVEMENTS FOR A CLASS OF THE
CAFFARELLI-KOHN-NIRENBERG INEQUALITIES

MEGUMI SANO AND FUTOSHI TAKAHASHI

ABSTRACT. In this paper, we concern a weighted version of the
Hardy inequality, which is a special case of the more general Caffarelli-
Kohn-Nirenberg inequalities. We improve the inequality on the
whole space or on a bounded domain by adding various remainder
terms. On the whole space, we show the existence of a remain-
der term which has the form of ratio of two weighted integrals.
Also we give a simple derivation of the remainder term involving

a distance from the manifold of the “virtual extremals”. Finally
on a bounded domain, we prove the existence of remainder terms
involving the gradient of functions.

1. INTRODUCTION

In this paper, we are concerned with the weighted version of the
Hardy inequality:

N—p—pa\? p
(1.1) /|Vu|p|x|_p“dx2 ( P p“) id —dz
Q P q |z[Plat))

for all u € C§°(2), where 2 is a smooth bounded domain in R (N > 3)
with0 € Q,or Q =RY, 1 <p< Nand —o0 < a < %’. Actually,
much more general weighted type inequalities are shown by Caffarelli,
Kohn and Nirenberg [4] and (1.1) is one of the special cases. Let
Dé:g (Q) and Wolf(Q) be the completion of C§°(€2) with respect to each
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respectively. Then (1.1) holds true for all u € Dé:g (). If Q is bounded,
the Poincaré type inequality implies that D(l):g (Q) = Wolf(Q) Also the

p
constant (W) in (1.1) is known optimal and never attained in

Dy (9).
When a = 0, (1.1) becomes the classical Hardy inequality
N —p\’ P
(12) /\vu|pdx > <—p> Jel® 4,
0 P alzlP

again the equality in (1.2) is never achieved by any function in Dé:g (Q).
There are many papers up to now that treat the improvement of (1.2)
when  is a smooth bounded domain (see [2], [3], [6], [8], [10], [11], [12],
[17], [18], and references therein). On the other hand, when Q = R",
Ghoussoub and Moradifam [11] show that there is no strictly positive
V € C'((0,00)) such that the inequality

N —2\° 2
/ |Vul?dz > (| —— / de%—/ V(|x|)u*dz
RN 2 v |2]? RN

holds for all u € WH2(RY). Therefore we cannot expect the same type
of remainder terms as in the bounded domain case, one of the reasons
of what is a lack of the Poincaré inequality in the whole space. In-

stead, Cianchi and Ferone [7] provided the following “non-standard”

remainder term: Let p* = NN—ZQ be the critical Sobolev exponent,
N—

up(z) = |z|~ "7 for z € RV, and define

U — cu * o0
dy(u) = ing 1 Collir =@y

R ||ul| o p

(1<p<N).

Here L™ (RY) (0 < 7 < 00,1 < ¢ < o) is the Lorentz space with the
norm

1 1
[l zro @y = lls=7 74" ()l 2o 0,00);
where u* denotes the (one-dimensional) decreasing rearrangement of w.

Then in [7] it is shown that for any 1 < p < N there exists a constant
C = C(p, N) such that

N —p\” |ulP "
[ (552 L s

holds for every real-valued weakly differentiable function u in RY de-
caying to zero at infinity with |Vu| € LP(R"). Recently, the authors of
this paper have succeeded to obtain a remainder term for the classical
Hardy inequality (1.2) on the whole space [16]. Our method consists
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of the well-known Brezis-Véazquez transformation [3] and the use of the
Gagliardo-Nirenberg inequality.

Concerning the inequality (1.1), on the other hand, Wang and Willem
[19] obtained the following improved version of (1.1) on a bounded do-
main  C RY: Assume Q CC Bg(0) for some R > 0. Then

N —2-2a\> |u?
2 —2a
/Q|Vu| || dx—( 5 > /Q|m|2(“+1)dx
R - —2a 2
>C log | — |z| | Vu|“dz

holds for all u € DéfL(Q), where C' = C(,a) is a positive constant.
Their method consists of the use of a conformal transformation in-
troduced by Catrina and Wang [5], which transforms the problem on
a bounded domain of R¥ to that of a cylinder C = R x SN=1; see
§4. Later, Abdellaoui, Colorado and Peral [1] obtained the following
improvement of (1.1): Let |2 denote the volume of Q. Then for all
1 < g < p, there exists a positive constant C' = C(N, p, q, a, |€2]) such
that the inequality

N —p—pa\’ »
/ |Vul|P|z|Pde — p—ra / [ul dx
Q p q |zt
p/q
>C </ |x|_m|Vu|qu)
Q

holds true for all u € Dé:g (), where r is any number such that ¢ <
r<ooifa<0and 1 <r < p+ p for some positive constant p when
a > 0. Their method is based on the Picone type inequality for the
operator div(|x|7P*|Vu|P~2Vu). Note that from the proof of [1], the
constant C'(N, p, ¢, a,|2]) — 0 as |Q] — oo.

In this paper, firstly we improve the inequality (1.1) when Q = RY by
adding a remainder term of the form of ratio of two weighted integrals
to (1.1).

Theorem 1. (A remainder term of the form of ratio on the whole
space) Let N > 3,2 <p< N and —oo < a < %. For given n € N,

t €(0,1) and vy < min{1—t, 7’_7”}, setd = n—N—4—n <7 n N—;;)—pa>'

1—t—y
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Then there exists a constant C' > 0 such that the inequality

N —p—pa\” v
|Vul|P|z|Pde — M il dx
RN p ry |z[PetD)

p(l—t—y)

I O

(Jen 7P ulpdz) *
holds for all radially symmetric function u € W&’f(RN), u Z 0.

(1.3)

Remark 1. If we put Fap(u) = [pn |u[|z|Pdz for constants A, B,
and put uy(z) = A\u(\z) for # € RY and C' € R, then a simple
computation shows that Fu p(uy) = M~B~NF, 5(u). The remainder
term in Theorem 1 can be written as

" p(l—tt—w) p(l—tt—w)
(fRN [ul == ‘$’6d$> {Fliy,g(u)}
u) = 1t = 1—¢ ;
(fRN |“|p|x|_pad$) ‘ {Fn—pa(u)} K
therefore it satisfies
p(1—t—v) p(l—t—7y)
{Fl,’;,v,é(m)} it {)\(71_75_7)c—zs—NFli?i7 ,6(16)} nt

() = =t - Cpa—N it

{Fp—pa(ur)} 7 (AP NE, - a(u)} 7

If we put C' = Nﬁf;pa, we see

n N—p—pay_ s nt
_— {)\(H—w)(4p )9 N} R AP R
uy) = — u) = | —— U
{Ap(”“;f"“nmw}lt AP

= R(u).

Thus the remainder term is invariant under the scaling u(z) — uy(z) =
N—p—pa

A u(Ax).

Remark 2. If we choose n, t,~ satisfying % = p, then (1.3) in Theo-
rem 1 also holds even for non-radial functions. Indeed, for a non-radial
function wu, let us consider the radial function

Ur) = (w;vl /S . |u(rw)|pd5w); .

Then Holder’s inequality implies that

v < (o [ utras,)
SN-1
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so we obtain

(1.4) wN/ |U,(T)|pTN_1_p“dr§/ ‘Vui
0 RN

2]

p
|z|Pdx.

Also we have

(15) [ WtabPlelde = [ Juljalas
RN RN

for any A € R. Thus when —— = p, (1.3) for U, (1.4) and (1.5) imply

1—t—y
that the same inequality holds for all non-radial functions.

Note that the standard rearrangement argument, see for example
[13], is not applicable because of the presence of weights, since a may
be negative and |z|7?(®*Y) may be an increasing function. Thus, dif-
ferently from [16], here we use another type of pointwise estimate for
the expansion of |a — b|P, see Lemma 1. The use of full version of the
Caffarelli-Kohn-Nirenberg inequality, see Proposition 1, is another key
point. Since the technique used here is different from that of [16], the
remainder term obtained in Theorem 1 is also different from that in
[16] even when a = 0.

In §3, we improve (1.1) on the whole space by adding a remain-
der term which involves a distance from “the Il]vngp%flold of the virtual
extremals” {cu,|c € R}, where u,(z) = |z|” » For the proof,
differently from that of Cianchi-Ferone [7], we use a new inequality re-
cently obtained by Machihara, Ozawa and Wadade [14]. Tt is surprising
for the authors that a direct use of the Machihara-Ozawa-Wadade in-
equality leads to the existence of “non-standard” type remainder terms
for (1.1) very simply, at least in the radially symmetric case.

In §4, we will show some improvements of (1.1) when p = 2:

N —2-2a\> |u?
2 —2a
/Q]Vu| |x|~“*dz > ( 5 ) ; |x|2(a+1)dx,

where € is a bounded domain in RY (N > 3). In this part, the method
of the proof is to combine two ideas: One is to transform the problem to
the one on a cylinder, which was initiated by Catrina and Wang [5] in
this context, and the another is to improve the one-dimensional Hardy
(weighted Poincaré) inequality by the method of Picone’s identity see
[11], [12] for p = 2 case and [1] for p # 2 case.

2. PROOF OF THEOREM 1.

In this section, we prove Theorem 1. For the proof, we need the
following lemma.



6 MEGUMI SANO AND FUTOSHI TAKAHASHI

Lemma 1 ([9]). Let p > 2 and a,b be real numbers. Then there exists
cp > 0 such that

o — bl > |al” — plaP"ab + c,|b]”

holds true. ¢, is explicitly given as ¢, = ming<i<q/2 ((1 — )P — 2 + pt?~1)
and sharp in this inequality.

We recall here the following inequality obtained by Caffarelli, Kohn
and Nirenberg [4] in its full version:

Proposition 1. (Caffarelli-Kohn-Nirenberg [4]) Let n € N and let
p,q, 1, 8,0 and t be real constants such that p,qg > 1, r > 0, 0 <
t<1, and

1 o 1 1
Loa L0170y
p n ¢ n r n

where v =to + (1 — t)B. Then there exists a positive constant C' such
that

1-t

(2.1) H\x!'yu

t
< Ofetrvul],, 1t
R™) LP(R™)

’L'“( La(R")

holds for all uw € C§°(R™), if and only if the following conditions hold:

(1) (balance of dimension)

L wa%4>+ﬂ—w<l+é»
r n \p n q n

2)0<a—-ocift>0,
(3) 1Za—aift>0and%+%:%+a—_l.

n

Proof of Theorem 1. We show Theorem 1 for a radial function u €
Cs°(RY). Then a density argument implies the desired result. Since
u is radial, u can be written as u(x) = u(|z|) for some function @ €
Cs°([0,+00)). Appealing to Brezis-Vazquez’s idea, we put

(2.2) o(ry=r""7+ a(r).
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We see 9(0) = 0 since a < % and 9(+00) = 0, since @ = 0 near
r = +o00. Put v(y) = 9(|y|) for y € R*, n € N. Calculation shows that

N —p—pa\? p
J ::/ |VulP|z| P dx — A bl / [ul dx
RN p RN ‘x|p(a+1)

o N _ _ p 00
= wN/ @' (r)[Pr—PorN "ty — wy (ﬂ) / () [PrPlat DN =1 gy
0 0

p
N /N —p— —pa e P
0 D
N —p— P proo
—WN (ﬂ> / |5 (r)[Pr—dr.
p 0
We apply Lemma 1 to the integrand of the first term:
N —p— —pa e P
‘(—p p“) S B(r) — T ()| e
p
N —p— P
> | (ﬂ) N
p
N —p— p-1 . o
—p (—p p“) [5(r) P25 () ()~ )00, (22
p

+ Cp|’6,(7‘) |pT—N+p+pa:| TN—I—pa

= (M) e (Y2 e

p p
+ ¢ |0 (r) [PrP L.
By using the fact 9(0) = 0(+00) =0 and p > 2, we see
oo o0 d
p [P dr = [ (apar <o
0 o dr

Finally, we note that the terms involving [~ [0(r)[Pr~'dr cancel out
by subtracting each other. Thus we obtain

23) Jzauy [ WPt =6 2 [ [Tu@)Pll
0 wn Rn
From now on, we estimate the right hand side of (2.3) by using the

Caffarelli-Kohn-Nirenberg inequality (2.1) (Proposition 1) for v on R™.
We take

pP—n
D .

g=p and a=p=
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By these choices, we see

1 1 1
—+g:——|—§:—>0.
P n q n n

The first condition of the Proposition 1 (balance of dimension) reduces
to

L S L

roon n 1—t—7n
Thus %—k% > 0 if t < 1, and by the assumption v < min{l —¢, ’%}, r

is positive and the condition a > o = w when ¢ > 0 is fulfilled.
Also under the choice 0 < t < 1, WeseeOZ%+%#%+%=%,
thus we do not need to consider the third condition. In conclusion, we
assure that the following inequality holds true for v:

t 1-t

< 0|1yl v

L ]_,?,.Y (Rn) -

M
(7 [Fit

L(R) Lr(Rn)’

that is,
p(1—t—v) 1-t

( / |y|1’zm|v|mdy> §O< / |y|p-“|w|pdy) ( / |y|p-“|v|pdy)

Combining this to (2.3), we have

p(l—t—y)

_ny _n n
(e b= ol =)
>C

(S lylP="lvlPdy) =
where C" = C~'¢, 2%, By the definition v(y) = 9(|y[), y € R" and the

assumption that u € Wy ?(RY), we have

o
/ ]y|p"|vlpdy:wn/ NP g () [P
R™ 0
Wn

= — |ulP|x|Pdx < oo.
WN JRrN

On the other hand,
o pa 7117 N
[ wEs sy =, [ () T e
" 0

o n n N—p—pa N
— o [ () O gy
0

(2.4)

= “n |u| = || da.
WN JrN

Inserting these into (2.4), we obtain the desired conclusion. U
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Remark 3. If we assume that the function v € W&f (RY) is nonnegative,

radially symmetric and radially decreasing, then we can apply the same
argument in [16] also in our situation. In this case we obtain the
following theorem, the proof of it is exactly the same as in [16].

Theorem 2. For given N > 3, 2 < p < N and q > 2, set a =
a(p,q, N)=2— N+ M. Then there ezists D = D(p,q,N) >0
such that the inequality

N —p—pa\” P
Vulfla|rede — (Y PP I
RN P v |z[PlatD)

_2
zD< o L F|*d )

f]RN |ulp|z|?~P—Padx

holds for all nonnegative, radially symmetric and radially decreasing
function u € WS””(RN), u Z 0.

a

3. A REMAINDER TERM INVOLVING A DISTANCE FROM THE
VIRTUAL EXTREMALS

N—p—pa
For —oo < a < =2 let u,(x) = ||~ » . Note that u, is a solu-
p

tion to the Euler-Lagrange equation associated with the best constant
of the inequality (1.1)

N —p— P
—div (|2 VuP~*Vu) = (ﬂ) || Plat Dyt
p

uw>0 inRY,

however, u, ¢ Dé:g(BR(O)) for any R > 0. Thus u, is not a gen-

uine minimizer for the best constant of (1.1) in the admissible class
Dé”g(RN ), but just approximates the non-existing extremals on the
whole space.

In this section, we prove an improved version of (1.1), which in-
volves a sort of the “distance” of the associated function w from the
one-dimensional space of “virtual extremals” {cu, | ¢ € R}. For the
(sub-critical, also the critical) Hardy, or higher order Hardy-Rellich
inequalities, see [15].

For R > 0, let us define

(3.1) dR(f,g):/]R £ (@) = g(@)" dr

p
o e

1/p

for functions f, g, for which the right hand side is finite.



10 MEGUMI SANO AND FUTOSHI TAKAHASHI

Theorem 3. Let N > 3, 2 < p < N and assume —o0 < a < Nop
Then
[ 19apla s - (m> e —
RN j% gy |z[PatD)
(3.2) > ¢ <p;1)psup inf dgr(u, cuy)?
p R>0c€R

holds for any radially symmetric function u € D(l):g(RN). Here ¢, is a
constant in Lemma 1 and dg(-, -) is defined in (3.1).

For the proof, we need the following result.

Proposition 2. (Machihara-Ozawa- Wadade [14]: Theorem 1.1) Let N €
N, 1 < a < oo and max{l,a — 1} < 8 < co. Then for any R > 0, the
inequality

(3.3)

‘,6’

01, (5 Y = Vi)
Jo I CE Jo o2 Jos [

holds for all f € WILN7ﬁ7WTa(RN). Also the constant (%)5 is best
possible in (3.3).

Remark 4. Here, WL, ,\(R") denotes the Sobolev-Lorentz-Zygmund
spaces. For the precise definition of these spaces, we refer to [14].
However, we note that if [on (|Vul? + |ul?) |z[P~Vdz < oo, then the
function u € WLy, o(RY).

Proof of Theorem 3. First, we prove Theorem for a radial function
u € CPRY). Let u € C(RY), u(z) = a(r),r = |z| be a radial
function. Define v(z) = o(|z|) for x € RY where o(r) is defined in
(2.2). As in the proof of Theorem 1, we obtain

N —p—pa\” p
J(u) = / |Vul|P|lz|Pdx — . / Ldac
RN p v |2[PEHD

(3.4) > cpr/ |@;|prp_1dr:cp/ |Vol?|z[P~N da,
0 RN

since we assume p > 2, see (2.3). Here we claim that if u € C°(RY) C
Wolyf(]RN ), v satisfies

/ (Yol + [o]?) 27V dz < oo,
RN
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In particular, v € W'Ly, o(RY) by the above remark. Indeed, from
(3.4), we have [on [VolP|z|P~Ndae < J(u)/c, < co. Also by the defini-
tion of v, we see [on [P N|v|Pde = [on || P*|ulPdz < oo. Thus we
have obtained the claim.

By the claim, we can apply Proposition 2 to v € W!'Ly,o(RY).
Then we derive

J(u) > ¢, /RN Vol |z[P~Vdz > ¢, (p;l)p/R )v(x) - U(%) ’

- T
P/ e o £ fal¥
ppa — P
( _1>p |x|Nppu(x)—RNppu(%)
p ||
=cp | — / 5 dx
) S g £ o]

N—p—pa —pa |P

(3.5) =cp(g:i)pA; o)~ R F (Rl da

p
p 10g I?R“ |gj|p(a+1)

_N—p—pa |P
p—1\? )u(x) —clz|”
> ¢ (—) inf / > dx
p c€R JrN ’10g ER“ |x|p(a+1)

for any R > 0, here we have used (3.4) in the first inequality, (3.3) with
f =wvand a = = pin the second inequality, the definition of v in the
first equality, and the fact that u is radially symmetric in the second
equality. This proves Theorem for a radial function u € Cg°(RY).

Next, we prove Theorem for a radial function u € Dé:g(RN ). Here
we follow an argument by Machihara, Ozawa and Wadade [14]. Let
{un}_; € C°(RY) be a sequence of radially symmetric functions

such that w,, — wu in Dé:ﬁ(RN ) as m — oo. Then there exists a
subsequence {u,,; }32, such that

U,
|t - |z|o+1

in LP(RY),
Up; —> U a.e. in RN

by (1.1). Now, define

(@) = R™ 5 “w(R)z|" >
w\xr) — P w T p
wnle) = el T log &

for a radial function w € Li _(RY), w(z) = w(|z|), and R > 0. Since

loc

the inequality (3.5) holds for wm,, — um, € Cg°(RY), we observe that
{(um,)r}32, is a Cauchy sequence in LP(RY). Since (um,)r — ur a.e.
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in RY, we easily see that (Um;)r — ug in LP(RY) as j — oco. Therefore,
for any R > 0, we have
J(u) = lim J(ty,;)

J—00

—pa —pa

N—p _N-—p

p—1 b . |umj (27) —R U (R)|$| ? |p

>cp | —— | lim 5 dx
p j—oo JpN ’10g %’ |x|p(a+1)

p—pa N—p—pa

., (E)p/ﬂw julw) = B a(R) o

p
‘log \;%’ |z [plat1)

for all radial functions u € Dé:g (RY), here we have used (3.5) for u,,, €
Cs°(RY). As before, this ends the proof. O

4. IMPROVED CAFFARELLI-KOHN-NIRENBERG TYPE INEQUALITIES
ON A BOUNDED DOMAIN

In this section, we revisit the idea by Catrina and Wang [5], Wang-
Willem [19] to improve the inequality

_9_ 2 2
(4.1) / IVUP‘Z"izadx > (N 2 2@) |U| dr
Q

9 q |zt

on a smooth bounded domain  in RY (N > 3) with 0 € Q. Here u is a
function in C§°(2\{0}) and —co < a < 52 is always assumed. We can

check that under the assumption a < Y52, DéZ(Q) is identical to the
completion of C5°(Q2\{0}) with respect to the norm ||- ||D(1),2(Q). The idea

of Catrina and Wang consists of the use of a conformal transformation
which converts a problem to an equivalent one in a domain on a cylinder
C =R x SV=1. More precisely, for a function u € C§°(2\ {0}), let us

associate v € C§°(€2) by the transformation

(12) u() = 2] F= <—1og 2], i) ,

i

where Q is a domain on the cylinder C defined as

0= {(t,&) cRx SNt t:—log|x],9:£,x€Q}.

]
Catrina and Wang proved in [5] that when @ = RY and a < %52,

the transformation (4.2) provides an isomorphism between two Hilbert
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spaces Déﬁ(RN ) and H'(C), the inner product of the latter is given by

N —2-2a\?
(v, W)y = / {Vv -Vw + (Ta) vw} dp.
C

Here |Vv|?> = v} + |[Vov|? and du = dtdSp = || Vdx are the length of
the gradient vector and the volume element on C. By a direct compu-
tation, we see

Vu(z) = —|z| 2" Hvt(t,ﬁ) + (W) v} 0+ ng(t,é)} ,

and since (0, Vov) = 0, it holds
(4.3)

V() = ||+ [{vt(t,ﬁ) + (W) v}2 + |ng(t,0)|2] |

Furthermore, we have

(4.4)
N —2-2a\2 u?
2d :/ 2 —2ad . / d
Jvelan= [ 1vuplelan - (Y2572 [ s
(4.5)

= [ g
o 1 JofaPe ™

On the other hand, Wang and Willem [19] proved the weighted
Poincaré inequality of the form

1 v?
[ 1vePdnz g [ S
Q Q

for v € C§°(€2). Using this inequality and the transformation (4.2),
they obtained the improved inequality mentioned in the Introduction,
See [5], [19].

Following their arguments, we prove the next theorem.

Theorem 4. Let V =V (t) is nonnegative, monotone decreasing func-
tion on t € (0,400) and assume that there exists a strictly positive
function ¢ = ¢(t) € C*((0,+00)) such that —¢"(t) > V(t)p(t) holds
on (0,4+00). Let Q be a domain in RY such that Q CC Bg(0) for some
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R > 0. Then there ezists a constant C' = C(a, 2, V) > 0 such that

N —2—2a\" 2
|Vul?|z|**dz — ? [u dx
o 9 o |22t

46 > c/ﬁv (log (%)) 22| Vuf2da

holds for all v € Dég(Q)

For example, V(t) = 4—12 satisfies the assumption of Theorem 4 with
o(t) = 12, t € (0, +00).

As a corollary, we obtain the following improved inequalities.
Corollary 1. Let Q be a domain in RN such that Q CC Bgr(0) for
some R > 0. Assume —o00 < a < M_ Then for any integer k € N,
there exists a constant C' = C(a, ) k) > 0 such that the followings
hold.

(z) Define the functions X; = X;(s) for s € (0,1] iteratively as
Xi(s) = (1 —logs)™t, Xi(s) = X1(X;_1(s)) fori>2. Then

[ ula e (X222 [
soy [ (7) 5 (5) - (5) more

holds for all v € Déz(Q)
(ii) Let ey = 0, eg = 1, ¢; = €%~ for i > 1, and define functions
iteratively as log™M s = log s, log(i)(s) = log <log("*1) s) fori > 2,

those are well defined when s > e;_o and positive when s > e;_1. For
any integer k € N, take p > Rey_1. Then there exists a constant
C =C(a,Qk) >0 such that

2—2a |u)?
—2a
/'VU| |Jf| dl’ <—) Q|gj|2(—a+1)dl‘
P\~ P\’ AR
203 [ (b ) (e ) (i ) e

holds for all v € Dég(Q)

For the proof of Theorem 4, first we show a lemma.

Lemma 2. (The weighted Poincaré inequality on a cylinder) Let Q C
C. be a bounded domain where C, = {(t,0) € R x S¥=1: ¢ > 0}. Let
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V = V(t) satisfy the assumptions in Theorem 4. Then it holds

(4.7) /Q]VUIQduz/QV(t)UQdu

for allv € C(9).

Proof. Put ¥(t,0) = v(t,0)/¢(t )Whel"e o(t) >0, ¢ = ¢(t) € C*((0,+00))

such that —¢"(t) > V(¢)¢(t) on (0,+00). Then ¢ = 0 near t = 0 and

t = o0, since v € C§°(€2). Thus

/ 02t 0)dt = / (G + dui)Pdt = / (S0 4 0 1 dh W) db
0 0

=/0 (607 + 907) dt + [Vl / B (bdn).d

= ¢2¢fdt - ¢2¢¢ttdt > - w PPyt
0 0 0
— /OOo v? (_ﬁ:((tt))) dt > /OOO V(t)vdt.

Integrating both sides on SN ~! with respect to dSp and adding [ [Vev|*dtdSy
to the right hand side, we obtain (4.7). O

The inequality (4.7) also holds for v € H[}(Q) by a density argument.

Proof of Theorem 4. By using a scaling z — x/R, it is enough to
prove Theorem when R = 1. In this case, 2 C C; where C, = {(t,0) €
R x S¥=1:¢ > 0}. Now, we will prove

(4.8)
Vool + {ut(w) + (W) uﬂ iy

| iweban=c [ v

for some C' > 0 independent of v. Indeed, since ry = sup,cq |z| < 1,
we have t = —log |x| > —logre > 0 on €. Then the positivity and the
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decreasing property of V' imply that

[ v ivar+ {uto+ (272 }] "
SQ%&“WVMMM+2(M:%:&QiéV@wwu

N —2-2a\’
§2V(—logr0)/ﬁ|Vv]2du+2 (Ta> /QV(t)Uzdu

2
< <2V(—logro)+2 (W) >/|Vv]2du,
0

where we have used the weighted Poincaré inequality (4.7) in the last
inequality. Thus we get (4.8). Simple computation using (4.3), (4.4),
(4.5) in (4.8) yields the desired inequality (4.6). O

Remark 5. The constant C' in Theorem 4 can be chosen that

= (21/(- log o) + 2 (W)Q) B

Proof of Corollary 1. We follow the computation in [17].

(i) We may assume R = 1. Note that X; is well-defined and X;(0) = 0,
X;(1)=1,0 < X;(s) < 1 for s € (0,1). We compute

1 _ Xi(s) - Xiz1(s)

Xi(s) = X(sP Xi(s) O

(Xy--- Xe)(s)

Define Y;(t) = X;(e7") for t € [0, +00). Then we obtain
Yi(t) = -Yi(t)’, Y/(t)=— (Y1 -Y;) ()Yi(t),

(Y- Y3) (1) = (Yo Ya) () {Ya(t) + (N Y2) (1) + -+ (Yo Ya) (1)} -
Now, define

(X1 X (5) =

or(t) = (Yi--Yi) "2 (1) > 0.
Then by differentiating log ¢y (t) = —3 Zle log Y;(t), we check that

k k
G0 =205 @, =22 m- v,

i=1 =1

{Xi(s) + (XaXo)(s) + -+ (Xy - Xi)(s)}-
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¢ (t) n Zl (Y1 V)2 (). Tt is easy to
check that Vi (t) = § Zi:l (Y ---Y;)?(t) is nonnegative and decreasing
n (0, +00). Applying Theorem 4, we obtain the result.

(ii) We compute

NN -1 -1 -1
(log(z) s) =5 ! (log(l) 5> (log(z) 5) (log(Z b )

for i =1,2,-- k. Put Ly(t) = log?(pe') and W;(t) = (Ly--- L;)"(t)
fori=1,2,--- k. We see L;(t) > 0if p > e ’e;_; and obtain

Lit)=1, L(t)=(Ly---Li_1) " (t) fori=2,3,... k,

Define

Then we check that
k

2 Z ):wg(t)ZWt

=1 =1

k 2 k i
= (Z Wit ) U IRCIIAD
e - 7 -
= Z Wit
On the way of computatlon, we have used the identity

i=1 j=1 i=1

P (t)

N

for any ay,--- ,ar € R. Again Vi (t) = iZle (Ly---L;) "> (t) is non-
negative and decreasing on (0, 4+00), so we may apply Theorem 4 to
obtain the result. O
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