On the Heegaard genus, the bridge genus and the braid genus of a three-manifold

Shin'ya Okazaki (Osaka City University)

January 24, 2009

Introduction

Theorem

Every closed orientable connected 3-manifold is obtained by the 0-surgery on S^{3} along a link L.

Theorem

$$
g_{\mathrm{H}}(M) \leq g_{\text {bridge }}(M) \leq g_{\text {braid }}(M) .
$$

We shows these invariants are mutually independent.

Definition (Heegaard splitting)

M : a closed connected orientable 3-manifold.

$$
M=H_{1} \cup_{h} H_{2}
$$

H_{1}, H_{2} : handlebodies of genus g,
$h: \partial H_{2} \rightarrow \partial H_{1}:$ a homeomorphism.
$\left(H_{1}, H_{2}, h\right)$: a genus g Heegaard splitting of M.

Definition

The Heegaard genus
$g_{\mathrm{H}}(M)$
$=\min \{g \mid \exists$ a genus g Heegaard splitting of $M\}$.
$L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$: an n-component link in S^{3}.
N_{i} : a tubular neighborhood of K_{i} in S^{3}.

Definition (0-surgery on S^{3} along L)

$$
\chi(L, 0) \stackrel{\text { def }}{=}\left(S^{3}-\left(\bigcup_{i=1}^{n} \stackrel{\circ}{N} i\right)\right) \cup_{h}\left(\bigcup_{i=1}^{n} N_{i}\right) .
$$

h : a union of homeomorphisms
$h_{i}: \partial N_{i} \rightarrow \partial N_{i}$ taking a meridian of N_{i} onto a preferred longitude of N_{i}.
S^{3}

Theorem

Every closed orientable connected 3-manifold is obtained by the 0-surgery on S^{3} along a link L.
bridge (L) : the bridge index of L. braid (L) : the braid index of L.

Example

Definition

The bridge genus

$$
g_{\text {bridge }}(M)=\min \{\operatorname{bridge}(L) \mid \chi(L, 0)=M\} .
$$

The braid genus

$$
g_{\text {braid }}(M)=\min \{\operatorname{braid}(L) \mid \chi(L, 0)=M\} .
$$

Theorem

$$
g_{\mathrm{H}}(M) \leq g_{\text {bridge }}(M) \leq g_{\text {braid }}(M) .
$$

Outline of the proof $g_{\mathrm{H}}(M) \leq g_{\text {bridge }}(M)$
Let $g_{\text {bridge }}(M)=2$.

B_{1}^{3}

B_{2}^{3}

Fact

$$
\begin{gathered}
g_{\mathrm{H}}(M)=0 \Leftrightarrow M=S^{3} \Leftrightarrow \pi_{1}(M)=1 \\
g_{\mathrm{H}}(M)=1 \Leftrightarrow M=L(p, q) \Leftrightarrow \pi_{1}(M)=\mathbb{Z}_{p}, \\
\quad \text { or } \\
M=S^{2} \times S^{1} \Rightarrow \Delta_{K}(t)=1
\end{gathered}
$$

where p and q are coprime integers s.t. $0<q<p$.

Fact

K : a knot.
$H_{1}(\chi(K, 0))=\mathbb{Z}$.
$L=K_{1} \cup K_{2}$: a 2-component link.
$l k\left(K_{1}, K_{2}\right)=n$.
$H_{1}(\chi(L, 0))=\mathbb{Z}_{n} \oplus \mathbb{Z}_{n}$.

Theorem [Kawauchi]

K, K^{\prime} : knots.
$\Delta_{K}(t), \Delta_{K^{\prime}}(t)$: Alexander polynomials of K, K^{\prime}.
$\chi(K, 0) \approx \chi\left(K^{\prime}, 0\right) \Rightarrow \Delta_{K}(t) \doteq \Delta_{K^{\prime}}(t)$

Example $\left(M=\underset{n}{\sharp} S^{2} \times S^{1}\right)$

$$
g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)=g_{\text {braid }}(M)=n .
$$

(\because) It is known that $g_{\mathrm{H}}\left(\underset{n}{\sharp} S^{2} \times S^{1}\right)=n$.
Let L be the n-component trivial link.
Then we have

$$
\chi(L, 0)=\sharp S_{n}^{2} \times S^{1} .
$$

$\therefore g_{\text {bridge }}(M)=\operatorname{bridge}(L)=n$,
$g_{\text {braid }}(M)=\operatorname{braid}(L)=n$.

Example $\left(M=S^{3}\right)$

$$
0=g_{\mathrm{H}}(M)<g_{\text {bridge }}(M)=g_{\text {braid }}(M)=2 .
$$

(\because) It is known that $g_{\mathrm{H}}(M)=0$.
Let L be the Hopf link. Then we have

$$
\chi(L, 0)=M
$$

$\therefore g_{\text {bridge }}(M)=\operatorname{bridge}(L)=2$,
$g_{\text {braid }}(M)=\operatorname{braid}(L)=2$.

Example ($M=\chi\left(4_{1}, 0\right)$)

4_{1} : the figure-eight knot.

$$
2=g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)<g_{\text {braid }}(M)=3 .
$$

(\because)

bridge $\left(4_{1}\right)=2$, $\operatorname{braid}\left(4_{1}\right)=3$.
$\therefore g_{\text {bridge }}(M) \leq 2, g_{\text {braid }}(M) \leq 3$.

We show that $g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)=2$.
Since $H_{1}(M)=\mathbb{Z}, M \neq L(p, q), S^{3}$.
Since $\Delta_{4_{1}}(t)=t^{2}-3 t+1, M \neq S^{2} \times S^{1}$. that is, $g_{\mathrm{H}}(M) \geq 2$.
$\therefore 2 \leq g_{\mathrm{H}}(M)=g_{\text {bridge }}(M) \leq 2$.

$$
\therefore g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)=2 \text {. }
$$

Next, we show that $g_{\text {braid }}(M) \geq 3$.
If $g_{\text {braid }}(M)=2$,
then \exists a torus knot $K=T(2 n+1,2)$
s.t. $M=\chi(K, 0)$.
$\Delta_{4_{1}}(t)=t^{2}-3 t+1$.
$\Delta_{K}(t)=t^{n}-t^{n-1}+\cdots+t^{2}-t+1$.
$\therefore \Delta_{4_{1}}(t) \neq \Delta_{K}(t)$, that is, $g_{\text {braid }}(M) \neq 2$.
$\therefore g_{\text {braid }}(M) \geq 3$.
Then we have

$$
2=g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)<g_{\text {braid }}(M)=3
$$

Example $\left(M=\chi\left(8_{15}, 0\right)\right)$

$$
\begin{aligned}
& g_{\mathrm{H}}(M)=2, g_{\text {bridge }}(M)=3, g_{\text {braid }}(M) \stackrel{?}{=} 4 . \\
& \therefore g_{\mathrm{H}}(M)<g_{\text {bridge }}(M) \stackrel{?}{<} g_{\text {braid }}(M) .
\end{aligned}
$$

(\because) The tunnel number of K is 1 .
$\therefore g_{\mathrm{H}}(M) \leq 2$.

$\therefore g_{\text {bridge }}(M) \leq 3$.

$: \operatorname{braid}\left(8_{15}\right)=4$.
$\therefore g_{\text {braid }}(M) \leq 4$.

We show that $g_{\mathrm{H}}(M) \geq 2$.
Since $H_{1}(M) \cong \mathbb{Z}, \pi_{1}(M) \neq \mathbb{Z}_{p}$.
$\therefore M \neq L(p, q), S^{3}$.
Since $\Delta_{8_{15}}(t)=3 t^{4}-8 t^{3}+11 t^{2}-8 t+3$, $M \neq S^{2} \times S^{1}$.
$\therefore g_{\mathrm{H}}(M)=2$.
Next, we show that $g_{\text {bridge }}(M) \geq 3$.
Since $H_{1}(M) \cong \mathbb{Z}, M$ is not obtained by 0-surgery along any 2-component 2-bridge link.

Theorem [Murasugi]

If K is a 2-bridge knot, then

$$
\Delta_{K}(t) \equiv \frac{1-t^{\lambda}}{1-t} \quad(\bmod 2)
$$

λ : some odd integer.
Since $\Delta_{8_{15}}(t)=3 t^{4}-8 t^{3}+11 t^{2}-8 t+3$

$$
\equiv t^{4}+t^{2}+1 \quad(\bmod 2)
$$

M is not obtained by the 0-surgery along any
2-bridge knot.
$\therefore g_{\text {bridge }}(M)=3$.

Next we show that $g_{\text {braid }}(M) \geq 4$.
Theorem [Jones]
K : a knot.
If $\left|\Delta_{K}(i)\right|>3$, then $\operatorname{braid}(K) \neq 3$.

Since $\left|\Delta_{8_{15}}(i)\right|=5, M$ is not obtained by 0 surgery along any 3-braid knot.

Then we have

$$
g_{\mathrm{H}}(M)=2<g_{\text {bridge }}(M)=3 \stackrel{?}{<} g_{\text {braid }}(M) \stackrel{?}{=} 4 .
$$

Example An infinite family

$$
\begin{array}{r}
M=\chi(T(2 n, 2), 0) \quad(n=2,3,4, \ldots) \\
g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)=g_{\text {braid }}(M)=2 .
\end{array}
$$

$$
\begin{gathered}
M=\chi(T(3 n+1,3), 0) \quad(n=1,2,3, \ldots) \\
2=g_{\mathrm{H}}(M)<g_{\text {bridge }}(M)=g_{\text {braid }}(M)=3 .
\end{gathered}
$$

K_{n} :

$$
\begin{gathered}
M=\chi\left(K_{n}, 0\right) \quad(n=1,2,3, \ldots) \\
2=g_{\mathrm{H}}(M)=g_{\text {bridge }}(M)<g_{\text {braid }}(M) .
\end{gathered}
$$

K_{n} :
$T: 2 n+1$ full twists.

$$
\begin{aligned}
& M=\chi\left(K_{n}, 0\right) \\
& \text { (} n=1,2,3, \ldots \text {) } \\
& g_{\mathrm{H}}(M)=2<g_{\text {bridge }}(M)=3 \stackrel{?}{<} g_{\text {braid }}(M) \stackrel{?}{=} 4 \text {. }
\end{aligned}
$$

