On the Heegaard genus, the bridge genus and the braid genus of a three-manifold

Shin'ya Okazaki (Osaka City University)

January 24, 2009

Introduction

Theorem

Every closed orientable connected 3-manifold is obtained by the 0-surgery on S^3 along a link L.

Theorem

$$g_{\mathsf{H}}(M) \leq g_{\mathsf{bridge}}(M) \leq g_{\mathsf{braid}}(M).$$

We shows these invariants are mutually independent.

Definition (Heegaard splitting)

M: a closed connected orientable 3-manifold.

 $M = H_1 \cup_h H_2,$

 H_1, H_2 : handlebodies of genus g, $h: \partial H_2 \rightarrow \partial H_1$: a homeomorphism. $(H_1, H_2, h):$ a genus g Heegaard splitting of M.

Definition

The Heegaard genus

 $g_{\mathsf{H}}(M)$

 $= \min\{g | \exists a \text{ genus } g \text{ Heegaard splitting of } M\}.$

 $L = K_1 \cup K_2 \cup \cdots \cup K_n$: an *n*-component link in S^3 .

 N_i : a tubular neighborhood of K_i in S^3 .

<u>Definition</u> (0-surgery on S^3 along L)

$$\chi(L,0) \stackrel{\text{def}}{=} \left(S^3 - \begin{pmatrix} n & \circ \\ \bigcup & N_i \end{pmatrix} \right) \cup_h \begin{pmatrix} n \\ \bigcup & N_i \end{pmatrix}.$$

h: a union of homeomorphisms $h_i: \partial N_i \rightarrow \partial N_i$ taking a meridian of N_i onto a preferred longitude of N_i .

Theorem

Every closed orientable connected 3-manifold is obtained by the 0-surgery on S^3 along a link L.

bridge(L): the bridge index of L. braid(L): the braid index of L.

Definition

The bridge genus

 $g_{\text{bridge}}(M) = \min\{\text{bridge}(L) \mid \chi(L, 0) = M\}.$

The braid genus

 $g_{\text{braid}}(M) = \min\{\text{braid}(L) \mid \chi(L,0) = M\}.$

Theorem

$g_{\mathsf{H}}(M) \leq g_{\mathsf{bridge}}(M) \leq g_{\mathsf{braid}}(M).$

Outline of the proof $g_{H}(M) \leq g_{bridge}(M)$ Let $g_{bridge}(M) = 2$.

Fact

$$g_{H}(M) = 0 \iff M = S^{3} \iff \pi_{1}(M) = 1.$$

$$g_{H}(M) = 1 \iff M = L(p,q) \Leftrightarrow \pi_{1}(M) = \mathbb{Z}_{p},$$
or
$$M = S^{2} \times S^{1} \Rightarrow \Delta_{K}(t) = 1,$$
where p and q are coprime integers st $0 < q < t$

where p and q are coprime integers s.t. 0 < q < p.

Fact

K: a knot. $H_1(\chi(K,0)) = \mathbb{Z}.$

 $L = K_1 \cup K_2$: a 2-component link. $lk(K_1, K_2) = n$. $H_1(\chi(L, 0)) = \mathbb{Z}_n \oplus \mathbb{Z}_n$.

Theorem [Kawauchi]

K, K': knots.

 $\Delta_K(t), \Delta_{K'}(t)$: Alexander polynomials of K, K'. $\chi(K, 0) \approx \chi(K', 0) \Rightarrow \Delta_K(t) \doteq \Delta_{K'}(t)$

Example
$$(M = \sharp_n S^2 \times S^1)$$

$$g_{\mathsf{H}}(M) = g_{\mathsf{bridge}}(M) = g_{\mathsf{braid}}(M) = n.$$

(:.) It is known that $g_{\mathsf{H}}(\underset{n}{\sharp}S^2 \times S^1) = n$. Let *L* be the *n*-component trivial link. Then we have

$$\chi(L,0) = \#_n S^2 \times S^1.$$

 $\therefore g_{\mathsf{bridge}}(M) = \mathsf{bridge}(L) = n,$

 $g_{\text{braid}}(M) = \text{braid}(L) = n.$

Example
$$(M = S^3)$$

$$0 = g_{\mathsf{H}}(M) < g_{\mathsf{bridge}}(M) = g_{\mathsf{braid}}(M) = 2.$$

(:.) It is known that $g_{H}(M) = 0$. Let *L* be the Hopf link. Then we have

$$\chi(L,0)=M.$$

$$\therefore g_{\text{bridge}}(M) = \text{bridge}(L) = 2,$$
$$g_{\text{braid}}(M) = \text{braid}(L) = 2.$$

 $\therefore g_{\text{bridge}}(M) \leq 2, \ g_{\text{braid}}(M) \leq 3.$

We show that $g_{H}(M) = g_{bridge}(M) = 2$. Since $H_{1}(M) = \mathbb{Z}, M \neq L(p,q), S^{3}$. Since $\Delta_{4_{1}}(t) = t^{2} - 3t + 1, M \neq S^{2} \times S^{1}$. that is, $g_{H}(M) \geq 2$. $\therefore 2 \leq g_{H}(M) = g_{bridge}(M) \leq 2$.

$$\therefore g_{\mathsf{H}}(M) = g_{\mathsf{bridge}}(M) = 2.$$

Next, we show that
$$g_{\text{braid}}(M) \ge 3$$
.
If $g_{\text{braid}}(M) = 2$,
then $\exists a$ torus knot $K = T(2n + 1, 2)$
s.t. $M = \chi(K, 0)$.
 $\Delta_{4_1}(t) = t^2 - 3t + 1$.
 $\Delta_K(t) = t^n - t^{n-1} + \dots + t^2 - t + 1$.
 $\therefore \Delta_{4_1}(t) \ne \Delta_K(t)$, that is, $g_{\text{braid}}(M) \ne 2$.

 $\therefore g_{\text{braid}}(M) \geq 3.$

Then we have

$$2 = g_{\mathsf{H}}(M) = g_{\mathsf{bridge}}(M) < g_{\mathsf{braid}}(M) = 3.$$

Example
$$(M = \chi(8_{15}, 0))$$

$$g_{\mathsf{H}}(M) = 2, \ g_{\mathsf{bridge}}(M) = 3, \ g_{\mathsf{braid}}(M) \stackrel{?}{=} 4.$$

$$\therefore \ g_{\mathsf{H}}(M) < g_{\mathsf{bridge}}(M) \stackrel{?}{<} g_{\mathsf{braid}}(M).$$

(:) The tunnel number of K is 1.

 $\therefore g_{\mathsf{H}}(M) \leq 2.$

:bridge $(8_{15}) = 3$.

 $\therefore g_{\text{bridge}}(M) \leq 3.$

 $:braid(8_{15}) = 4.$

 $\therefore g_{\text{braid}}(M) \leq 4.$

We show that $g_{H}(M) \ge 2$. Since $H_{1}(M) \cong \mathbb{Z}, \pi_{1}(M) \neq \mathbb{Z}_{p}$. $\therefore M \neq L(p,q), S^{3}$. Since $\Delta_{8_{15}}(t) = 3t^{4} - 8t^{3} + 11t^{2} - 8t + 3$, $M \neq S^{2} \times S^{1}$.

 $\therefore g_{\mathsf{H}}(M) = 2.$

Next, we show that $g_{bridge}(M) \ge 3$. Since $H_1(M) \cong \mathbb{Z}$, M is not obtained by 0-surgery along any 2-component 2-bridge link.

Theorem [Murasugi] If K is a 2-bridge knot, then

$$\Delta_K(t) \equiv \frac{1 - t^{\lambda}}{1 - t} \qquad (\text{mod } 2).$$

 λ : some odd integer.

Since
$$\Delta_{8_{15}}(t) = 3t^4 - 8t^3 + 11t^2 - 8t + 3$$

 $\equiv t^4 + t^2 + 1 \pmod{2}$,

M is not obtained by the 0-surgery along any 2-bridge knot.

 $\therefore g_{\text{bridge}}(M) = 3.$

Next we show that $g_{\text{braid}}(M) \geq 4$.

Theorem [Jones]

K: a knot.

If $|\Delta_K(i)| > 3$, then braid(K) $\neq 3$.

Since $| \Delta_{8_{15}}(i) | = 5$, *M* is not obtained by 0-surgery along any 3-braid knot.

Then we have

$$g_{\mathsf{H}}(M) = 2 < g_{\mathsf{bridge}}(M) = 3 \stackrel{?}{<} g_{\mathsf{braid}}(M) \stackrel{?}{=} 4.$$

Example An infinite family $M = \chi(T(2n, 2), 0)$ (n = 2, 3, 4, ...) $g_{H}(M) = g_{bridge}(M) = g_{braid}(M) = 2.$

$$M = \chi(T(3n + 1, 3), 0) \qquad (n = 1, 2, 3, ...)$$
$$2 = g_{H}(M) < g_{bridge}(M) = g_{braid}(M) = 3.$$

