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Black holes in astrophysics

 天体物理学におけるブラックホール

ブラックホール
光さえも抜け出せない領域

超新星爆発

支えるエネルギーを失い重力崩壊

恒星の進化の最終状態



Black holes: definition

 ブラックホール = “no region of escape”

観測者Oの世界線

: 未来光的無限遠
idealized “distant observer”Black hole

c.f. Hawking & Ellis 1973

事象の地平線

= 十分遠方(漸近平坦)の観測者(光的無限遠)と
　因果的に繋がる曲線なし

singularity
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= 十分遠方(漸近平坦)の観測者(光的無限遠)と
　因果的に繋がる曲線なし

NB.  Event horizon is a null surface & a global concept 

singularity



 重力崩壊から十分経過

Black holes in general relativity

 一般相対論に於けるブラックホール

1st step : 定常時空中の漸近平坦な真空ブラックホール

• “stellar sized” ブラックホール

•Einstein方程式の真空解(Rab=0)で近似できる

Stationary: there exists a Killing field ta which is timelike at infinity

L tgab = ∇atb + ∇bta = 0 ,

• 重力波放出等でダイナミカルな変化は減衰

システムは平衡状態へ

tata <0 at infinity

孤立系
•遠方で時空は平坦 (漸近的平坦性)



Stationary black holes in general relativity

 厳密解の発見 Schwarzschild 1915, Kerr 1963

‣ Schwarzschild解: 静的球対称 (invariant under t→-t, hole is round)

‣ Kerr解: 軸対称定常 (φ-independent and invariant under t→-t, φ→-φ)
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Symmetry properties

 Schwarzschild解の地平線 (r=2M) はKillingベクトルで生成

ex.

 静的観測者(ta=(∂/∂t)a)は時空を加速運動

tb∇bta = κ(r)(∂/∂r)a , κ: 加速度

 事象の地平線は特別な光的超曲面N

‣ KillingベクトルtaはNにnormal (tata=0) & tangent

‣ κ|r=2M =(4M)-1: 地平線の表面重力 ta
N

ds2 = −
�
1 − 2M

r

�
dt2 +

�
1 − 2M

r

�−1

dr2 + r2dΩ2 .

 Kerr解では事象の地平線上でξa=ta+ΩHφa が光的 (ΩH:地平線の角速度)

on Ntb∇bta = κ(r = 2M)ta ,



Killing horizon

• Killingベクトル ξa を法線にもつ光的超曲面N

ξaξa=0 on N, 

⇔

 Killing地平線 Boyer 1969



Killing horizon

• Killingベクトル ξa を法線にもつ光的超曲面N

ξaξa=0 on N, 

⇔

 Killing地平線 Boyer 1969

⇒ shear, expansion=0

⇒ rotation=0 on N



Killing horizon

• Killingベクトル ξa を法線にもつ光的超曲面N

ξaξa=0 on N, 

⇔

 Killing地平線 Boyer 1969

• Killing地平線に流入するエネルギーなし 0 H

= Rabξ
aξb = 8πTabξ

aξb .

⇒ shear, expansion=0

⇒ rotation=0 on N



Killing horizon

• Killingベクトル ξa を法線にもつ光的超曲面N

• 事象の地平線とは独立な概念

ξaξa=0 on N, 

⇔

 Killing地平線 Boyer 1969

• Killing地平線に流入するエネルギーなし 0 H

= Rabξ
aξb = 8πTabξ

aξb .

⇒ shear, expansion=0

⇒ rotation=0 on N



Killing horizon

‣対称性

(i) Killing 地平線と一致

Hawking 1971, Moncrief-Isenberg 1973, Sudarsky-Wald 1993

• Killingベクトル ξa を法線にもつ光的超曲面N

• 事象の地平線とは独立な概念

ξaξa=0 on N, 

定常時空 (定常のKilling ta=(∂/∂t)aが存在) におけるBHの地平線は

⇔

 Killing地平線 Boyer 1969

• Killing地平線に流入するエネルギーなし 0 H

= Rabξ
aξb = 8πTabξ

aξb .

⇒ shear, expansion=0

⇒ rotation=0 on N



Killing horizon

‣対称性

(i) Killing 地平線と一致

Hawking 1971, Moncrief-Isenberg 1973, Sudarsky-Wald 1993

• Killingベクトル ξa を法線にもつ光的超曲面N

• 事象の地平線とは独立な概念

ξaξa=0 on N, 

定常時空 (定常のKilling ta=(∂/∂t)aが存在) におけるBHの地平線は

定常時空では事象の地平線は時空の対称性のみで決定される

⇔

 Killing地平線 Boyer 1969

• Killing地平線に流入するエネルギーなし 0 H

= Rabξ
aξb = 8πTabξ

aξb .

⇒ shear, expansion=0

⇒ rotation=0 on N



Killing horizon

‣対称性

(i) Killing 地平線と一致

Hawking 1971, Moncrief-Isenberg 1973, Sudarsky-Wald 1993

(ii-a) 回転していなければ(ξa =ta), 時空は静的

ξa = ta +ΩHφ
a

• Killingベクトル ξa を法線にもつ光的超曲面N

• 事象の地平線とは独立な概念

ξaξa=0 on N, 

定常時空 (定常のKilling ta=(∂/∂t)aが存在) におけるBHの地平線は

(ii- b) 回転していれば(ξa ≠ta), 時空は軸対称

定常時空では事象の地平線は時空の対称性のみで決定される

⇔

 Killing地平線 Boyer 1969

• Killing地平線に流入するエネルギーなし 0 H

= Rabξ
aξb = 8πTabξ

aξb .

⇒ shear, expansion=0

⇒ rotation=0 on N



Black hole thermodynamics

 ブラックホール熱力学 Bekenstein 1971, Bardeen-Carter-Hawking 1973

• 0th law: equilibrium

• 1st law: energy conservation

c.f. Racz-Wald 1992

• 2nd law: entropy increasing law

c.f. Gao-Wald 2001

 κ: 表面重力

c.f. Flanagan et al 1999, Gao-Wald 2001

 κ is constant on Killing horizon

定常BHは熱力学的にも平衡状態

定常BHは面積不変 δA=0

A:地平線面積
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Black hole thermodynamics

 ブラックホール熱力学 Bekenstein 1971, Bardeen-Carter-Hawking 1973

• 0th law: equilibrium

• 1st law: energy conservation

c.f. Racz-Wald 1992

• 2nd law: entropy increasing law

c.f. Gao-Wald 2001

-Taking quantum effect into account, it turns out that BH emits thermal radiation 

 κ: 表面重力

c.f. Flanagan et al 1999, Gao-Wald 2001

 κ is constant on Killing horizon

定常BHは熱力学的にも平衡状態

定常BHは面積不変 δA=0

Hawking 1973 

A:地平線面積



Stationary black holes

 定常ブラックホール

 漸近平坦，真空というセットアップのもとでは，

• Schwarzschild解, Kerr解などの重力的に安定な厳密解が存在

• Killing地平線で表されるような熱力学平衡状態に対応

• 本質的に１種類しか存在しない(Kerr族)

N.B  Einstein-Maxwell系でも同様の性質

• Kerr-Newman族: (M,J,Q)の3パラメータファミリー Mazur 1982

ds2 = −dt2 +
2Mr − Q2

Σ
(dt − a sin2 θdφ)2 + (r2 + a2) sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2 .

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 + Q2 ,



Contents

 Introduction

 Dynamical black holes

 Concluding remarks

 Black holes in general relativity:

 Black holes in dynamical background

 Solution from intersecting branes

 Spacetime structure

--studies of stationary black holes--
9 slides

6 slides

4 slides

23 slides

6 slides

 Summary and outlooks



Black holes in the universe

 ダイナミカルブラックホール

time-dependent

応用: 原始ブラックホール

宇宙の初期に密度揺らぎでブラックホール形成

Carr-Hawking 1974

Hawking輻射が観測される可能性

定常性をはずす

TB =
�c3

8πGkBM
∼ 10−7(M/M⊙)−1 K ,

Hubble質量のブラックホールが生成

 宇宙論的背景の中でブラックホールを考える必要

∼ (M/1010g)−1 TeV ,

漸近的平坦性や真空条件もはずすべき



Black holes in the universe

 1st step: exact black-hole solutions in FRW universe

唯一性は成り立たない

 我々の宇宙は大きなスケールで一様等方

Robertson-Walker 計量:

we expect much richer families of solutions

Friedmann方程式:
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Black holes in the universe

 Putting a BH in FRW universe

 Matter accretion 

We must solve nonlinear PDE w/ space & time simultaneously.

Difficulties

 1st step: exact black-hole solutions in FRW universe

唯一性は成り立たない

 我々の宇宙は大きなスケールで一様等方

Robertson-Walker 計量:

we expect much richer families of solutions

Friedmann方程式:

⇒ Universe becomes inhomogeneous

⇒ BH will grow & deform



FRW black holes with symmetry

 Schwarzschild-de Sitter

 locally static (Birkhoff’s theorem)

Kottler 1918

本質的にnon-dynamical
(R+はKilling地平線)

f (R+) = f (Rc) = 0, R+ < Rc

T=const.

t=const.R+ Rc



FRW black holes with symmetry

 Sultana-Dyer solution Sultana & Dyer 2005

• generated by a conformal Killing vector ξa=(∂/∂η)a

a=0

r=0 r=2M

• sourced by dust and null dust

c.f. Saida-Harada-Maeda 2007

宇宙膨張と“同じ割合”でBHも進化

• Schwarzschild 計量と共形
地平線はr=2M ⇒　RH=2Ma
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FRW black holes with symmetry

 Sultana-Dyer solution Sultana & Dyer 2005

• generated by a conformal Killing vector ξa=(∂/∂η)a

a=0

r=0 r=2M

• エネルギー条件の破れ

for η>r(r+2M)/2M

• sourced by dust and null dust

c.f. Saida-Harada-Maeda 2007

宇宙膨張と“同じ割合”でBHも進化

• Schwarzschild 計量と共形
地平線はr=2M

physically unacceptable

⇒　RH=2Ma



FRW black holes with symmetry

 Self-similar black holes

• 減速膨張のとき，BHは存在しない Harada-Maeda-Carr 2006

 McVittie’s solution Nolan 2002, Kaloper et al 2010

L ξgab = 2gab ,

a(t) = tp ,

r=M/2aは曲率特異点

r=
M/2a

, t=
∞

r=M/2a, t:finite

a=t 
pのとき

(p<1)

自己相似性



FRW black holes

 Black holes in FRW universe

時間依存性あり　⇒　ブラックホールは時間変化

厳密解に限ってもエネルギー条件をみたすような
ブラックホールを構築するのは(数学的にも)難しい

高次元のダイナミカルな交差ブレーン解のコンパクト化により，
４次元のダイナミカルな“ブラックホール”解を得る．

 What we have done
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Branes in string theory

 String/M-theory

Horowitz-Strominger 1991

• preserves a part of supersymmetries (BPS state)

• black “holes” w/ extended into spatial p-directions

• Promising unified theory of all interactions

 超重力理論のブラックpブレーン解

• 10/11 次元で定式化

• 基本的構成要素:

string (open & closed), D-brane

• low energy description of D-branes (and M-branes)



M-Branes in 11D supergravity

extended directions

H2: harmonic fun. on  

• r=0 に点状源

r

• preserves 1/2-SUSY

y1

y2

F=dA: 4-form

Fが電気的(4-form)に結合　⇒　M2-brane

Fが磁気的(7-form)に結合　⇒　M5-brane  electric Fµν (0+2-dim.),  
magnetic *Fµν (0+(4-2)-dim.),  

 11次元超重力

extremal M2-brane

r=0 は正則地平線

c.f. 4次元点粒子(0-dim.)



Intersecting branes in supergravity

 交差ブレーン Tseytlin 1996, Ohta 1997

e.g., M2/M2/M5/M5 branes

M2∩M2=0, M2∩M5=1, M5∩M5=3

pA

pB

pAB

• 1/8-BPS状態

• [**] 内の計量でharmonics Hn-1がかかっている
ところにMn-braneが存在 (intersection rule)



4D black hole from intersecting branes

 ブレーン方向を丸めて，4Dへコンパクト化

4D Einstein frame metric from M2/M2/M5/M5

• Qi ≡Qとすれば 極限 Reissner-Nordströmブラックホール

M4xT 
7

otherwise: Einstein-Maxwell (x4)-dilaton (x3)

⤵



Advantages of intersecting brane picture

 ブラックホールエントロピーのミクロな導出が可能

Strominger-Vafa 1996, Callan-Maldacena 1996

• 4次元ブラックホールを得るには4電荷必要

• 5次元ブラックホールを得るには3電荷必要

M2/M2/M2, M2/M5/W, D1/D5/W, etc. 

M2/M2/M5/M5, M5/M5/M5/W, etc.

Dブレーンは開弦のendpoint

 ⇒ 弦の配位を数え上げ可能

S=logW=2π(N1N5Nw)1/2=A/4G10=SBH

RH = r



�

i

�
1 +

Qi

r

�
1/3

r→0

,

RH = r



�

i

�
1 +

Qi

r

�
1/4

r→0

,



Black hole from dynamically intersecting branes

ex. M2/M2/M5/M5 (4-charges) with evolving M2

• Qi=0とすると, 11DはKasner宇宙(空間一様性を保つ真空解)

Maeda-Ohta-Uzawa 2009

• 4種のブレーンのうち，どれか１つのみ時間依存性をもつことが可能

 Time-dependent branes in 11D SUGRA

静的なM-ブレーンと同様な計量ansatzのもと，
時間依存性をもった交差ブレーン解を分類

τ ∝ t2/3



4D black hole from intersecting branes

 ブレーン方向を丸めて，4Dへコンパクト化

• 解は時間依存+空間的非一様 

M4xT 
7⤵

4D Einstein frame metric from dynamical M2/M2/M5/M5

• ダイナミカルブラックホールを表していると期待できる



typical near-horizon geometry of extremal BH

Kunduri-Lucietti-Reall 2007

Dynamical black hole in FRW universe?

• asymptotically (r→∞) tends to P=ρ FRW universe

• reduces to AdS2 x S2 as r→0 with t :fixed



Dynamical black hole in FRW universe?

• asymptotically (r→∞) tends to P=ρ FRW universe

• reduces to AdS2 x S2 as r→0 with t :fixed

Extremal black hole in FRW universe?



Naive Picture

extreme RN
(r~0)

P=ρ FRW
(r→∞)



Naive Picture

extreme RN
(r~0)

P=ρ FRW
(r→∞)



Naive Picture

extreme RN
(r~0)

P=ρ FRW
(r→∞)

Is this rough estimate indeed true?



Naive Picture

extreme RN
(r~0)

P=ρ FRW
(r→∞)

Is this rough estimate indeed true? NO.



Our goal

 “ダイナミカルブラックホール”の時空構造を知りたい
• 時空特異点

• 事象の地平線

 For simplicity, we assume

5

an expanding FLRW universe, rather than a black hole. As a good lesson of above, we are required to
take special care to conclude what the present spacetime describes.

In this paper, we study the above spacetime (2.1) more thoroughly [we are working mainly in Eq. (2.1)
rather than Eq. (2.4), because the former coordinates cover wider range than the latter]. We assume
t0 > 0, viz, the background universe is expanding. For simplicity and definiteness of our argument, we
will specialize to the case in which all charges are equal, i.e., QT = QS = QS� = QS�� ≡ Q (> 0).3 To be
specific, we will be concerned with the metric

ds
2
4 = −Ξdt

2 + Ξ−1
�
dr

2 + r
2dΩ2

2

�
, (2.11)

whose component Ξ, Eq. (2.2), is simplified to

Ξ =
�
HT H

3
S

�−1/2
, (2.12)

with

HT =
t

t0
+

Q

r
, HS = 1 +

Q

r
. (2.13)

A more general background with distinct charges are yet to be investigated. The result for the 5D solution
(C1) will be given in Appendix C.

III. MATTER FIELDS AND THEIR PROPERTIES

It seems to be a good starting point to draw our attention to the matter fields. Since we know explicitly
the 4D metric components, we can read off the total energy-momentum tensor of matter fluid(s) from the
4D Einstein equations,

κ2
Tµν = Gµν , (3.1)

where κ2 = 8πG is the gravitational constant and Gµν = Rµν − (R/2)gµν is the Einstein tensor. What
kind of matter fluids we expect? There may appear at lest two fluid components: one is a scalar field and
the other is a U(1) gauge field. This is because we compactify seven spaces and we have originally 4-form
field in 11D supergravity theory. The torus compactification gives a set of scalar fields and the 4-form
field behaves as a U(1) gauge field in 4D. In our solution, we assume four branes, which give rise to four
U(1) gauge fields.

As shown in Appendix A, we can derive the following effective 4D action from 11D supergravity via
compactification,

S =
�

d4
x
√
−g

�
1

2κ2
R− 1

2
(∇Φ)2

− 1
16π

�

A

e
λAκΦ(F (A)

µν )2
�

, (3.2)

where Φ, F
(A)
µν , and λA (A = T, S, S

�
, S

��) are a scalar field, four U(1) fields, and coupling constants,
respectively.

The above action yields the following set of basic equations,

Gµν = κ2
�
T

(Φ)
µν + T

(em)
µν

�
, (3.3)

✷Φ− κ

16π

�

A

λAe
λAκΦ(F (A)

µν )2 = 0 , (3.4)

∇ν
�
e
λAκΦ

F
(A)
µν

�
= 0 , (3.5)

3 If QT is different from other three same charges QS , the present result still holds. It is because such a difference amounts

to the trivial conformal change ds2
4 = (QT /QS)1/2

h
−Ξ∗dt2∗ + Ξ−1

∗ (dr2 + dΩ2
2)

i
with simple parameter redefinitions

Ξ∗ = [(t∗/t∗0 + QS/r)(1 + QS/r)3]−1/2, t∗ = (QT /QS)−1/2t, and t∗0 = (QT /QS)1/2t0.
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• 捕捉領域
Black hole tends to attract Universe itself is expanding

characterized by (Q, t0)

:膨張宇宙

Singularity is naked?

Event horizon exists? Singularity is covered?
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Matter fields
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Einstein-Maxwell(x2)-dilaton系 (Qi≡Qのとき)

6

where

T
(Φ)
µν = ∇µΦ∇νΦ− 1

2
gµν(∇Φ)2 , (3.6)

T
(em)
µν =

1
4π

�

A

e
λAκΦ

�
F

(A)
µρ F

(A)ρ
ν − 1

4
gµν(F (A)

αβ )2
�

. (3.7)

For the present case with all the same charges, two different coupling constants appear.
A simple calculation shows that the above basic equations (3.3), (3.4), and (3.5) are satisfied by our

spacetime metric (2.11), provided the dilaton profile

κΦ =
√

6
4

ln
�

HT

HS

�
, (3.8)

and four electric gauge-fields

κF
(T )
01 = −

√
2π

Q

r2H2
T

,

κF
(S)
01 = κF

(S�)
01 = κF

(S��)
01 = −

√
2π

Q

r2H2
S

, (3.9)

with the coupling constants

λT =
√

6 , λS ≡ λS� ≡ λS�� = −
√

6/3. (3.10)

The U(1) fields are expressed in terms of the electrostatic potentials F
(A)
µν = ∇µA

(A)
ν −∇νA

(A)
µ as,

κA
(T )
0 =

√
2π

HT
,

κA
(S)
0 =

√
2π

�
1

HS
− 1

�
, (3.11)

where we have tuned A
(S)
0 to assure A

(S)
0 → 0 as r → ∞ using a gauge freedom. Therefore the present

spacetime (2.11) is the exact solution of the Einstein-Maxwell-dilaton system (3.2). One may verify that
Q is the physical charge satisfying

Q√
G

=
1
4π

�

S
e
λAκΦ

F
(A)
µν dS

µν
, (3.12)

where S is a round sphere surrounding the source. This expression is obtainable by the first integral of
Eq. (3.5).

Note that one can also find magnetically charged solution instead of (3.9). However, this can be realized
by a duality transformation

Φ→ −Φ, F
(A)
µν → 1

2
e
λAκΦ�µνρσF

(A)ρσ
, (3.13)

which is a symmetry involved in the action (3.2). Henceforth, we will make our attention only to the
electrically charged case. This restriction does not affect the global spacetime picture.

A. Energy density and pressure

Using our solution (2.1), we can evaluate the components of the energy-momentum tensors, i.e., the
energy density and pressures for each field ( the dilaton Φ and U(1) fields F

(A)
µν ). They are given by
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• 時間依存ブレーンのみが異なる結合定数
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Using our solution (2.1), we can evaluate the components of the energy-momentum tensors, i.e., the
energy density and pressures for each field ( the dilaton Φ and U(1) fields F

(A)
µν ). They are given by

• 優勢エネルギー条件を満足

A=T, S,S’,S’’

“P=ρ universe”:massless scalar

• QはMaxwell電荷

• Maxwell場とdilatonがソース



Singularities

 これらの特異点は timelike & central (面積半径0)

 there exist an infinite number of 
       ingoing null geodesics terminating into singularities
       outgoing null geodesics emanating from singularities

 すべての曲率不変量 (RabcdRabcd,  CabcdCabcd,Ψ2 etc)が発散

 時空特異点

5

an expanding FLRW universe, rather than a black hole. As a good lesson of above, we are required to
take special care to conclude what the present spacetime describes.

In this paper, we study the above spacetime (2.1) more thoroughly [we are working mainly in Eq. (2.1)
rather than Eq. (2.4), because the former coordinates cover wider range than the latter]. We assume
t0 > 0, viz, the background universe is expanding. For simplicity and definiteness of our argument, we
will specialize to the case in which all charges are equal, i.e., QT = QS = QS� = QS�� ≡ Q (> 0).3 To be
specific, we will be concerned with the metric

ds
2
4 = −Ξdt

2 + Ξ−1
�
dr

2 + r
2dΩ2

2

�
, (2.11)

whose component Ξ, Eq. (2.2), is simplified to

Ξ =
�
HT H

3
S

�−1/2
, (2.12)

with

HT =
t

t0
+

Q

r
, HS = 1 +

Q

r
. (2.13)

A more general background with distinct charges are yet to be investigated. The result for the 5D solution
(C1) will be given in Appendix C.

III. MATTER FIELDS AND THEIR PROPERTIES

It seems to be a good starting point to draw our attention to the matter fields. Since we know explicitly
the 4D metric components, we can read off the total energy-momentum tensor of matter fluid(s) from the
4D Einstein equations,

κ2
Tµν = Gµν , (3.1)

where κ2 = 8πG is the gravitational constant and Gµν = Rµν − (R/2)gµν is the Einstein tensor. What
kind of matter fluids we expect? There may appear at lest two fluid components: one is a scalar field and
the other is a U(1) gauge field. This is because we compactify seven spaces and we have originally 4-form
field in 11D supergravity theory. The torus compactification gives a set of scalar fields and the 4-form
field behaves as a U(1) gauge field in 4D. In our solution, we assume four branes, which give rise to four
U(1) gauge fields.

As shown in Appendix A, we can derive the following effective 4D action from 11D supergravity via
compactification,

S =
�

d4
x
√
−g

�
1

2κ2
R− 1

2
(∇Φ)2

− 1
16π

�

A

e
λAκΦ(F (A)

µν )2
�

, (3.2)

where Φ, F
(A)
µν , and λA (A = T, S, S

�
, S

��) are a scalar field, four U(1) fields, and coupling constants,
respectively.

The above action yields the following set of basic equations,

Gµν = κ2
�
T

(Φ)
µν + T

(em)
µν

�
, (3.3)

✷Φ− κ

16π

�

A

λAe
λAκΦ(F (A)

µν )2 = 0 , (3.4)

∇ν
�
e
λAκΦ

F
(A)
µν

�
= 0 , (3.5)

3 If QT is different from other three same charges QS , the present result still holds. It is because such a difference amounts

to the trivial conformal change ds2
4 = (QT /QS)1/2

h
−Ξ∗dt2∗ + Ξ−1

∗ (dr2 + dΩ2
2)

i
with simple parameter redefinitions

Ξ∗ = [(t∗/t∗0 + QS/r)(1 + QS/r)3]−1/2, t∗ = (QT /QS)−1/2t, and t∗0 = (QT /QS)1/2t0.

c.f. Christdoulou 1984
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 t=0で有限 

 r=0で有限 
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the metric (2.4) vanishes, is not singular at all since the curvature invariants remain finite at t̃ = 0. It
follows that the big bang singularity t̃ = 0 is smoothed out due to a nonvanishing Maxwell charge Q (> 0).
Hence, one has also to consider the t̃ < 0 region in the coordinates (2.11). In addition, we find that the
r̃ = 0 surface is neither singular, thereby we can extend the spacetime across the r̃ = 0 surface to r̃ < 0.
Since the allowed region is where HT H

3
S > 0 is satisfied, we shall focus attention to the coordinate domain

t̃ ≥ t̃s(r̃), r̃ ≥ −1 , (4.6)

in the subsequent analysis. Another permitted region t̃ > t̃s and r̃ < −1 is not our immediate interest
here, since it turns out to be causally disconnected to the outside region, as we shall show below. Possible
allowed coordinate ranges are depicted in Figure 1.

t

r
t (r)s

-Q

t (r)s

FIG. 1: Allowed coordinate ranges. The grey zone denotes the forbidden region, and the dashed curves correspond
to curvature singularities.

Since our spacetime is spherically symmetric, electromagnetic and gravitational fields do not radiate.
Thereby, it is more advantageous to concentrate on their “Coulomb components.” For this purpose, let
us introduce the Newman-Penrose null tetrads by

lµdx̃
µ =

�
Ξ
2

(−τdt̃ + Ξ−1dr̃),

nµdx̃
µ =

�
Ξ
2

(−τdt̃− Ξ−1dr̃), (4.7)

mµdx̃
µ =

r̃√
2Ξ

(dθ + i sin θdφ).

with m̄µ being a complex conjugate of mµ. They satisfy the orthogonality conditions l
µ
nµ = −1 =

−m
µ
m̄µ and l

µ
lµ = n

µ
nµ = m

µ
mµ = m̄

µ
m̄µ = 0. Since t̃ is a timelike coordinate everywhere, l

µ and n
µ

are both future-directed null vector orthogonal to metric spheres.
The only nonvanishing Maxwell and Weyl scalar are their “Coulomb part,” φ(A)

1 := − 1
2F

(A)
µν (lµn

ν +
m̄

µ
m

ν) and Ψ2 := −Cµνρσl
µ
m

ν
m̄

ρ
n

σ, both of which are invariant under the tetrad transformations due
to the type D character. It is readily found that

φ(T )
1 =

√
π√

2κQr̃2H2
T

, φ(S)
1 =

√
π√

2κQr̃2H2
S

, (4.8)

and

Ψ2 =
Ξ,r̃ − r̃Ξ,r̃r̃

6Q2r̃
=

6r̃H
2
T + (HT −HS)2 + 2t̃r̃H

2
S

8Q2r̃4(H5
T H

7
S)1/2

. (4.9)

The loci of singularities at which these quantities diverges are the same as the positions of the above
singularities. One may also recognize that at the fiducial time t̃ = 1, above curvature invariants are the
same as the extremal RN solution, as expected.

Let us next look into the causal structure of singularities. Since the Misner-Sharp mass (3.22) becomes
negative as approaching these singularities [the third term in Eq. (3.22) begins to give a dominant contri-
bution], we speculate from our rule of thumb that these singularities are both contained in the untrapped
region and possess the timelike structure.

地平線の候補 (static braneではr=0が地平線)

forbidden

t=0 はBig-bang 特異点ではない(t<0 に接続可能)

(degenerate null surface)

allowed
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•許される座標範囲は



How to find event horizon

(i) 捕捉領域を調べる(局所的構造)

⇒ we can sketch the Penrose diagram

Strategy

(ii) 地平線の候補を探す

(iii) “地平線近傍”の幾何を解析

(iv) 測地線を数値的に解いて本当にEHか否か確認

N.B　事象の地平線は大域的概念

Black hole

Event horizon

地平線上の各点は局所的に
なんら他の点と区別はない



Trapped surface

Penrose 1967

• a two-dimensional compact surface on which
   ougoing null rays have negative expansion θ+ < 0
   in asymptotically flat spacetimes

 trapped region

Hawking 1971• causally disconnected from I  + if asymptotically flat

→ trapped regions must be contained within BH region

 捕捉領域／みかけの地平線 (à la Penrose)



Trapped surface

Penrose 1967

• a two-dimensional compact surface on which
   ougoing null rays have negative expansion θ+ < 0
   in asymptotically flat spacetimes

 trapped region

Hawking 1971• causally disconnected from I  + if asymptotically flat

→ trapped regions must be contained within BH region

 捕捉領域／みかけの地平線 (à la Penrose)

Trapped region characterizes strong gravity



Trapped regions in spherical symmetry

 捕捉領域／捕捉地平線 (à la Hayward)

:null normalに沿った面積変化率

trapped: θ+θ- >0　⇔　(∇R)2<0

   　　　 　　　  ⇔　R=const. is spacelike

 球対称時空における捕捉領域

R(y) : 面積半径(Area =4πR2)

• a 2D compact surface on which θ+θ- > 0
Schwarzchild BH (θ+ <0, θ-<0), WHの内部 (θ+ >0, θ->0) はtrapped

線素は次のように書ける:

Hayward 1993

• a 3D surface foliated by marginal surface θ+θ- =0 is called a trapping horizon



Future trapping horizons

(i) black hole type (future θ+ =0)

untrapped

trapped

TH θ+ =0
v=0

v=v00 (v<0): flat space 

m(v) (0<v<v0): Vaidya

M≡m(v0) (v0<v): Schwarzschild

M(v)=

 Trapping horizon occurs at r=2M(v)

 Trapping horizon is spacelike

Vaidya
ex. 光的ダストの重力崩壊



Past trapping horizons

(ii) cosmological/white hole type (past θ- =0)

untrapped

trapped

TH θ- =0

 Trapping horizon occurs at R=1/H (Hubble horizon)

 Trapping horizon is spacelike

ex. P=ρのFriedmann宇宙

H=a’/a: Hubble パラメータ

R=ar: 面積半径
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r=
-Q

t=-t0Q/r

t=-t0Q/r

repulsive due to `expanding univ.’attractive due to `BH’
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Trapping horizons

 Future and past trapping horizons occur at 

Trapped (θ+θ->0)

r<0 r>0

forbidden
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Trapped
(θ+θ->0)

r=
-Q

t=-t0Q/r

t=-t0Q/r

repulsive due to `expanding univ.’attractive due to `BH’

r
r

tt

捕捉地平線のr→0 極限 が事象の地平線のlikely-candidate
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0.5

1.0

1.5

2.0

Trapped surface

r

R+

R-

 捕捉地平線のr→0 極限 が事象の地平線のlikely-candidate

• 無限大の赤方(青方)変位面に対応 

• 面積半径は一定値に漸近

 捕捉地平線の性質はr=0の面を境に変わる

R

Trapped (θ+θ->0)



Near horizon geometry

 捕捉地平線の“地平線近傍” t(±)

TH
→ c±/r , r → 0 ,

スケーリング極限によりwell-defined なnear-horizon limit

ξ[µDνξρ] = 0 ,

L ξgNH

µν = Dµξν + Dνξµ = 0 , :Killingベクトル
:超曲面直交

R±をKilling地平線に持つ静的ブラックホール



Near horizon geometry

 “horizon-candidate”は静的ブラックホールのKilling地平線で記述される

I’

II

III’III

I

• R+>R- ⇒ 地平線は非縮退

t→-∞

t→+∞

N.B もとの時空でξµ がKillingとなるのは地平線上のみ

throat

• Near-horizon計量の大域構造はRN-AdSと同じ
R+はBHとWHの`外側’の地平線　
R-はBHとWHの`内側’の地平線　

• t:有限，r→0とすればスロート(AdS2xS2)

t→±∞でR±　⇒　

‣ 流入するエネルギーなし

‣ 温度はノンゼロ

Ξ̄ = (r/Q)−2
�
1 +

tr
t0Q

�−1/2

, f (R) = (R4 − R4
+)(R4 − R4

−)



Global spacetime structure

 Outside the horizon r>0
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Global spacetime structure

 Outside the horizon r>0

• t=0 is a regular slice

• Singularity ts(r) = -t0Q/r (<0) is timelike

• Killing horizons R± develop from the throat
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Global spacetime structure

 Outside the horizon r>0

• t=0 is a regular slice

• Singularity ts(r) = -t0Q/r (<0) is timelike

• Killing horizons R± develop from the throat

t=0 

R+

R-

I +

i0

• r→0 with t: fixed is an infinite throat

• For t/t0>0, metric asymptotes to P=ρ FRW as r→∞

⇒ R→∞ as r→∞ on t ≥0 t=∞
t=∞
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Global spacetime structure

 Inside the horizon r<0

R+

R-

• there exist Killing horizons R± as
t=∞

t=
∞



Global spacetime structure

 Inside the horizon r<0

• For t >t0, singularity t=-t0Q/r is visible

• For t <t0, singularity r=-Q is visible
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the metric (2.4) vanishes, is not singular at all since the curvature invariants remain finite at t̃ = 0. It
follows that the big bang singularity t̃ = 0 is smoothed out due to a nonvanishing Maxwell charge Q (> 0).
Hence, one has also to consider the t̃ < 0 region in the coordinates (2.11). In addition, we find that the
r̃ = 0 surface is neither singular, thereby we can extend the spacetime across the r̃ = 0 surface to r̃ < 0.
Since the allowed region is where HT H

3
S > 0 is satisfied, we shall focus attention to the coordinate domain

t̃ ≥ t̃s(r̃), r̃ ≥ −1 , (4.6)

in the subsequent analysis. Another permitted region t̃ > t̃s and r̃ < −1 is not our immediate interest
here, since it turns out to be causally disconnected to the outside region, as we shall show below. Possible
allowed coordinate ranges are depicted in Figure 1.

t

r
t (r)s

-Q

t (r)s

FIG. 1: Allowed coordinate ranges. The grey zone denotes the forbidden region, and the dashed curves correspond
to curvature singularities.

Since our spacetime is spherically symmetric, electromagnetic and gravitational fields do not radiate.
Thereby, it is more advantageous to concentrate on their “Coulomb components.” For this purpose, let
us introduce the Newman-Penrose null tetrads by

lµdx̃
µ =

�
Ξ
2

(−τdt̃ + Ξ−1dr̃),

nµdx̃
µ =

�
Ξ
2

(−τdt̃− Ξ−1dr̃), (4.7)

mµdx̃
µ =

r̃√
2Ξ

(dθ + i sin θdφ).

with m̄µ being a complex conjugate of mµ. They satisfy the orthogonality conditions l
µ
nµ = −1 =

−m
µ
m̄µ and l

µ
lµ = n

µ
nµ = m

µ
mµ = m̄

µ
m̄µ = 0. Since t̃ is a timelike coordinate everywhere, l

µ and n
µ

are both future-directed null vector orthogonal to metric spheres.
The only nonvanishing Maxwell and Weyl scalar are their “Coulomb part,” φ(A)

1 := − 1
2F

(A)
µν (lµn

ν +
m̄

µ
m

ν) and Ψ2 := −Cµνρσl
µ
m

ν
m̄

ρ
n

σ, both of which are invariant under the tetrad transformations due
to the type D character. It is readily found that

φ(T )
1 =

√
π√

2κQr̃2H2
T

, φ(S)
1 =

√
π√

2κQr̃2H2
S

, (4.8)

and

Ψ2 =
Ξ,r̃ − r̃Ξ,r̃r̃

6Q2r̃
=

6r̃H
2
T + (HT −HS)2 + 2t̃r̃H

2
S

8Q2r̃4(H5
T H

7
S)1/2

. (4.9)

The loci of singularities at which these quantities diverges are the same as the positions of the above
singularities. One may also recognize that at the fiducial time t̃ = 1, above curvature invariants are the
same as the extremal RN solution, as expected.

Let us next look into the causal structure of singularities. Since the Misner-Sharp mass (3.22) becomes
negative as approaching these singularities [the third term in Eq. (3.22) begins to give a dominant contri-
bution], we speculate from our rule of thumb that these singularities are both contained in the untrapped
region and possess the timelike structure.

allowed

r

t

t0 R+

R-

• there exist Killing horizons R± as
t=∞

t=
∞
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• For t >t0, singularity t=-t0Q/r is visible

t=t0

• For t <t0, singularity r=-Q is visible
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µ and n
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The loci of singularities at which these quantities diverges are the same as the positions of the above
singularities. One may also recognize that at the fiducial time t̃ = 1, above curvature invariants are the
same as the extremal RN solution, as expected.

Let us next look into the causal structure of singularities. Since the Misner-Sharp mass (3.22) becomes
negative as approaching these singularities [the third term in Eq. (3.22) begins to give a dominant contri-
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Global spacetime structure

The solution indeed turns out to describe a BH in FRW cosmology
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 Consistency has been checked by solving geodesics numerically

trapped: θ+θ- >0　⇔　(∇R)2<0

   　　　 　　　  ⇔　R=const. is spacelike
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Extensions

• Patched region corresponds to t0<0



Extensions

• Patched region corresponds to t0<0

but...

extension is not unique due to nonanaliticity



Contours

t=const. r=const. Φ=const.

(∇Φ)2<0 at infinity



Extension to arbitrary power-law FRW

4

Supposed (t/t0) > 0, let us transform to the new time
coordinate t̄ defined by

t̄

t̄0
=

�
t

t0

� (D−3)
2(D−2) nS

with t̄0 =
2(D − 2)

(D − 3)nS
t0 , (2.24)

in terms of which we can cast the metric (2.12) into the
form

ds
2 = −Ξ̄D−3dt̄

2 + a
2Ξ̄−1δIJdx

Idx
J

, (2.25)

where

Ξ̄ =
��

1 +
H̄T

a2(D−2)/nT

�nT �
1 + H̄S

�nS

�−1/(D−2)

,

(2.26)

and

a =
�

t̄

t̄0

�p

, with p =
nT

(D − 3)nS
. (2.27)

Since we imposed the boundary condition such that the
harmonics H̄T and H̄S fall off as r :=

��
I(xI)2 → ∞,

the metric (2.25) approaches in the limit r → ∞ to the
D-dimensional flat FLRW spacetime,

ds
2
r→∞ = −dt̄

2 + a
2δIJdx

Idx
J

. (2.28)

The new coordinate t̄ is found to measure the proper time
at infinity. Looking at the behavior of the scale factor
a ∝ t̄

p, one can recognize that the asymptotic region of
the spacetime is the FLRW universe filled by a fluid with
the equation of state

P = wρ , with w =
2(D − 3)nS

(D − 1)nT
− 1 . (2.29)

It turns out that the parameter nT (or nS) is associated
to the expansion law of the universe (2.27). Notably, we
can obtain an accelerating universe (p ≥ 1) by setting
nT ≥ 2 or equivalently nS ≤ 2/(D − 3). In particular,
the exponential expansion (the de Sitter universe) is un-
derstood to be p → ∞ (nS → 0). Figure 1 depicts the
conformal diagrams of the FLRW universe. The asymp-
totic regions of the present spacetime (2.12) resemble the
corresponding shaded regions in Figure 1.

FIG. 1: Conformal diagrams of a flat FLRW universe a = (t̄/t̄0)
p

for (1) 0 < p < 1/2, (2) p = 1/2, (3) 1/2 < p < 1,

(4) p = 1 and (5) p > 1. The dotted and dotted-dashed lines denote the trapping horizon, rTH(t̄) = (da/dt̄)−1
, and the

big-bang singularity at a = 0, respectively. The cases (2) and (4) correspond respectively to the radiation-dominant universe

P = ρ/(D − 1) and the marginally accelerating universe driven by the curvature term ρ ∝ a−2
. The cosmological horizon,

rCH(t̄) = (p − 1)
−1t̄0(t̄/t̄0)

1−p
, is abbreviated to CH, which exists only in the strictly accelerating case (p > 1). The shaded

regions corresponding to r →∞ approximate our original spacetime.

On the other hand, taking the limit r
(A)
i := |x −

x(A)
i | → 0, we can safely neglect the time-dependence

of the metric. Hence, the metric at the very neighbor-
hood of each mass point is approximated by the Bertotti-
Robinson metric [the direct product of a 2-dimensional
anti-de Sitter (AdS2) and a (D − 2)-sphere] as

ds
2
r(A)

i →0
= −r

(A)2
i

r
2
0

dt
2 +

r
2
0

r
(A)2
i

dr
(A)2
i + r

2
0dΩ2

D−2 ,

(2.30)

where r0 := (QnT
T Q

nS
S )1/[2(D−2)] sets the curvature scale

of AdS2 and S2, and dΩ2
D−2 is the line-element of a

(D − 2)-dimensional unit sphere. It has been noticed
that the neighborhood of any extremal black holes can
be universally described by the above metric [32]. Fig-
ure 2 compares the geometry of the AdS2 × SD−2 and
that of the extremal RN black hole.

Thus, one anticipates that the metric (2.12) describes
a system of charged black holes with a degenerate event
horizon embedded in the FLRW universe filled by a
fluid (2.29), which might lead us to speculate that the

p<1/2 p=1/2 1/2<p<1 p=1 1<p

Background:

decelerating accelerating



Black hole in power-law FRW universe

 Einstein-Maxwell-dilaton theory with a Liouville potential

• 弱エネルギー条件 を満足

• 事象の地平線は Killing地平線 と一致

Gibbons-Maeda 2009,
Maeda-M.N 2010

• 遠方で power-law FRW universe に漸近

(t0,Q,p=nT/nS)の3パラメータ族 nT=1: Maeda-Ohta-Uzawa solution
nT=4: M=Q RN-de Sitter solution



Global structures

(I) decelerating universe: p<1

TH TH

(II) Milne universe: p=1

no event horizonadmits two horizons



Global structures

(III) accelerating universe: p>1

no event horizonadmits three horizons admits two horizons
     (degenerate)
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Summary

  We explore the global structure of a “dynamical black hole candidate’’
      derived from 11D intersecting branes & its generalizations

• additional symmetry appears at the event horizon (=Killing horizon)

• ambient matters do not fall into the hole

• asymptotes to FRW universe

• satisfies suitable energy conditions



Summary

  We explore the global structure of a “dynamical black hole candidate’’
      derived from 11D intersecting branes & its generalizations

• additional symmetry appears at the event horizon (=Killing horizon)

 The solution describes an equilibrium BH in dynamical background

• ambient matters do not fall into the hole

• asymptotes to FRW universe

• satisfies suitable energy conditions



Further generalizations

 Black hole thermodynamics

• Can we define meaningful mass function in FRW universe?

??

 Multiple generalizations

• Multi-center metric is expected to describe BH collisions in FRW universe

c.f. Kastor-Traschen 1993

 Higher-dimensional and/or rotating generalizations

Why superposition is possible?

• describes a BMPV black hole in FRW

• possesses CTCs around singularities (gψψ<0)

Breckenrige et al 1996



Analogue of supersymmetric solutions

CIJK :intersection numbers of CY

• However, supergravity admits only AdS vacua 

g :(inverse) AdS radius

I, J,...=1,...,N; A,B,..=1,...,N-1 

gravitational attractive force electromagnetic repulsive force

 The solution inherits properties of supersymmetric black holes

• BPS solutions satisfy the `no force’ condition

e.g. Minimal gauged SUGRA coupled to U(1)N vector fields with scalars

(N: Hodge number h1,1 of CY)
U=CIJKVIVJXK >0

SUSY transformation

c.f. Majumdar-Papapetrou sol.



Embedding into supergravity

Wick rotation (g  → iλ) gives an inverted potential

hij : hyper-Kähler space

‣ “Killing spinor” equation is satisfied for 

V1=V2=(6λt0)1, V3=0

Our 5D metric is a solution of fake supergravity with C123=1

“Fake supergravity”

‣ 4D solution is obtainable via Gibbons-Hawking space  

1/2-“BPS” state

e.g.

V=2λ2CIJKVIVJXK >0

We expect all BPS solutions can be obtained using Killing spinors M.N. in work



Black holes in FRW universe

 Black hole in “Swiss-Cheese Universe” 

•glue Schwarzschild BH w/ FRW universe

a=0

r=0

S

Schwarzschild

Einstein-Straus 1945 

dust FRW

-Schwarzschild portion is static

•Israel’s junction condition at Σ:

-matters do not accrete onto the hole


