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Introduction

Quantum gravity

We have yet no completed theory of quantum gravity. Quantum
gravity should answer the following questions.

Spacetime singularities (big bang and gravitational collapse)

Black hole thermodynamics, Hawking evaporation, information
loss problem

How does the law of gravity change from low-energy scale to the
Planck scale?

We here take loop quantum gravity. Loop quantum gravity is

Nonperturbative

Background independent

Canonical quantisation

No ultraviolet divergence

Not intended to be a unified theory
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Introduction

Spacetime singularity

Spacetime singularity: a place where quantities which are used
to measure the gravitational field become infinite More
accurately, a point which is in the boundary of the maximally
extended spacetime manifold and is not infinity.

Classical general relativity breaks down at the singularity.

Cosmic censorship (Penrose 1969) states that singularities are
hidden behind horizons in physical spacetimes. But we have
many naked singularities...

Censored or not, spacetime singularities should be dealt with in a
regular manner.
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Introduction

What is loop quantum gravity?

3 dimensional space + time

Einstein-Hilbert action

Canonical conjugate pair: tetrad Ea
i

and connection Ai
a

Hamiltonian H expressed in terms
of curvature F i

ab and volume V

Quantum state space constructed by
spin-network states

holonomy ĥ, area operator Ŝ,
volume operator V̂

Hamiltonian operator Ĥ quantised
in terms of ĥ and V̂

n1 n2

j2=1/2

j1=1

j3=1/2

S=
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Loop quantum gravity: minimum

Triad

Tetrad:

eI = eI
µdxµ;

ηIJ = eI
µeJ

ν gµν;

gµν = eI
µeJ

ν ηIJ .

We take e0
a = 0 gauge. qab = gab (a, b = 1, 2, 3)

Densitized triad:

Ea
i =

1

2
εijkεabcej

be
k
c

or
Ea

i Eb
jδ

ij = (det qcd)q
ab,

where i, j = 1, 2, 3.
Notation for an antisymmetric tensor Aij

Ai = εijkAjk
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Loop quantum gravity: minimum

Connection

Spin connection:

deI + ωI
J ∧ eJ = 0,

dei + Γi
j ∧ ej = 0.

Ashtekar (Barbero) connection:

Ai = ωi + γω0i,

where γ is the only one unspecified parameter in the theory.
This is called the Immirzi parameter.

Extrinsic curvature
Ki ≡ Ai − Γi

Poisson bracket

{Ai
a(x), Eb

j(y)} = 8πγGδb
aδi

jδ
3(x, y)
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Loop quantum gravity: minimum

Hamiltonian

Curvature: F i
ab = ∂aAi

b − ∂bA
i
a + εi

jkAj
aAk

b

Hamiltonian (unsmeared form):

H = (F ij
ab + (γ2 + 1)Ki

[aKj

b])E
a
i Eb

j/(
√

det E)

Volume: V =
∫

d3x
√

det E

Hamiltonian (K2 term neglected):

H[N ] =

∫

Ntr(F ∧ {V, A}),

where N is the lapse function.
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Loop quantum gravity: minimum

Spin network

Spin network (Γ, jl, in):

n1 n2

j2=1/2

j1=1

j3=1/2

S=

Spin network state

ΨS[A] =

(

⊗

l

Rjl(H[A, γl])

)

·
(

⊗

n

in

)

,

where H[A, γl] is a holonomy.
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Loop quantum gravity: minimum

Smeared operators

Ai
a(x) and Ea

i (x) = −i~ δ

δAi
a(x)

are not well defined.

Holonomy H(A, γ) and Flux Ei(S)

H(A, γ) = P exp

∫

γ

A,

Ei(S) ≡ −i~

∫

S

dS2na

δ

δAi
a(x(σ))

Area operator and volume operator

A(S)|S〉 = ~
∑

i

√

ji(ji + 1)|S〉

V(R)|S〉 = lim
ε→0

∑

n∈S∩R

√

|WIn
ε
||S〉
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Loop quantum gravity: minimum

Hamiltonian

Discretized Hamiltonian

H|S〉 = − i

~

∑

n∈S

Nn

∑

l,l′,l′′

εll′l′′

× tr
(

h
γ

−1
xn,l

hαxn,l′,l′′
[V(Rn), hγxn,l

)]
)

|S〉,

where Nn is the lapse, h denotes a holonomy.

x

γ
α

l

l’

l’’
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Effects of loop quantisation LTB spacetime

Spherially symmetric spacetime

Metric dΩ2 = dϑ2 + sin2 ϑdϕ2

ds2 = −N2dt2 + L2(dx + Nxdt)2 + R2dΩ2

Spatial metric and densitised triad

ds2 =
Eϕ2

|Ex|
dx2 + |Ex|dΩ2

Canonical pairs (γ: Immirzi parameter)

{Ax(x), Ex(y)} = 2γGδ(x, y),

{γKϕ(x), Eϕ(y)} = γGδ(x, y)
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Effects of loop quantisation LTB spacetime

The LTB system interms of triad and connection

Classical LTB metric (marginally bound)

ds2 = −dt2 + R′2dx2 + R2dΩ2

“LTB relation”

Eϕ(x) =
1

2
|Ex(x)|′ and K ′

ϕ = KxsgnEx

Hamiltonian (unsmeared)

Hgrav = − 1

2G

(

K2
ϕEϕ

√

|Ex|
+ 2KϕKx

√

|Ex|
)

,

Hdust =
F ′(x)

2G
,

where F (x)/2 is the conserved dust mass.
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Effects of loop quantisation Inverse triad correction

Spherically symmetric loop quantum gravity

Tg,k,µ: An orthonormal basis of gauge-invariant states

Tg,k,µ =
∏

e∈g

exp

(

1
2
ike ∫

e

(Ax + η′)dx

)

∏

v∈g

exp(iµvγKϕ(v))

with integer labels ke and positive real labels µv on edges e and
vertices v, respectively, forming a finite graph g in the
1-dimensional radial line.
Eigenvalues

Êx(x)Tg,k,µ = γ`2
P

ke+(x) + ke−(x)

2
Tg,k,µ,

∫

I

ÊϕTg,k,µ = γ`2
P

∑

v∈I

µvTg,k,µ,

where where `2
P = G~ is the Planck length squared and e±(x)

denote the neighboring edges to a point x.
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Effects of loop quantisation Inverse triad correction

Inverse triad effects

Inverse triad can be replaced as

̂∫

I

Eϕsgn(Ex)
√

|Ex|
=

−i

2πγG~
tr(τ3hx[h

−1
x , V̂ ])

Eigenvalues

∼
(

√

|ke+ + ke− + 1| −
√

|ke+ + ke− − 1|
)
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Effects of loop quantisation Inverse triad correction

Inverse triad correction

Correction function

α(Ex) :== 2

√

|Ex + γ`2
P/2| −

√

|Ex − γ`2
P/2|

γ`2
P

√

|Ex|

Corrected Hamiltonian

H(I)
grav = − 1

2G

(

α(Ex)
√

|Ex|
K2

ϕEϕ + 2KϕKx

√

|Ex|
)

.

H(II)
grav = − 1

2G

α(Ex)
√

|Ex|
(K2

ϕEϕ + 2KϕKxEx) .
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Effects of loop quantisation Inverse triad correction

Consistent formulation ver. 1

Corrected LTB relation:

(Ex)′ = 2f(Ex)Eϕ , K′
ϕ = f(Ex)Kx

Hamiltonian constraint and evolution

Ṙ2R′(α(R) − 1) + 2RṘṘ′ + Ṙ2R′ = f(R)F ′

2RR̈ + Ṙ2 + (α(R) − 1)Ṙ2 = 0 .

Correction functions: α(R) and f(R)

df(R)

dR
= (1 − α(R))

f

R
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Effects of loop quantisation Inverse triad correction

Correction functions

Figure: α(R) (solid) and f(R) (dashed), where R∗ :=
√

γ/2`P.

α(R) = 2

√

|R2 + γ`2
P/2| −

√

|R2 − γ`2
P/2|

γ`2
P

R
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Effects of loop quantisation Inverse triad correction

Consistent formulation ver. 2

Corrected LTB relation:

Eϕ =
1

2α
(Ex)′ , αKx = K′

ϕ

Hamiltonian constraint
(

Ṙ2R

α2

)′

− F ′ = 0

Evolution equation

2RR̈ + Ṙ2 = 2
d log α

d log R
Ṙ2
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Effects of loop quantisation holonomy correction

holonomy effect

Holonomy is a periodic funtion of the connection. The effects
may be included by the replacements:

Kϕ → (γδ)−1 sin(γδKϕ), Kx → (γ`0)
−1 sin(γKx`0),

where `0 and δ parametrize the discreteness of the state along
the radial direction and on the sphere, respectively.

Corrected Hamiltonian

H(III)
grav = − 1

2G

(

sin2(γδKϕ)

γ2δ2

Eϕ

√

|Ex|

+2
sin(γδKϕ)

γδ

sin(γKx`0)

γ`0

√

|Ex|
)

.
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Effects of loop quantisation holonomy correction

Consistent formulation ver. 3

Corrected LTB relation

(Ex)′ = 2g(Kϕ)Eϕ , K′
ϕ = g(Kϕ)Kx,

where g(Kϕ) = cos4(γδKϕ/2) is required.

Hamiltonian constraint

4Ṙ2R′

√

1 − γ2δ2Ṙ2 + 8RṘṘ′

= F ′

(

1 +

√

1 − γ2δ2Ṙ2

)2√

1 − γ2δ2Ṙ2 .

Evolution equation

2RR̈ + Ṙ2

√

1 − γ2δ2Ṙ2 = 0 .
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Application of the inverse triad effects Analytical properties
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Application of the inverse triad effects Analytical properties

Results (1)

A bounce does not occur because Ṙ = 0 is impossible.

The vacuum static solution is nontrivial.

ds2(I) = −dt2 +
1

f(R)2
dR2 + R2dΩ2

No Friedmann or Oppenheimer-Snyder solution because the
homogenous expansion R(t, x) = a(t)x is not a solution.

No self-similar (or homothetic) solution is expected because of
`P in the equation.
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Application of the inverse triad effects Analytical properties

Results (2)

Effective mass

m(I) =
1

2
R(1 − f2 + Ṙ2) = mclass − 1

2
R(f2 − 1)

Effective density

ε(I) =
m(I)′

4πGR2R′

Small x expansion:
If F (x) = F3x

3 + · · · , R(t, x) = R1(t)x + · · · , we have
Ṙ1 = 0. The central density is constant as long as expanded
regularly.
We might allow for F (x) = F2x

2 + · · · for a finite effective
density. Then, we have a central singularity in a finite time.
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Application of the inverse triad effects Numertical analysis

Contents

1 Introduction

2 Loop quantum gravity: minimum

3 Effects of loop quantisation
LTB spacetime
Inverse triad correction
holonomy correction

4 Application of the inverse triad effects
Analytical properties
Numertical analysis

5 Summary

Tomohiro Harada (Rikkyo U) LTB in LQG 16/10/08 32 / 38



Application of the inverse triad effects Numertical analysis

Classical collapse

Uniform model
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Figure: Oppenheimer-Snyder

Quadratic model
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Figure: LTB: naked singularity
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Application of the inverse triad effects Numertical analysis

Inverse triad correction (1)
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Figure: Conserved density (dashed) and effective density (solid):
Quadratic model with Rs = 0.1, M = 0.01 (R∗ =

√

γ/2`P ∼ 0.25)
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Application of the inverse triad effects Numertical analysis

Inverse triad correction (2)
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Figure: Velocity profile: Quadratic model with Rs = 0.1, M = 0.01
(R∗ =

√

γ/2`P ∼ 0.25)
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Application of the inverse triad effects Numertical analysis

Summary of numerical results

The gravitational collapse is strongly slowed down for R . R∗.

There appears a density spike for 0 < R . R∗. This will
correspond to shell-crossing singularity and hence gravitationally
weak.

The slow-down implies repulsive effects of quantum gravity but
this is not so strong that the collapse turns to bounce.

The qualitative feature does not change for the second version
formulation or even if we allow for F (x) = F2x

2 + · · · .
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Summary

Summary

Loop quantum gravity is a promising candidate for successful
quantum gravity.

Inverse triad correction and honolomy correction are taken into
account in the marginally bound LTB spacetime.

Formulations are obtained for both effects, where the
Hamiltonian constraint is consistent with the evolution equation.

The dynamics with the inverse triad correction is studied.

No bounce, no homogenous soloution, nontrivial vacuum
solution and no self-similar solution
The centre will be frozen or collapse to singularity depending on
whether the conserved or effective density is physical.
The collapse only near the centre is slowed down, which results
in shell-crossing.
This case gives a caution to loop quantum cosmology.
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