修士論文

アルカリ原子の光会合の研究

指導教員 井上 慎 准教授

平成25年2月提出

東京大学大学院工学系研究科物理工学専攻

37116525 上原 城児
目次

第1章 イントロダクション 3
1.1 研究の背景 ... 3
1.2 研究の目的 ... 4
1.3 本論文の構成 ... 4

第2章 理論的背景 6
2.1 二原子分子 ... 6
2.1.1 分子の系の記述 .. 6
2.1.2 角運動量の結合 ... 7
2.2 光会合による2原子分子の生成 10
2.2.1 摂動論による取扱い .. 10
2.2.2 LeRoy-Bernstein 形式 ... 15
2.2.3 電子基底状態と励起状態の分子ポテンシャル 18

第3章 冷却原子集団への光会合 21
3.1 Rbの光会合 ... 22
3.2 実験方法 ... 24
3.2.1 実験装置 ... 24
3.2.2 タイムシークエンス ... 26
3.2.3 8Rb$(^2P_{1/2})_0$ 状態のPA ラインの同定 27
3.2.4 改良型LeRoy-Bernstein 形式による振動準位の予測 30
3.2.5 振動準位の遷移の強さの比較 32

第4章 PA用光源の中周波数安定化 35
4.1 中心周波数ロックのための光学系 35
4.2 ECDL ... 38
4.3 Transfer cavity .. 40
4.4 Rbセルを用いた周波数のロック 41
4.4.1 過剩吸収信号 ... 42
4.4.2 FM サイドバンド変調法 .. 43
4.4.3 Modulation transfer 法 .. 46

第5章 まとめと今後の展望 49
<table>
<thead>
<tr>
<th>付録</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>付録 A 原子と光の相互作用：輻射圧と双極子力</td>
<td>50</td>
</tr>
<tr>
<td>付録 B ECDL 用ロック回路</td>
<td>56</td>
</tr>
<tr>
<td>付録 C 高速 PD(フォトダイオード)</td>
<td>57</td>
</tr>
<tr>
<td>付録 D 光格子のためのパスの作成</td>
<td>61</td>
</tr>
</tbody>
</table>

| 参考文献 | 65 |
| 謝辞 | 68 |
第1章 イントロダクション

1.1 研究の背景

原子気体の研究では、レーザーを用いて原子を冷却・トラップする技術が 1980 年代から格段に発展を遂げていった。冷却された原子気体は、量子統計性を示す理想的な系として注目されている。①

例えばポアズ粒子は、波動関数の対称化の要請によって、同種粒子が同じ状態に存在する確率が古典的な粒子よりも多くなる。1920 年代にはアイシュタインによって、ポアズ粒子群の密度を下げていくとある密度から相転移を起こし、基底状態にマクロな数の粒子が入って凝縮を起こすことが予想されていた。これはポアズ・アイシュタイン凝縮 (BEC) と呼ばれていおり、実際に 1995 年には7Li [2], ^{23}Na [3]. ^{87}Rb [4] を使った BEC が観測されている。この功績を称え、1997 年には中性原子の冷却・トラップ技術の開発に大きく寄与した 3 氏に [5] [6] [7], 2001 年には BEC の実現に貢献した 3 氏にノーベル物理学賞が贈られた。多数の原子が 1 つのマクロな波として振る舞うという BEC の特徴から、高感度の原子波干涉計 [5], [30] としての利用など、物理分野での高い貢献が期待されている。一方フェルミ粒子は、波動関数の反対称化の要請から、同種粒子が同じ状態をとることが許されず、フェルミ粒子群の密度を下げていくと、基底状態から順に状態が占有され、フェルミ・ディラック統計が得られる。これをフェルミ縮退と呼ぶ。1999 年には JIRA のグループが ^{40}K を用いて初めてフェルミ温度以下まで冷却することに成功し、フェルミ縮退に起因する蒸発冷却の著しい効率低下 (パウリプロッキング) を観測している [9]。フェルミ原子気体の原子間相互作用を制御することによって、超流動状態から原子対による BEC へ移行する現象 (BCS-BEC crossover) も観測されており [10] [11]。これらの系を用いて超伝導や超流動といった極低温物理の研究が盛んに行われている。

冷却原子を用いた実験によって様々な成果が得られる中、近年では極低温分子への関心が高まり、我々の研究室においても ^{41}K と ^{87}Rb という共にポソンの原子気体を用いて ^{41}K-^{87}Rb 極性分子に関する研究を行っている。粒子間距離を σ とおいたとき、冷却原子の系では衝突による短距離 ($\sim 1/R^6$) で等方的な相互作用が支配的であるが、極性分子間には新たに双極子・双極子相互作用が系に現れてくる。これは長距離 ($\sim 1/R^3$) かつ異方的な相互作用であり、その効果を考慮することで、ポソンの極低温極性分子系において新たな量子相の実現 [31], [32] が予想されている。極低温の分子を用意する上で問題となるのは、その冷却方法である。分子には振動・回転といった豊富な自由度が存在し、それゆえエネルギー構造は原子よりも複雑になっているため、レーザー冷却による直接的な冷却法が困難となる。そこで、二種類の極低温原子気体を用意してから冷やさせ、分子に会合させる間接的な手法がしばしば用いられる。JILA のグループでは、フェルミオンの ^{40}K とポソンの ^{87}Rb を使用しており、光格子中で Feshbach 会合と誘導ラマン断熱遷移 (STIRAP) を組み
第1章 イントロダクション

結合した手法 [33, 34] を用いることによって、フェルミ縮退直前のフェルミオン $^{40}K^{87}Rb$ 積性分子生成に成功している。我々の研究室では $^{41}K^{87}Rb$ ポソノ分子に対する STIRAP の手法が確立しており、ここに Feshbach 会合を組み合わせることで、ボソノの極低温度積性分子生成を目指している。

Feshbach 会合によって binding energy の小さい Feshbach 分子の生成を行うが、ここで問題となるのは、Feshbach 会合によってできた分子が、他の原子や分子と衝突することによって下準位への緩和を起こし、それによる加熱でトラッププロセスを起こして最終的に使用できる分子の数が減少するという点である。そこで、光を対向させてできた周期的ポテンシャル(光格子)を形成し、衝突抑制機構として用いている。まず光格子の各サイトに ^{87}Rb と ^{41}K 原子を1個ずつロードし、光格子ポテンシャルを深くすることで超流動状態から Mott 絶縁体状態へ相転移 [35] させ、原子のサイト間ホッピングを抑制した後で会合させることにより、生成分子の衝突を抑制するという手法である。ホッピングを抑制した段階で、分子生成に利用可能な原子の数が決まる。原子のペアから分子への変換効率を調べるためには、光格子へロードした後の二原子集団の分布を調べる必要がある。光格子はガウシアンビームで形成されているので、Mott 絶縁体状態では shell 構造 (図3.1) ができる、1サイトに同原子種が複数個入る領域が出現する。このようなサイトの存在も考慮しつつ、分子生成に利用可能なサイト数を調べるためには、光格子サイト内で3種類の光会合を起こせばよい。すなわち $^{87}Rb_2$, $^{41}K_2$, $^{41}K^{87}Rb$ の光会合を行い、光会合された原子の数からサイト数を定量的に求める。これにより光格子中での混合原子気体の分布を知ることができ、分子生成の研究の一助となる。

1.2 研究の目的

以上の点を踏まえて、本研究では ^{87}Rb と ^{41}K の二原子種を用いて、極低温度原子集団の混合気体を光格子中にロードした時の分布を調べるための系を構築し、KRb 分子作成可能な光格子サイト数の定量的な観察を観覧することを目指す。これにより、二原子種同時 BEC から Feshbach 分子への生成効率が、「同時 BEC の原子のうち、分子生成に利用可能な原子としてロードされる効率」と「^{87}Rb と ^{41}K 1個ずついるサイトでの Feshbach 会合の効率」の2つに分離でき、別々に測定できるようになる。

1.3 本論文の構成

- 第2章では分子の量子状態について説明した後、2原子状態からの光会合の原理について述べ、振動状態と binding energy の関係を表すための方法として、WKB 近似の一種である ReLoy-Bernstein 形式について説明する。また、今回行った $^{87}Rb_2$ の光会合に関係する話として、分子の電子基底状態と励起状態に関する断熱ポテンシャルの概要についても触れる。
• 第3章では$^{87}\text{Rb}_2$の光会合に必要な周波数選定のためのトラッププロス分光の実験について述べ、得られたデータから振動回転準位の同定、改良型ReLoy-Bernstein形式による振動準位のbinding energyの予測と評価、及びこれらの遷移の強さの比較について述べる。

• 第4章ではPA用光源の中心周波数安定化を行うにあたって作製した光学系について説明する。

• 第5章では今回の研究についてのまとめと今後の課題について述べる。
第2章 理論的背景

2.1 二原子分子

分子は原子よりも多くの内部自由度を持ち、並進運動に加えて振動・回転運動も存在するため、分子の状態の記述はより複雑になる。ここでは光合成によって生成する2原子分子の状態を記述するために必要な量子数及びHund’s caseについて触れ、WKB近似の一種であり振動状態を近似的に導出するLeRoy-Bernstein形式について述べた後、光合成のプロセスについて記述する。

図2.1 (a) 二原子分子の振動運動及び (b) 回転運動の模式図 原子核の運動に着目すれば、原子は並進運動のみだったのに対して、分子は振動と回転が新たに加わる。

2.1.1 分子の系の記述

原子の結合によってできた分子は複数個の原子核をもち、一般に電子が核全体から受ける力は中心力ではなくなる。また、原子核間の距離の変化は分子の振動となり、原子核全体の配置の回転運動も加わる。以下、[14]の議論を参考にこれら全ての運動を考慮した分
子のエネルギー準位を考える。分子全体のシュレーディンガー方程式は

\[
\left(- \sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2 - \sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 + V \left(\{ \vec{R}_{\alpha} \}, \{ \vec{r}_i \} \right) \right) \Psi \left(\{ \vec{R}_{\alpha} \}, \{ \vec{r}_i \} \right) = E \Psi \left(\{ \vec{R}_{\alpha} \}, \{ \vec{r}_i \} \right)
\]

(2.1)

と表される。\(M_{\alpha} \) は \(\alpha \) 番目の核の質量、\(\vec{R}_{\alpha}, \vec{r}_i \) はそれぞれ \(\alpha \) 番目の原子核の位置ベクトル、\(i \) 番目の電子の位置ベクトルである。（\(\alpha = 1, \cdots, M, i = 1, \cdots, N \) とする。）また \(\{ \vec{R}_{\alpha} \} = \vec{R}_1, \cdots, \vec{R}_M, \{ \vec{r}_i \} = \vec{r}_1, \cdots, \vec{r}_N \) であり、以後簡略化のため \(\Psi = \Psi(\vec{R}_{\alpha}, \vec{r}_i) \) のように表記する。\(V(\vec{R}_{\alpha}, \vec{r}_i) \) は電子間相互作用、原子核間相互作用、電子-原子核間相互作用、相対論的効果を表す項である。原子核に比べて電子は軽く、同等の力を受けていたが加速の違いを考えれば電子の動きまわり速度は原子核に比べて十分に速い。したがって電子の波動関数は原子核間の運動に対して常に平衡状態を満たしているとみなせるため、Born-Oppenheimer 近似を用いる。これによって、原子核の運動を十分に遅いとみなして固定し、その時の核配置が来るポテンシャル中での電子群の運動を考える方法である。こうして電子群の波動関数 \(\psi_e \) が従う方程式は

\[
\left(- \sum_{i} \frac{\hbar^2}{2m_e} \nabla_i^2 + V(\vec{R}_{\alpha}, \vec{r}_i) \right) \psi_e(\vec{r}_1, \cdots, \vec{r}_N) = U(\vec{R}_{\alpha}) \psi_e(\vec{r}_1, \cdots, \vec{r}_N)
\]

(2.2)

のように表される。得られた固有値 \(U(\vec{R}_{\alpha}) \) を核運動に対するポテンシャルと考えて、原子核群の波動関数 \(\psi_{\alpha} \) がみたす方程式は

\[
\left(- \sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\alpha}^2 + U(\vec{R}_{\alpha}) \right) \psi_{\alpha}(\vec{R}_{\alpha}) = E \psi_{\alpha}(\vec{R}_{\alpha})
\]

(2.3)

で表される。これを解き、得られた固有値 \(E \) と波動関数 \(\Psi = \psi_{\alpha} \psi_e \) は (2.1) 式のよい近似となっている。二原子分子の場合、断熱ポテンシャル \(U(\vec{R}_{\alpha}) \) は核間距離 \(R \) のみの関数になるため、重心運動を分離すれば中心力ポテンシャル中の粒子の運動に帰着する。この時の解は動径方向と角度方向の関数の積となり、

\[
\Psi = \frac{\psi(R)}{R} Y_{lm}(\theta, \phi)
\]

(2.4)

の形になる。\(Y_{lm}(\Theta, \Phi) \) は球面調和関数である。これを代入すれば \(\psi(R) \) がみたすべき式は、

\[
\left(- \frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} + U(R) + \frac{\hbar^2 l^2}{2\mu R^2} \right) \psi(R) = E \psi(R)
\]

(2.5)

となる。\(\mu \) は換算質量であり、\(l \) は原子核の軌道角運動量すなわち分子の回転状態を表す量子数となる。よって左辺第 3 項が回転による遠心力ポテンシャルを表す。第 2 項の断熱ポテンシャルは分子や電子状態の違いによって形が異なり、\(R \) の無限遠では原子状態のエネルギー準位へと漸近する。

2.1.2 角運動量の結合

前節のように、二原子分子の系では遠心力ポテンシャル、クーロン相互作用、スピン・軌道相互作用がポテンシャルの項に含まれる。これらの大小関係によって角運動量がどのよ
うに結合するかが決定され。結合の仕方に応じて分子の量子状態を表すのに適した量子数が変わる [14]。そこでこの節では、角運動量の結合の仕方を表した Hund's case について説明する。以下ではアルカリ原子の二原子分子を考え、分子を構築する電子 1, 2 の持つ軌道角運動量、電子スピンをそれぞれ \(I_1, I_2 \), \(S_1, S_2 \) と表し、その量子化軸に対する射影をそれぞれ \(m_{I_1}, m_{S_1} \), \(m_{I_2}, m_{S_2} \) とする。この 2 つの原子を結合作せた電子は二電子系になり、全軌道角運動量 \(L = I_1 + I_2 \), 全スピン角運動量 \(S = S_1 + S_2 \)、これらの分子軸方向の射影をそれぞれ \(M_L, M_S \) と表記する。（ここで \(\Lambda = |M_L| \) とおく。）分子の回転運動は、重心を通る分子軸に垂直な直線のまわりに起こり、その角運動量を \(N \) とする。以下では、回転のエネルギー基準間隔が小さい場合を表した Hund's case (a) と (c) について述べる。

![Hund's case (a) and Hund's case (c)](image)

図 2.2 Hund's case Hund's case(a) では、\(L \) と \(S \) の分子軸方向の射影 \(\Lambda \) と \(\Sigma \) が保存され、よい量子数となっている。一方 Hund's case(c) では \(\Lambda \) と \(\Sigma \) が保存されず、\(J_a = L + S \) の射影が保存される。いずれの場合も、全角運動量 \(J \) は \(J = \Omega + N \) となっている。

-Hund's case (a)

電子系の相互作用とても強く、スピン・軌道相互作用が小さくかつ回転エネルギーの寄与が無視できる時、全軌道角運動量の射影成分 \(\Lambda \) が保存される。これは全スピン角運動量の射影 \(\Sigma \) についても同じで、この 2 つの和の絶対値を \(\Omega = |\Lambda + \Sigma| \) と表すと、これらはともに良い量子数となっている。分子軸方向の \(\Omega \) と分子軸に垂直な \(N \) とが合成されて、分子の全角運動量 \(\Omega \) は \(\Omega = \Omega + N \) と表される。分子の電子状態は \(^{2S+1}A_\Lambda \) で表記される。\(\Lambda = 0, 1, 2, \cdots \) に対応して \(\Sigma, \Pi, \Delta, \cdots \) が用いられる。\(\Lambda = 0 \) である \(\Sigma \) 状態では、分子軸を含む平面に対する鏡映反転 \(\sigma_v \) について波動関数が対称 (対称) かを区別するため、\(\Sigma^+ (\Sigma^-) \) と表記する。（\(\Sigma \) 状態以外では \(\Lambda \) に対して縮退した電子状態であるから、この鏡映に対して常に \(+, - \) の対称性を持つ状態が存在するので省略されている。）さらに等核二原子分子の場合、添え字の \(g(\text{gerade}), u(\text{ungerade}) \) が右下に付いて \(^{2S+1}A_{g/u} \) のように表
2.1 二原子分子

記されるが、これは 2 つの核の中点を中心とした反転に対して波動関数が対称(gerade)か反対称(ungerade)かを示している。回転エネルギーは回転定数 であり用いて 来る形で書けるので、

\[
E_{\text{rot}} = B(\vec{J} - \Omega)^2 = B(J^2 - 2\vec{J} \cdot \vec{\Omega} + \vec{\Omega}^2) = B(J^2 - \Omega^2)
\]

となる。なお、回転定数 は慣性モーメント を用いて 来る。の平方が

\[
E_{\text{rot}} = B(J(J+1) - \Omega^2), \quad J = \Omega, \Omega + 1, \cdots
\]

・Hund’s case (c)

重い分子など、スピン・軌道相互作用が強く、電子系と分子軸の結びつきはそれよりも弱い場合は、分子軸方向の射影 動量 と全スピン動角運動量 が結びつき、

\[
\vec{J}_n = \vec{J} + \vec{S}
\]

を形成する。の分子軸方向の射影 が

良い量子数となっており、分子軸方向の と が合成されて、分子の全角運動量

\[
\vec{J} = \vec{\Omega} + \vec{N}
\]

と表される。分子の電子状態は と表記され、添え字は Hund’s case (a)
と同様対称性を表す。光に会って電子励起状態に遷移した分子に関してはこの case が

Hund's case は (a) から (e) まであり、電子系と分子軸の結びつきの強さを と、回転エネルギーの準位間隔を 、スピン・軌道相互作用を と書いてスケールを比較すると、

それぞれの case は case(a) は 、case(b) は 、case(c) は

\[
E_{\text{so}} > E_{\text{axv}} > E_{\text{ro}}, \quad \text{case(d)} \quad \text{は } E_{\text{ro}} > E_{\text{axv}} > E_{\text{so}}, \quad \text{case(e) は } E_{\text{so}} > E_{\text{ro}} > E_{\text{axv}}
\]

のように分類される。

・選択則

続いて、分子準位の選択則について述べる。電子状態間の遷移は、一般に振動回転状態の変化を伴って起こる。ここでは電気双極子遷移が支配的で、電気四重極子遷移や磁気双極子遷移といった他の遷移は非常に小さいとする。まず回転の量子数

\[
\Delta J = 0, \pm 1 \quad \text{(ただし } J = 0 \quad \text{は除く)}
\]

バリティ(+/−)に関しては、

\[
+ \leftrightarrow - \text{が許容, } + \leftrightarrow +, \quad - \leftrightarrow - \text{は禁制}
\]

となる。電子状態 gerade(ungerade)についても、

\[
g \leftrightarrow u \text{ が許容, } g \leftrightarrow g, \quad u \leftrightarrow u \text{ は禁制}
\]
第2章 理論的背景

となる。ここからは Hund’s(a) と Hund’s(c) についてそれぞれ記述する。
Hund’s case(a) では、Λ が

\[\Delta \Lambda = 0, \pm 1 \] (ただし \(\Sigma \) 状態間は \(\Sigma^+ \leftrightarrow \Sigma^-, \Sigma^- \leftrightarrow \Sigma^- \) のみを許容とする。)

を満たすものとし、スピン \(S \) とその射影 \(\Sigma \) についても

\[\Delta S = 0, \quad \Delta \Sigma = 0 \]

Ω に関しては

\[\Delta \Omega = 0, \pm 1 \] (ただし \(\Delta J = 0 \) の場合は \(\Omega = 0 \leftrightarrow \Omega = 0 \) 禁制)

となっている。
一方 Hund’s case(c) では、Ω が

\[\Delta \Omega = 0, \pm 1 \] (ただし \(\Delta J = 0 \) の場合は \(\Omega = 0 \leftrightarrow \Omega = 0 \) 禁制)

を満たすものとし、さらに \(\Omega = 0 \) の状態間には

\[0^+ \leftrightarrow 0^+, 0^- \leftrightarrow 0^- \] が許容、\(0^+ \leftrightarrow 0^- \) は禁制

という制限がある。しかしこれらは、Hund’s case のようにエネルギースケールが極端な場合における選択則であることに注意する。実際の分子においては回転の影響等も摂動として表れて禁制の遷移が起こりうるため、選択則が厳密に守られているわけではない。

2.2 光合による2原子分子の生成
2.2.1 摂動論による取扱い

ここでは、2つのアルカリ原子がレーザー場との相互作用によって会合し分子を生成するプロセスについて記述していく。22) の議論を参考にして、摂動論による光合レンジの導出を行う。2原子状態に対して、レーザー場を摂動として導入する。まずアルカリ原子 A は冷却され荷電子が基底状態 \((ns) \) にあるものを用意し、ここに周波数 \(\omega_L \) の光を照射する。この時 \(\omega_L \) は、原子の \(ns \rightarrow np \) 間共鳴周波数 \(\omega_A \) から \(\Delta_L \) だけ赤方離調させ、\(\omega_L = \omega_A - \Delta_L \) を満たす。光合によって分子になる時、

\[A(n_1 \rightarrow n_2) + A(n_1 \rightarrow n_2) + h\omega_L \rightarrow A_2(\Omega_{g/a}(ns, np^2P_{1/2,3/2}; v, J)) \] (2.8)

と表せ。ここで指定した分子状態は、2原子状態 \(A(n_1 \rightarrow n_2) + A(np^2P_{1/2,3/2}) \) を dissociation limit に持った電子状態 \(\Omega_{g/a} \) のうち、振動回転準位が \((v, J) \) であるものを指す。この分子状態の binding energy を \(E_b(v, J) \) と表すと、会合前の 2 原子状態とのエネルギー差は \(h\omega_A - E_b(v, J) \) である。

ここで、\(N \) 個の原子集団に 2 原子間相互作用が働く系を考えハミルトニアンを記述
図 2.3 光会合に用いる分子準位の断熱ポテンシャル 原子核間距離が大きくなると、それぞれ2原子状態に渐近する。基底状態 (ns) の原子対を用意し、\(h\omega_L = h\omega_A - E_b(v, J) \) をみたすような周波数 \(\omega_L \) を照射すると、\(A_2(\Omega_{ng}(ns, np^2P_1/2, 3/2; v, J)) \) のエネルギー分子準位と断熱ポテンシャルが一致するような原子核間距離まで近づいたところで光会合が起こる。

する。Born-Oppenheimer 近似を用いれば、

\[
\hat{H}_N = \sum_{a=1}^{N} \left(\frac{p_a^2}{2m} + H_a^{\text{el}} \right) + \sum_{a>b} V(r_{ab}) \tag{2.9}
\]

と表せる。\(\frac{p_a^2}{2m} \) は原子 \(a \) の運動エネルギー、\(H_a^{\text{el}} \) は原子核-電子間相互作用ハミルトニアン、\(V(r_{ab}) \) は原子 \(a \) と原子 \(b \) 間の原子間ポテンシャル（2原子間距離 \(r_{ab} = |\vec{r}_a - \vec{r}_b| \)）である。ここでは特に、会合する2原子に注目して

\[
\hat{H}_0 = \sum_{a=1}^{2} \left(\frac{p_a^2}{2m} + H_a^{\text{el}} \right) + V(r_{12}) + \sum_{a \neq 1} V(r_{1a}) + \sum_{a \neq 2} V(r_{2a}) \tag{2.10}
\]

の様に書き直す。ここでの原子密度は3体以上の衝突が無視できる程度に低く、その他の原子による2原子間ポテンシャルの影響も十分小さいものとみなして、最後の2項の影響は無視する。ここで、位置 \(\vec{r}_1, \vec{r}_2 \) と運動量 \(\vec{p}_1, \vec{p}_2 \) について以下のように書き換える。

\[
\vec{R}_0 = \frac{\vec{r}_1 + \vec{r}_2}{2}, \quad \vec{R} = \vec{r}_1 - \vec{r}_2 \tag{2.11}
\]
\(\vec{P}_0 = \vec{p}_1 + \vec{p}_2, \quad \vec{P} = \frac{\vec{p}_1 - \vec{p}_2}{2} \) (2.12)

これを用いると、\(\hat{H}_0 \)は

\[
\hat{H}_0 = \frac{p_0^2}{2M} + H_M
\] (2.13)

\[
\hat{H}_M = \frac{p_2^2}{2\mu} + H_1^{el} + H_2^{el} + V(R)
\] (2.14)

のように表される。ここで \(M = 2m, \mu = m/2 \)である。この2原子分子系にレーザー光が照射されたとすると、原子とレーザー場との相互作用がハミルトニアンに新たに加わる。レーザー光の周波数 \(\omega_L \)、波数 \(k_L \)、大きさ \(E_0 \)の直線偏光（偏光ベクトル \(\vec{c}_L \)）で、\(z \)軸方向に進行するものとすると、レーザーが作る場は

\[
\vec{E}(z, t) = \vec{c}_L E_0 \cos(\omega_L t - k_L z)
\] (2.15)

と表される。レーザー光の波長が分子スケールより十分大きければ、分子は一様な大きさの電場を感じているとみなせる。これを双極子近似といい、原子と場の相互作用は

\[
W(t) \approx -\left(\vec{c}_L \cdot (D_1 + D_2) \right) E_0 \cos(\omega_L t - k_L z)
\] (2.16)

と表される。実際、分子の核間距離（~ 1nm）に対しレーザー波長は 10^{-3} 程度の大きさを持っているので、良い近似となっている。この相互作用を摂動項として取り扱う。まず系の時間発展密度行列を \(\rho(t) \) おけば、\(\rho(t) \)の運動方程式は次のように表される。

\[
\rho(t) = \exp(-i\hat{H}_0 t) \sigma(0) \exp(i\hat{H}_0 t)
\] (2.18)

\[
W(t) = \exp(-i\hat{H}_0 t) \tilde{W}(t) \exp(i\hat{H}_0 t)
\] (2.19)

これによって運動方程式は

\[
\frac{\hbar}{i} \frac{d}{dt} \sigma(t) = [\tilde{W}(t), \sigma(t)]
\] (2.20)

となり、時刻 \(t = 0 \)を基準にすれば、

\[
\frac{\hbar}{i} \frac{d}{dt} \sigma(t) = [\tilde{W}(t), \sigma(0)] + \frac{1}{\hbar} \left[\tilde{W}(t), \int_0^t d\tau [\tilde{W}(\tau), \sigma(0)] \right]
\] (2.21)

両辺積分して整理すると

\[
\sigma(t) = \sigma(0) + \frac{1}{\hbar} \int_0^t dt [\tilde{W}(t), \sigma(0)] - \frac{1}{\hbar^2} \int_0^t dt' \int_0^t d\tau' [\tilde{W}(t'), \int_0^{t'} d\tau [\tilde{W}(\tau), \sigma(0)]]
\] (2.22)
2.2 光会合による原子分子の生成

と表される。ここで遷移する 2 つの準位について記述する。最初に基底態 \((ns + ns)\) 付近の連続状態にいたとする。その状態を

\[|\alpha\rangle = |ns, ns, 2S+1\Lambda, u, g, E, J^t, M^t| \]

(2.23)

と表記する。\(2S+1\Lambda, u, g\) は \((ns + ns)\) を dissociation limit に持つ分子状態であり、\(J^t\) は全角運動量、その分子軸方向の射影を \(M^t\) と表す。\(E\) は相対運動のエネルギーで、

\[E = \frac{1}{2}\mu(\vec{V}_1 - \vec{V}_1)^2 \]

(2.24)

と表される。次に光会合で遷移する分子準位を

\[|n\rangle = |ns, np(\frac{1}{2}P_n), \Omega, v, J^t, M^t| \]

(2.25)

と表記する \((|n\rangle \text{ の } n, \text{ は } ns, np \text{ の } n \text{ とは無関係であることに注意})\)。Binding energy は \(\hbar\delta_n\) とする。\(\Omega\) は \((ns + np(\frac{1}{2}P_n))\) を dissociation limit に持つ分子状態であり、\(J^t\) と \(M^t\) は \(|\alpha\rangle\) と同様である。まず \(t = 0\) のレーザー光がない時、密度行列は

\[\rho(0) = \frac{Z}{Tr(Z)} \frac{exp(-\beta H_M)}{Tr(exp(-\beta H_M))} \]

(2.26)

である。\((\beta = 1/k_B T \text{ とする。})\) 状態 \(|\alpha\rangle\) においては状態密度 \(s(E)\) を用いて

\[Tr(Z) = \int dE exp(-\beta E)s(E) \]

(2.27)

と表され、3 次元空間で体積 \(V\) の領域においては

\[s(E) = \frac{4\pi V}{\hbar^3}\mu^\frac{3}{2}(2E)^\frac{1}{2} \]

(2.28)

であるから、

\[Tr(Z) = \left(\frac{2\pi\mu}{\beta}\right)^\frac{3}{2}\frac{V}{\hbar^3} \]

(2.29)

したがって、\(t = 0\) の密度行列は

\[\rho(0) = \frac{\hbar^3}{V}\left(\frac{\beta}{2\pi\mu}\right)^\frac{3}{2}exp(-\beta H_M) \]

(2.30)

と表される。相互作用 \(W(t)\) によって \(|\alpha\rangle\) から \(|n\rangle\) へと遷移したとすれば,

\[\langle n|W(t)|\alpha\rangle = w_n(\alpha)cos(\omega_L t - k_L z) \]

(2.31)

と書ける。\(w_n(\alpha)\) は 2 つの準位に関するカップリング行列要素の成分である。これは分子の遷移モーメント \(\vec{d}\) の行列要素を含んでいる。状態 \(|\alpha\rangle, |n\rangle\) の動径方向の波動関数を \(F_n(R), F_n(R)\), 2 準位間の分子の電気双極子モーメントを \(\vec{d}\), その \(q\) 方向成分を \(d_q(R)\) とすれば,

\[\langle n|\vec{d} \cdot \vec{e}_L|\alpha\rangle = \sum_{q,q'=0,\pm 1} \langle \vec{e}_L \rangle_{-q}M_{qq'} \int_0^\infty dR F_n(R)d_q(R)F_n(R) \]

(2.32)

13
と表される。$M_{qq'}$ は angular factor であり、$d_q(R)$ は原子の $ns - np$ 間選移双極子モーメント D に比例する。Binding energy の小さい振動状態においては、$d_q(R)$ の R 依存性が無視できて、

$$w_n(\alpha) = 2\hbar K C(A, \Omega, J_n^{tot}, M_n^{tot}, J^\text{tot}, \epsilon_n) S_n(\alpha)$$ (2.33)

と表される。ここで $2K = E_0D/\hbar$ は原子のラビ周波数であり、$S_n(\alpha)$ は

$$S_n(\alpha) = \int_0^\infty F_n(R) F_\alpha(R) dR$$ (2.34)

であり、始状態と終状態の動径方向衝突波動関数の重なり積分である。ここで δ 近似を行う、電磁場とのカップリングは電子についてのみ考えればよいとして、C は $\delta_{J,J_n} \delta_{M,M_n}$ に比例するものとすれば、

$$w_n(\alpha) = 2\hbar \delta_{J,J_n} \delta_{M,M_n} K' S_n(\alpha)$$ (2.35)

となる。重なり積分は、波動関数の振幅が断熱ポテンシャルの外側の古典的転回点で大きく

なる。$|n\rangle$ 状態の古典的転回点 R_0^n において、基底状態侧の断熱ポテンシャルは十分フラットであると近似すれば、$R \approx R_0^n$ における波動関数 $F_n(R)$ は

$$F_\alpha(R) \approx \left(\frac{2\mu}{\pi^2 \hbar^2 E} \right)^{1/4} \sin(k(R - A(k))), \quad J = 0$$ (2.36)

$$F_\alpha(R) \approx \left(\frac{2\mu}{\pi^2 \hbar^2 E} \right)^{1/4} kR \cdot j_J(kR), \quad J \neq 0$$ (2.37)

と表される。$k = \sqrt{2\mu E/\hbar}$ であり、j_J は球面ベッセル関数である。一方 $|n\rangle$ 状態について考えると、$-C_3/R^3$ 型ポテンシャルは $R \approx R_0^n$ において

$$V(R) = -\hbar \delta_n + \frac{3C_3}{(R_0^n)^3} (R - R_0^n)$$ (2.38)

のように近似でき、波動関数 $F_n(R)$ も同様に計算できる。以上を用いて光会合レートを考えていく。

$$\int d\alpha |\alpha\rangle \langle \alpha| = 1$$ (2.39)

$$|\alpha\rangle |\sigma(t = 0)\rangle |\alpha'| = \frac{\exp(-\beta E)}{Tr(Z)} \delta(\alpha - \alpha')$$ (2.40)

であり、回転波近似を用いて時刻 t における $|n\rangle$ 状態の存在確率は

$$\langle n|\sigma(t = 0)|n\rangle = \frac{1}{2\hbar^2} \int d\alpha |w_n(\alpha)|^2 \frac{\exp(-\beta E)}{Tr(Z)} \frac{1 - \cos((\omega_n - \omega - \omega_L)t)}{(\omega_n - \omega - \omega_L)^2}$$ (2.41)

である。特に連続状態中の $|\alpha_r\rangle$ (エネルギー準位 E_r) と共鳴して会合するなら、

$$\langle n|\sigma(t = 0)|n\rangle = \frac{\pi}{2\hbar} |w_n(\alpha_r)|^2 \frac{\exp(-\beta E)}{Tr(Z)} t$$ (2.42)

であり、時刻 t の時点で生成した分子数は

$$N_n(t) = \frac{N(N - 1)}{2} \langle n|\sigma(t)|n\rangle$$ (2.43)
2.2 光会合による2原子分子の生成

よって全原子数のうち単位時間当たりに光会合する比率は

\[R_n(E_r) = \frac{\pi N}{4h} |w_n(\alpha_r)|^2 \frac{\exp(-\beta E_r)}{Tr(Z)} \] \hspace{1cm} (2.44)

となって、代入して計算すると、光会合のレートは

\[R_n(E_r) = \left(\frac{3}{2\pi} \right)^{3/2} \frac{hN}{2V} \lambda_{th}^3 \exp(-\beta E_r) K^2 \sum_{J,M} \delta_{J,J_n} \delta_{M,M_n} S_n^{2}(\alpha_r) \] \hspace{1cm} (2.45)

と表される。\(\lambda_{th} = h\sqrt{\beta/3\mu} \) は熱的ド・ブロイ波長であり、和の部分には2\(J_n + 1 \)の縮重度も考慮されているが記号を省略する。この式から分かるとおり、会合レートは原子集団の温度や原子質量の \(-\frac{3}{2}\) 乗に比例し、レーザー光の強度や原子集団密度に比例する。重なり積分を用いると、\(J_n = 0 \) の時は

\[R_n(E_r) = \left(\frac{3}{2\pi} \right)^{3/2} \frac{hN}{2V} \lambda_{th}^3 \exp(-\beta E_r) K^2 \frac{\sin^2(k_r(R_0^n - A(k_r)))}{(3E_rh\delta_n)^{1/2}} \] \hspace{1cm} (2.46)

\(J_n \neq 0 \) の時は

\[R_n(E_r) = (2J_n + 1) \left(\frac{3}{2\pi} \right)^{3/2} \frac{hN}{2V} \lambda_{th}^3 \exp(-\beta E_r) K^2 \frac{J_{2n+1/2}(k_r R_0^n)}{(3h^2 \omega'_m)^{1/2}} \] \hspace{1cm} (2.47)

\[\omega'_m = \frac{h}{2\mu(R_0^n)^2} \] \hspace{1cm} (2.48)

のように表される。

2.2.2 LeRoy-Bernstein 形式

分子の断熱ポテンシャルと振動準位の binding energy の関係性を記述する方法として、[21] の議論を参考に WKB 近似の一種である LeRoy-Bernstein 形式について導出する。分子の断熱ポテンシャルが原子状態に漸近していくようなモデルとして、

\[V(R) = E_{atom} - \frac{C_n}{R^n}, \quad n \geq 3 \] \hspace{1cm} (2.49)

のような形のものを考える。\(E_{atom} \) が分子の dissociation limit におけるエネルギーである。Bohr-Sommerfeld の量子化条件を用いると、振動準位 \(v \) にいるエネルギー \(E \) を持った分子は、

\[\sqrt{\frac{2\mu}{\pi h}} \int_{R_-}^{R_+} \sqrt{E - V(R)} dR = (v + \frac{1}{2}) \] \hspace{1cm} (2.50)

をみたす。\(R_+, R_- \) は、この振動において原子核間距離が \(V(R) = E \) をみたす外側と内側の古典的転回点を表す。ここで左辺を \(\beta \) をおく。

\[\frac{d\beta}{dE} = \frac{d\nu}{dE} = \frac{\sqrt{2\mu}}{h} \int_{R_-}^{R_+} \frac{dR}{\sqrt{E - V(R)}} \] \hspace{1cm} (2.51)
第2章 理論的背景

であり、これは振動単位の状態密度を表す。積分値は \(V(R) \approx E \) をみたす領域の影響を大きく受ける。ここで、\(R_- \) が十分小さいとして 0 に近似し、\(\epsilon = E_{\text{atom}} - E \) を用いると、

\[
\frac{d\beta}{dE} = -\frac{2\mu}{\hbar} \int_0^{R_+} \frac{dR}{\sqrt{\epsilon + C_n/R^n}}
\] \(\cdots (2.52) \)

さらに \(R \) を \(R_+ = (C_n/\epsilon)^{\frac{1}{n}} \) によって規格化した変数 \(x = R/R_+ \) を用いて変形すると、

\[
\frac{d\beta}{dE} = \frac{2\mu}{\hbar} C_n^{\frac{1}{n}} \int_0^1 \frac{x^{\frac{1}{n}}}{\sqrt{1-x^n}} dx
\]

\[
= \frac{2\mu}{\hbar} C_n^{\frac{1}{n}} \sqrt{\pi} \frac{\Gamma(\frac{1}{n} + \frac{1}{n})}{\Gamma(1 + \frac{1}{n})}
\] \(\cdots (2.53) \)

これを両辺 \(E \) で積分することで、LeRoy-Bernstein 形式

\[
v_D - v = H_n^{-1} \epsilon \frac{n+2}{2n}
\] \(\cdots (2.54) \)

\[
H_n^{-1} = \frac{2\mu}{\pi} \frac{C_n^{\frac{1}{n}} \Gamma(\frac{1}{n} + \frac{1}{n})}{\Gamma(n-2) \Gamma(1 + \frac{1}{n})}
\] \(\cdots (2.55) \)

が導き出される。\(v_D \) は積分定数で、この整数部分が断熱ポテンシャル中にできる振動単位の数を表している。一番高い振動単位を \(v_{\text{max}} \) とすれば、小数部分 \(\delta = v_D - v_{\text{max}} \) は quantum defect となる。励起状態の断熱ポテンシャルにおいて、例えば古典的転回点付近で resonant dipole-dipole 相互作用（\(\sim 1/R^3 \)）が支配的な場合を考える。この時の近似として \(n = 3 \) を代入すると、

\[
\epsilon = (H_3)^6(v_D - v)^6
\] \(\cdots (2.56) \)

の形で表される。

この近似では、\(R \) のべき乗の項を 1 個としてあり、quantum defect が \(v \) の値に関わらず一定となっているが、実際のポテンシャルは多重極展開によって

\[
V(R) = E_{\text{atom}} - \sum_n C_n \frac{R^n}{R^n}
\] \(\cdots (2.57) \)

のように表した方がより正確であること、核間距離の変化に応じて他のべき乗の項の影響も変化するから、quantum defect にも変化が生じる。したがって binding energy の小さい準位を用いて深い準位の binding energy を予測しようとするならば、\(v \) と \(\epsilon \) の関係性をより厳密に記述するためにさらなる補正が必要となる。[22] ポテンシャルを 3 つの領域に分けて、その境界を内側から \(R_0^-, R_0^+ \) とおく。この時、古典的転回点付近におけるポテンシャルを

\[
V(R) = E_{\text{atom}} + \frac{C_n}{R^n} \quad R_0^- \leq R \leq R_0^+
\] \(\cdots (2.58) \)

\[
V(R) = D + C(R_0^+ - R) \quad R_+ \leq R \leq R_0^-
\] \(\cdots (2.59) \)
2.2 光会合による2原子分子の生成

に従うものとして近似する。\(R_- \leq R \leq R_c \) は原子間斥力が大きい領域、\(R_c \leq R \leq R_+ \) は漸近型ポテンシャルに十分近い領域を表し、それらの中間領域で2つのポテンシャルを繋いでいる。この場合、

\[
\frac{d\beta}{dE} = \frac{\sqrt{2\mu}}{h} \int_{R_-}^{R_+} \frac{dR}{\sqrt{E - V(R)}}
= -\frac{\sqrt{2\mu}}{h} C_n^{1/n} \int_{R_c}^{R_+/R_c} \frac{x^{2}dx}{\sqrt{1-x^n}} + \frac{\sqrt{2\mu}}{h} \int_{R_-}^{R_-} \frac{dR}{\sqrt{E - V(R)}}
\] (2.60)

のようになる。binding energy の小さい準位では \(R_+ \) は大きく、漸近型のポテンシャルに従う領域も広くなる。そこで \(y = R_c/R_+ \) おき、右辺第1項の積分を \(y \ll 1 \) としてテイラー展開を使って近似する。

\[
\int_{y}^{1} \frac{x^{2}dx}{\sqrt{1-x^n}} = \frac{\sqrt{\pi}}{n} \frac{\Gamma(\frac{1}{n} + \frac{1}{2})}{\Gamma(\frac{1}{n} + 1)} - \int_{0}^{y} \frac{x^{2}dx}{\sqrt{1-x^n}}
= \frac{\sqrt{\pi}}{n} \frac{\Gamma(\frac{1}{n} + \frac{1}{2})}{\Gamma(\frac{1}{n} + 1)} - \frac{2}{n + 2} y^{\frac{n+1}{2}} \left(1 + \frac{n+2}{2(3n+2)} y^n + \cdots \right)
\approx \frac{\sqrt{\pi}}{n} \frac{\Gamma(\frac{1}{n} + \frac{1}{2})}{\Gamma(\frac{1}{n} + 1)} - \frac{2}{n + 2} (R_c^n)^{\frac{n+1}{2}} \left(\frac{C_n}{\epsilon} \right)^{-(\frac{n+1}{2})}
\] (2.61)

図 2.4 LeRoy-Bernstein形式の改良のためのモデル

断熱ポテンシャルを3つの領域に分けて考える。それぞれ漸近型ポテンシャル領域 \((R_c \leq R \leq R_+) \)、斥力ポテンシャル領域 \(R_- \leq R \leq R_c \)、その中間領域 \(R_c \leq R \leq R_+ \) である。

続いて、右辺第2項の積分部分について計算する。binding energy の小さい準位では

\[E - D \approx E_{\text{atom}} - D \] と近似できることを用いると、斥力領域 \(R_- \leq R \leq R_c \) についての積

17
第2章 理論的背景

分は、

\[
\int_{R_-}^{R_+} \frac{dR}{\sqrt{E - V(R)}} = \frac{2\sqrt{E - D}}{C} \\
\approx \frac{2\sqrt{E_{\text{atom}} - D}}{C} = \int_{R_-}^{R_+} \frac{dR}{\sqrt{E_{\text{atom}} - V(R)}}
\]

(2.62)

と書き表す。\(R_-'\)は \(E_{\text{atom}} = D + C(R_-^2 - R_-')\) をみたす値である。よって右辺第2項は、

\[
\int_{R_-}^{R_+} \frac{dR}{\sqrt{E - V(R)}} \approx \frac{\sqrt{2\mu}}{h} \left(\frac{2\sqrt{E_{\text{atom}} - D}}{C} + \int_{R_-}^{R_+} \frac{dR}{\sqrt{E_{\text{atom}} - V(R)}} \right) \\
= \frac{\sqrt{2\mu}}{h} + \int_{R_-}^{R_+} \frac{dR}{\sqrt{E_{\text{atom}} - V(R)}}
\]

(2.63)

となる。これらを代入して両辺 \(E\) で積分すると、

\[
v_D - V \approx H_n^{-1} \epsilon_{\frac{n-2}{2n}} + \gamma \epsilon
\]

(2.64)

\[
H_n^{-1} = \sqrt{\frac{2\mu}{\pi} \frac{C_{n}^{-1}}{h(n-2)} \Gamma(1 + \frac{1}{n})}
\]

(2.65)

\[
\gamma = -\frac{2\sqrt{2\mu}}{(n+2)h} C_{n}^{-\frac{1}{2}} (R_+^{\frac{1}{2}} + \sqrt{\frac{2\mu}{\hbar}} + \int_{R_-}^{R_+} \frac{dR}{\sqrt{E_{\text{atom}} - V(R)}})
\]

(2.66)

が得られる。これが改良型の Leroy-Bernstein 形式である。新たに \(\gamma \epsilon\) の項が加わっている。

2.2.3 電子基底状態と励起状態の分子ポテンシャル

超微細構造を無視した時、電子基底状態におけるニ原子分子は Hund’s case(a) を用いて \(1\Sigma_g^+\) と \(3\Sigma_u^+\) の2つの状態に分けられる。核間距離が十分に小さいところでは交換相互作用が強くそして急激に増大し、核間距離が離れていいくと van der Waals 力が支配的となり、どちらも2原子状態 \(ns + ns\) 状態へと漸近していく。
2.2 光合による2原子分子の生成

図 2.5 基底状態の Born-Oppenheimer ボテンシャル [23] Rb₂の5s+5sをエネルギーの基準としている。Hund's case(a)を用いて$^1\Sigma_g^+$と$^3\Sigma_u^+$の2つの状態に分けられる。

励起状態の分子ボテンシャルについて、非相対論的な描像で考えると、断熱ボテンシャルはHund's caseに従って$ns+np$状態へ漸近していく8つのボテンシャルとなっている。これらは,ΣとΠ, g(gerade)とu(ungerade), パラティ+と−によって区別される。図2.5は、核間距離が小さな領域における、Hund's case(a)で表現した非相対論的な断熱ボテンシャルである。これらはみな、resonant dipole-dipole相互作用による$\sim 1/R^3$型のボテンシャルへ漸近する。Hund's case(a)で表される核間距離が小さい領域は、このボテンシャルが良い近似になっている。一方dissociation limit付近の2原子状態は、微細構造によって$5s+5p_{1/2}$と$5s+5p_{3/2}$に分離するから、相対論的効果であるスピン・軌道相互作用を含めて断熱ボテンシャルを考える必要がある。そこで、相対論的効果を含めたMorve-Pichlerモデルを考える。[25]このモデルでは、$~C_3/R^3$のresonant dipoleとスピン・軌道相互作用が組み合わさり、図2.7のようにになる。Rb原子のような重いアルカリ原子による分子の場合、resonant dipole-dipole相互作用に加えてvan der Waals力といった高次の項や相対論的効果の寄与を考えた補正が重要となる。
第2章 理論的背景

図2.6 電子励起状態のBorn-Oppenheimerポテンシャル [23] 非相対論的描像のため、スピン・軌道相互作用を考慮していない。Hund's case(a)を用いて8つの状態に分けられる。[24]

図2.7 Movre-Pichlerモデル [25]を使った電子励起状態の断熱ポテンシャル [23] スピン・軌道相互作用を考慮してdissociation limitは$5s + 5p_{1/2}$と$5s + 5p_{3/2}$に分裂。Hund's case(c)が適用され、16個の状態に分けられる。
第3章 冷却原子集団への光会合

この章では、我々が行った冷却原子気体に対する光会合の実験について記述する。我々は\(^{87}\text{Rb}\)と\(^{41}\text{K}\)という共にポソンの原子気体を用いている。1.1節で述べたとおり、\(^{41}\text{K}\)\(^{87}\text{Rb}\)のFeshbach分子を生成する際、この分子が他の原子や分子との衝突によって下準位へと緩和すると、加熱してトラッププロスを起こすため、最終的に使用できる分子の数が減少する。そのため、我々の研究室では光格子を用いて1サイトに\(^{87}\text{Rb}\)と\(^{41}\text{K}\)原子を1個ずつロードし、光格子ポテンシャルを深くすることで超流動状態からMott絶縁体状態へ転移させ、原子のホッピングを禁じてから会合させることにより、衝突を抑制する手法をとっている。

![サイト中の1原子あたりのエネルギー](image)

図 3.1 ガウシアンビームで作った光格子中でのMott絶縁体状態が作るshell構造。光格子にオフセットが乗ることで、サイトによってロードされた原子数\(n\)に違いが生じる。光格子が深い場合や原子密度が高い場合は化学ポテンシャル\(\mu\)が高まって\(n\)が2以上のサイトが現れる。中央ほど1サイトに入る原子数が多くなっている。

K原子やRb原子にとって、ガウシアンビームで作られた光格子（光の波長\(\lambda=1080\text{nm}\)）
第 3 章 冷却原子集団への光会合

のポテンシャルは、ビーム中心が最も深く外側に行くに従ってポテンシャルが高くなるようなオフセットが乗っている。このように不均一な光格子領域に原子集団をロードした場合、光格子領域の各サイトの化学ポテンシャル \(\mu \) が等しくなるように原子が分布して平衡状態となるため、光格子ポテンシャルを深くして Mott 絶縁体状態にした時、図 3.1 のように原子数が整数個ロードされたサイト領域が層状に分布する shell 場構造を構築する。BEC のような密度の高い \((~ 10^{14} \text{cm}^{-3}) \) 原子気体をロードした場合、光格子の作るポテンシャルが深いと 1 サイトに同じ原子が複数個ロードされるような状況が起こり、\(KRb \) 分子の生成可能なサイト数が減少する。

たとえ 1 サイトに 2 種類の原子種が存在しても、分子生成に使われない余剰の原子が存在すれば、分子はサイト内でこれと衝突を起こす。したがって原子対から分子生成の変換効率を調べるには、光格子でのロード後に、分子生成に利用できるサイト数を定量的に測定できことが望ましい。そこで \(^{87}Rb_2, ^{41}K_2, ^{41}K^{87}Rb \) の 3 種類の光会合を行うための系が必要となる。最初の 2 つは 1 サイトに重複して同じ原子がロードされたサイト数を調べ、3 つ目は 2 種類の原子がロードされたサイト数を調べるものである。光格子はガウシアンビームの中心でポテンシャルが深くなるから、2 つの shell 構造が同じ中心から広がっていると考えればよく、3 種類の \(PA \) ロスシグナルから得られた原子数から、\(Rb \) と \(K \) が 1 つずつロードされたサイト数を見積もりることができる。

\(PA \) のロスシグナルを得るにあたって、どの分子基位に向けた \(PA \) を行うかを選定する必要がある。そこでまず \(^{87}Rb_2 \) の \(PA \) を行って、振動基位がどこにあるのかを探索し、見つかった振動基位への \(PA \) による遷移の強さを比べることにした。

![分子状態への会合](image)

図 3.2 光格子を使った生成分子の衝突抑制機構の概念図 1 サイドに Rb 原子と K 原子を 1 個ずつロードして、Mott 絶縁体状態に転移させホッピングを起こらなくしてから会合する。右図のように余剰の原子が存在するサイトは分子生成に利用できない。

3.1 \(Rb_2 \) の光会合

光会合によるトラップロスは、MOT 後の冷却原子気体 (密度 \(~ 10^{10} \text{cm}^{-3} \)) よりも BEC(密度 \(~ 10^{14} \text{cm}^{-3} \)) の方が大きいシグナルが得やすい。そこで \(Rb \) の BEC を用意し
3.1 Rb₂ の光会合

で PA を行った。この時、どの分子状態に励起させるのかによって必要な周波数が決まる。基底状態の Rb 原子同士から生成される分子の電子状態について考えると、Hund’s case(a) によれば $X^1\Sigma_g^+$ 状態と $a^3\Sigma_u^+$ 状態の 2 つが考えられる。ここで使用している Rb の BEC

図 3.3 Rb の PA を行う分子ライン

基底状態は $a^3\Sigma_u^+$ であり、そこから 0_g^- 状態へ会合させる。

は、磁場トラップ中で集めた $|F = 2,m_F = 2\rangle$ 状態の原子をそのまま ODT 中に入れて生成している。$|F = 2,m_F = 2\rangle = |m_I = \frac{3}{2},m_J = \frac{1}{2}\rangle$ は $F = I + \frac{1}{2}$ かつ $m_F = F$ をみたすので、doubly polarized 状態となっている (^{87}Rb は $I = \frac{3}{2}$)。doubly polarized 状態同士で分子を作ったときの全スピン角運動量は $S = 1$ となり、トリプレットであるから、$a^3\Sigma_u^+$ 状態の方であると考えられる。この分子状態からの光会合について、選択則を考える。[19] 電気双極子遷移による選択則が支配的だと考えれば、等核二原子分子についての電子状態の選択則は

$$\Delta \Lambda = 0, \pm 1 \quad (3.1)$$

となって、Σ 状態からでは Σ, Π 状態への遷移が可能である。それに加えて

$$g(\text{gerade}) \leftrightarrow u(\text{ungerade})$$

を満たさなくてはならない。また、Σ 状態間ではパリティ(+/-) に関しても制限があり、

$$+ \leftrightarrow +, \quad - \leftrightarrow -$$

23
第3章 冷却原子集団への光会合

に限られることになる。励起状態については $5s + 5p_{1/2}$ と $5s + 5p_{3/2}$ に dissociation limit があるものに分類でき、その電子状態の数を Hund’s case(a)(Hund’s case(c)) で分けると，$5s + 5p_{1/2}$ の方は 4 種類（6 種類）、$5s + 5p_{3/2}$ の方は 6 種類（10 種類）になる。Hund’s case(a) で書いた励起状態のうち、D1 線 (795nm) の $5s + 5p_{1/2}$ に近接してトリプレッ トかつ gerade であるものは $3\Sigma^+_g$ と $3\Pi_g$ であり、$3\Pi_g$ のポテンシャルはもう一方に比べて 非常に浅く、豊富な数の振動準位は期待できない。よって $3\Sigma^+_g$ の方を選び、この電子状態 中における振動準位を観測することにした。なお、光会合の遷移が強くなるのは核間距離 にして外側の古典的転回点付近であり、この領域では Hund’s case(c) が適応することを考 慮する必要がある。Hund’s case(a) における $3\Sigma^+_g$ は、Hund’s case(c) の領域では 0^+_g と 1_g が対応している。そこで今回、Pruvost [27] と Boesten [28] のデータを参考に、0^+_g で指定 されたポテンシャルに関する振動準位を観測することにした。

3.2 実験方法

3.2.1 実験装置

- PA 用レーザー光源

光会合のシグナルの探索にあたっては周波数をスキャンできる必要があり、パワーが数 W/cm² 程度必要であった。そこで今回、Spectra-Physics 社の Matisse-TX を PA 用光源として使用した。これはリングチタンサファイアレーザーで、付随している reference cavity の共振器長を変えすることで周波数のスキャンを可能にしている。パワーは 1W 以上まで発 振でき、PZT のフィードバックによってモードホッピなしに数十 GHz のスキャンができ る他、線幅も 30kHz 未満に抑えられている。ただしレーザーの発振による加熱等でリングキャビティ長が変化し、中心周波数のドリフトが生じる。我々の実験では、100s で 10MHz の程度のドリフトが確認できた。使用した波長は 8 桁分（つまり 100THz から 10MHz の位まで） 表示されるので、これを確認しながら原子気体に照射する直前に PA 光の周波数を セットした。

- 光学系

図 3.4 は今回の実験に使用した原子気体をトラップするチャンバーの周辺である。磁気光 学トラップ (MOT) から原子気体を光双極子トラップ (ODT) に移し変えた後、ODT 中での 蒸発冷却によって BEC を生成する。この時点で原子数は $N \sim 1.6 \times 10^5$ 程度であり、原子数 揺らぎは ±10% である。ODT 中の BEC に対して PA 光を照射するため、図 3.4 のように、 光格子用の光 (1080nm) が通るパスに重なるよう、ダイクロイックミラーの裏側から光を 通すこととした。Matisse-TX から出た光を光ファイバーで送る、レンズで絞った後ダイクロイックミラーを透過し、ODT の中心に当たるようにしている。チャンバーを通った先には 光格子調節用の CCD カメラが設置しており、カメラの像を見ながら光格子と PA 光のバ スが一致するように調節する。この時レンズによって、PA 光の直径は 800μm の大きさに 絞られており、直径約 100μm の BEC がビームの中心と重なるようにした。Matisse-TX か らシングルモードファイバーで送ることのできたパワーは最大で 100mW であり、パワー 密度は 16W/cm² まで上げることができる。ファイバー中での光のパワーのロスは誘導ブ リルアン散乱によるもので大きかった。今回使用したシングルモードファイバーでのロスは約 90% と大きかったのに対して、マルチモードファイバーでは約 24% となっていて、最大で
3.2 実験方法

図 3.4 PA 光のバス 左端のファイバーから進む光は、写真中央にある大きなダイクロイックミラーの所で光格子用のバスと重なるよう調節している。

760mW も送ることができた。しかし PA を行うにあたっては数 W/cm² 以上であると、実際にはシングルモードファイバー前で NE フィルタを用いてパワーロスを考慮してから PA を行っている。また、PA 光は光合がしか照射しているため、図 3.4 のように光ファイバー出射直後にシャッターを設置している。原子の冷却・トラップ・PA・原子のイメージングに係る装置の操作は全て、LabView というソフトに組んだプログラム上で行っている。シャッターの閉開もこの中に組み込むため、TTL 信号によって操作できるようなシャッタードライバを作成した。図 3.5 に作成したシャッタードライバの回路図を示す。
第3章 冷却原子集団への光会合

3.2.2 タイムシークエンス

前節で書いたとおり，MOT から PA のロス測定までの全プロセスは LabView 上に組んだシークエンスに基づいて動いている。1サイクルの概要は以下のようになる。

- 磁気光学トラップ (MOT) によって原子を集める。集まった原子数に比例して，原子集団が MOT 光を散乱する量が増えていくので，蛍光量がある一定量を超えた時点で TTL 信号を発生させ，次のプロセスに移る。

- 磁場勾配を強くして圧縮した後，磁場トラップ中で 31秒間蒸発冷却を行う。高い運動エネルギーを持った原子から選択的に拾っていくことで，再熱分布化を経て，より低い温度の原子集団になる。

- 光双極子トラップ (ODT) 中に原子を移し，光強度を下げてボテンシャルを浅くしていくことにより，さらに 2秒間蒸発冷却を行う。この過程で原子集団を BEC に相転移させる。

- ODT 中に保持された BEC に対して，シャッターを開いて PA 光を照射する。照射時間は LabView 上で，周波数は Matisse commander 上で適宜選択する。

- PA 光シャッターを閉じ，原子に共鳴する probe 光で吸収イメージングを行う。こうして得られた原子集団の分布に fitting を行い，原子数を算出してロスの様子を観測する。

1サイクルに要する時間はおよそ 80秒であり，主に MOT 中に原子が一定量ロードされるまでの時間と磁場トラップ中での蒸発冷却によって占められている。これらのシークエンスをインターバル無しで繰り返すことで，コイルの温度が熱平衡に達し，生成する BEC
の数も安定になる。10サイクル繰り返して安定になったのを確認してから PA 光を入れ始め、1サイクルごとに照射する周波数を 10MHz ずつずらしていく。なお波長計の値は、一向方向へのスキャン中における相対的な誤差は 10MHz 未満だが、測定によって PA 共鳴ラインの値が ±30MHz のずれを生じるので、波長計の値は ±30MHz の精度であることに留意する。

3.2.3 $^{87}\text{Rb}(2P_{1/2})_0^g$ 状態の PA ラインの同定

Pruvost と Boesten の文献を参考に、まず v=188-190 の振動準位周辺について観測を行った。図 3.6 は、2つの参考文献の振動準位の一部である。$^{87}\text{Rb}(5s_{1/2}, F = 2)$ と $^{87}\text{Rb}(5p_{1/2}, F' = 2)$

<table>
<thead>
<tr>
<th>v</th>
<th>Pruvost et al.</th>
<th>Boesten et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>188</td>
<td>10.717(17)</td>
<td>10.724(3)</td>
</tr>
<tr>
<td>189</td>
<td>9.376(17)</td>
<td>9.376(3)</td>
</tr>
<tr>
<td>190</td>
<td>8.160(17)</td>
<td>8.160(3)</td>
</tr>
</tbody>
</table>

図 3.6 参考文献による振動準位と binding energy ただし Pruvost [27] は ±0.017cm$^{-1}$ の精度、Boesten [28] は回転準位 $J = 2$ のシグナルのみで ±0.003cm$^{-1}$ の精度となっている。

2) 間のエネルギー差が 12578.876cm$^{-1}$ であるから、2つの dissociation limit $5s_{1/2}+5s_{1/2}(ともに $F = 2$) と $5s_{1/2}(F = 2)+5p_{1/2}(F' = 2)$ のエネルギー差も 12578.876cm$^{-1}$ であり、この $5s+5p_{1/2}$ からの binding energy を算えてある。なお、Pruvost の文献におけるロスシグナルは、回転準位を区別せずに振動準位ごとに列挙されていて波長計の精度が ±500MHz である。Boesten は回転準位 $J = 2$ に関して ±0.003cm$^{-1}$ の精度で列挙している。

まず v = 190 の振動準位の振動準位を探すため、376.860THz の周辺でスキャンを行った。この時、PA 光のパワーは 8.28W/cm^2 で照査時間は 50ms とした。図 3.7 は、PA 光の周波数が $f = 376.86035(3)THz$ のところのロスシグナルが現れている様子をプロットしたものである。この時の binding energy は 8.168(1)cm$^{-1}$ であり、これは Pruvost の $v = 190$ のデータから ±500MHz の精度内にあるので、$v = 190$ のシグナルといえる。ここでさらに J を同定するには、その振動準位における回転定数が必要である。その値は次のような $v = 189$ において得られた値を用いることによって、$v = 190$ の回転準位の同定は後述する。なお、このシグナルをローレンチアンで fitting すると、半価幅は 37(20)MHz となった。PA 光の周波数は 10MHz の桁までしか計測できないため、fitting の値の不確かさも 10MHz オーダーとなっている。

続いて、$v = 189$ の振動準位を探すため、376.823THz の周辺でスキャンを行った。この時、PA 光のパワーは 2.97W/cm^2 で照査時間は 160ms とした。図 3.8 は、$f = 376.82356(3)THz$ と $f = 376.82393(3)THz$ にロスシグナルが現れている様子をプロットしたものである。$v = 190$ では 2つのピークは見えていなかったが、ここでは 370(30)MHz 離れた 2つ目のロスシグナルが現れた。Binding energy はそれぞれ 3.95(1)cm$^{-1}$ と 3.83(1)cm$^{-1}$ であり、
第3章 冷却原子集団への光会合

図3.7 振動準位 v=190 周辺の PA ロスのシグナル
\[f = 376.86035(3) THz \] にピークが現れている。Fitting による FWHM は 37(20)MHz となった。

図3.8 振動準位 v=189 周辺の PA ロスのシグナル
\[f = 376.82356(3) THz \] と
\[f = 376.82393(3) THz \] にピークが現れている。Fitting による FWHM はそれぞれ 26(20)MHz と 9(7)MHz となった。

どちらも Pruvost の v = 189 のデータから \(\pm 500 MHz \) の精度内にあるので、v = 189 のシグナルといえる。Boesten のデータ (J=2) が 9.387(3)cm\(^{-1}\) であるから、9.383(1)cm\(^{-1}\) の方が J = 2 で、そこから 370(30)MHz 深い 9.395(1)cm\(^{-1}\) の方が J = 0 に対応していると考えられる。シグナルをローレンチアンで fitting すると、半価全幅は J = 2 の方が 9(7)MHz, J = 0 の方が 26(20)MHz となった。なお、回転定数 B を用いて、J=0 と J=2 のエネルギー差は 6B と表されるから、6B = 370(30)MHz より、この振動準位における回転定数は B = 62(5)MHz であった。

さらに、v = 188 の振動準位を探すため、376.783THz の周辺でスキャンを行った。この時も、PA 光のパワーは 2.97W/cm\(^2\) で照射時間は 160ms とした。図3.9 は、\[f = 376.78344(3) THz \] にロスシグナルが現れている様子をブロットしたものである。この時の binding energy は 10.733(1)cm\(^{-1}\) であり、これは Pruvost の v = 188 のデータから \(\pm 500 MHz \) の精度内にあるので、v = 188 のシグナルといえる。ここで、\(^{87}Rb_2(^2P_{1/2})_{0g}^-\)
3.2 実験方法

図 3.9 振動準位 v=188 周辺の PA ロスのシグナル \(f = 376.78344(3) \) THz にピークが現れている。Fitting による FWHM は 23(9)MHz となった。

状態の断熱ポテンシャルの形状を考える。図 2.7 より, binding energy が 10 cm\(^{-1}\) 程度の深さでは, 1 cm\(^{-1}\) の変化に対して古典的転回点の位置 (〜 20 Å) は殆ど変化せず回転定数は一定とみなせるので, v=189 周辺では \(6B = 370(30) \) MHz とする。Boesten の値 (J=2) から 370(30)MHz ずらして \(J = 0 \) に換算すると 10.736(4) cm\(^{-1}\) となって 10.733(1) cm\(^{-1}\) がおさまるため, このロスシグナルは \(J = 0 \) であると考えられる。

先ほど同定できなかった v=190 の回転準位に関しても同様の方法をとる。\(6B = 370(30) \) MHz を用いて Boesten の値を \(J = 0 \) に換算すると 8.172(4) cm\(^{-1}\) となる。すると 8.168(1) cm\(^{-1}\) は誤差の範囲で一致するため, \(J = 0 \) であると同定できる。

以上をまとめると 3 つの振動準位から得られたシグナルは図 3.10 のようになる。

<table>
<thead>
<tr>
<th>this work</th>
<th>Binding energy [cm(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v)</td>
<td>(J=0)</td>
</tr>
<tr>
<td>188</td>
<td>10.733(1)</td>
</tr>
<tr>
<td>189</td>
<td>9.395(1)</td>
</tr>
<tr>
<td>190</td>
<td>8.168(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>this work</th>
<th>PA light frequency [THz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v)</td>
<td>(J=0)</td>
</tr>
<tr>
<td>188</td>
<td>376.78345(3)</td>
</tr>
<tr>
<td>189</td>
<td>376.82356(3) 376.82392(3)</td>
</tr>
<tr>
<td>190</td>
<td>376.86035(3)</td>
</tr>
</tbody>
</table>

図 3.10 振動準位 \(v=188, 189, 190 \) の PA ロスシグナル 精度は \pm 0.001 cm\(^{-1}\) であり, dissociation limit は 12578.876 cm\(^{-1}\) である。
3.2.4 改良型 LeRoy-Bernstein 形式による振動準位の予測

この節では、binding energy の浅い振動準位を複数用いて、別の振動準位の binding energy を予測する。第 2 章で示したように、改良型の LeRoy-Bernstein 形式を用いれば、振動準位は

\[v_D - v \approx H_n^{-1}e^{-\frac{2\hbar}{\hbar^2}} + \gamma \epsilon \] \hspace{1cm} (3.2)

の形で表される。[22] によれば Hund’s case(c) において、\(ns + n_{p1/2} \) を dissociation limit に持つ \(v \) のポテンシャルの主要項は、

\[V_0 = -A - \frac{4C_2^2}{3AR^3} - \frac{2C_4^0 + C_6^0}{3R^3} - \frac{2C_8^0 + C_6^0}{3R^3} \] \hspace{1cm} (3.3)

の形で表されて、1/R 3 の項は主要項になっていない。そこで、\(H_n \) の値に関しては \(n = 6 \) とし、Pruvost が用いた値（\(H_6^3 = 1.0041(20) \times 10^{-3} \)）を使用した。この時、

\[v_D - v \approx H_6^{-1}e^{-\frac{2\hbar}{\hbar^2}} + \gamma \epsilon \] \hspace{1cm} (3.4)

の式を用いて fitting を行うと、Pruvost のデータから \(v_D = 210.375(4) \), \(\gamma = 0.0336(6) \) が得られ、Boesten のデータからは \(v_D = 210.393(8) \), \(\gamma = 0.0349(10) \) が得られた。一方で、今回得られた我々のデータ (v=188-190) からは、\(v_D = 210.374(29) \), \(\gamma = 0.0323(31) \) が得られた。

<table>
<thead>
<tr>
<th></th>
<th>(v_D)</th>
<th>(\gamma)</th>
<th>(v=186)の予測値 [cm⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruvost et al.</td>
<td>210.375(4)</td>
<td>0.0336(6)</td>
<td>13.741(7)</td>
</tr>
<tr>
<td>Boesten et al. (J=2)</td>
<td>210.393(8)</td>
<td>0.0349(10)</td>
<td>13.730(14)</td>
</tr>
<tr>
<td>this work (v=188-190)</td>
<td>210.374(29)</td>
<td>0.0323(31)</td>
<td>13.758(49)</td>
</tr>
</tbody>
</table>

図 3.11 改良型 LeRoy-Bernstein 形式を用いて得た fitting パラメータと \(v=186 \) の予測値

これらをまとめると、\(v_D \) と \(\gamma \) は表 3.11 のようになっており、それぞれのパラメータを用いると、\(v=186 \) の振動準位の binding energy は Pruvost では 13.741(7)cm⁻¹、Boesten では回転準位 \(J = 2 \) が 13.730(14)cm⁻¹ (J=0 に換算すると、370(30)MHz で 0.012(1)cm⁻¹ より、13.742(15)cm⁻¹) となり、それぞれの予想値が誤差の範囲内で一致した。我々のデータでは 13.758(49)cm⁻¹ となっており、取得したデータ点の少なさによって予測値の誤差がやや大きいが、前の 2 者の値を誤差の中に含んでいる。これらの予想より、我々は \(v = 186 \) のシグナルが 13.758(49)cm⁻¹ から ±15GHz の範囲内にあると予測し、PA 光のパワーを 2.97W/cm²、照射時間を 160ms にして周期数のスキャンを行った。その結果、\(f = 376.69308(3)THz \) において小さなピークを観測した。

この時の binding energy は 13.747(1)cm⁻¹ であり、Pruvost の値から得た予想値から ±500MHz の精度内にいるので、このシグナルは \(v = 186 \) のものと考えられる。また、シグナルを fitting すると、半値全幅は 7(8)MHz となった。Boesten の値からの予測値を用いると、13.747(1)cm⁻¹ は \(J = 0 \) に換算した予測値の誤差の範囲内に含まれているから、\(J = 0 \)
図 3.12 振動準位 \(v = 186 \) 周辺の PA ロスのシグナル。\(f = 376.69308(3) \)THz にピークが現れている。Fitting による FWHM は 7(8)MHz となった。

のシグナルであると考えられる。

改良型 LeRoy-Bernstein 形式を用いて振動準位の場所を予測し、実際に \(v = 186 \) のシグナルを見つけることができたが、我々のデータからの予測は参考文献と比べてもデータ点が少なため、fitting パラメータの値から振動準位を正確に予測するのは難しい。今回の観測によって \(v = 186 \) のデータが加わったことで、fitting パラメータは \(v_D = 210.385(12), \gamma = 0.0335(11) \) となった。これを繰り返して fitting パラメータを更新していけば、未観測の振動準位の深さをより正確に予測できるようになると期待できる。
3.2.5 振動準位の遷移の強さの比較

光格子中の原子のfillingを見ることには，遷移が強いPAラインを使うことが望ましい。そこで，すでに観測できたPAラインの遷移の強さを比較することにした。PA用光源を，ロスがピークになる周波数に設定し，シャッター時間を変えて原子数の減少を測定した。この時，原子数の減少について考える。ODT中の原子数の時間変化を微分方程式で表すと，

\[\dot{N} = -\gamma_1 \langle n \rangle IN - \gamma_2 IN \] \hspace{1cm} (3.5)

と表される。右辺第1項はPAによるロスであり，PA光のパワーラインと原子密度 \(\langle n \rangle \)に比例するため，この2つに依存しない比例定数 \(\gamma_1 \)を用いて積の形で表している。右辺第2項はPA光による原子の光散乱であり，PA光のパワーラインに比例するため，これに依存しない比例定数 \(\gamma_2 \)との積の形で表した。どちらもPA光のパワーラインに比例しているが，PAのロスは原子の密度にも比例する。なお，ODT中での原子数の寿命は7秒程度であり，ここで0〜100msでの推移を考えているため，ODT光の散乱による影響は小さいものとして無視した。ここで，トーマス・フェルミ近似を用いれば，BECの中心密度は \(N^{2/5} \)に比例する。そこで，比例定数 \(\Gamma_1 \)を \(\gamma_1 \langle n \rangle = \Gamma_1 N^{2/5} \)を満たす定数として用いれば，

\[\dot{N} = -\Gamma_1 IN^{2/5} - \gamma_2 IN \] \hspace{1cm} (3.6)

と表せる。この近似は，原子数が初期原子数 \(N_0 \)と近い値をとる領域で成立つ。PA共鳴光を当て続けるとBECは数が減少し，そのたびに密度は下がり，PAによるロスの効果は相対的に小さくなる。今，PAによるロスが支配的である状態を考え，右辺第2項を無視して計算すると，

\[N(t) = N_0 \left(1 + \frac{2}{5} N_0^2 \Gamma_1 It \right)^{-\frac{5}{2}} \]

\[\approx N_0 \left(1 - N_0^2 \Gamma_1 It \right) \] \hspace{1cm} (3.7)

と表せる。これを利用したfittingを行う。Fittingに使ったデータは，原子数が初期原子数の7〜8割程度に減る時刻までとした。 \(v=189(J=0) \)， \(v=188(J=0) \)は40msまで， \(v=186(J=0) \)は160msまでの値を採用しており，パワーアップする2.97W/cm²にしている。図3.13-図3.15は， \(v=189,188,186 \)における原子数のロスの時間変化を表したものである。これらのfittingから，初期原子数 \(N_0 \)および \(\Gamma_1 \)を求めると，表3.16のようになる。Fittingパラメータの \(\Gamma_1 \)が大きいほど，PAによるロスが大きくなるので，強い遷移が起こっているかどうかが比較できる。ここではパワーウェを2.97W/cm²に統一してあるので，ここでは \(\Gamma_1 \)の比較ができる。表3.16より， \(v=186 \)の遷移は他の2つよりも5倍程度弱いことが分かる。また， \(v=189 \)と \(v=188 \)では，誤差を含めるとほぼ同じ強さの遷移であるということも分かった。

以上の実験から，PAに用いるラインとして，強い遷移がどれであるかを測定によって定量的に見積もることができるが分かった。前節の方法によって振動準位を見つけて，この実験の手法を組み合わせることによって， \(^{87}\text{Rb} \)のPAに適した強い遷移を選定することが可能となった。各サイクルで生成するBECの数の揺らぎ(今回の実験では \(\pm 10\% \)であった。)を少なくし，測定回数をもっと増やすことで，より高い精度で比較することも可能になると思われる。
図 3.13 v=189 PA 共鳴光の照射時間と原子数 近似式が適用できる 0-40ms の領域で fitting を行った。

図 3.14 v=188 PA 共鳴光の照射時間と原子数 近似式が適用できる 0-40ms の領域で fitting を行った。
図 3.15 ν=186 PA 共鳴光の照射時間と原子数 近似式が適用できる 0-160ms の領域で fitting を行った。

<table>
<thead>
<tr>
<th>ν</th>
<th>N₀</th>
<th>Γ₁I [s⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>1.42(3)×10⁵</td>
<td>1.1(4)×10⁻¹</td>
</tr>
<tr>
<td>188</td>
<td>1.39(9)×10⁵</td>
<td>1.0(3)×10⁻¹</td>
</tr>
<tr>
<td>186</td>
<td>1.11(7)×10⁵</td>
<td>1.9(2)×10⁻²</td>
</tr>
</tbody>
</table>

図 3.16 PA のロスに対する fitting それぞれの PA ラインについての初期原子数 N₀ と、遷移の強さを表す Γ₁I が求まる。
第4章 PA用光源の中心周波数安定化

前章では、周波数スキャンによってPAのロスシグナルを得て、^{87}Rbの光会合に適した周波数の選定方法について述べたが、実際に選定した周波数を用いるにあたっては、PA用光源の周波数ドリフトを解消しなくてはならない。得られたシグナルの半値全幅は細いので20MHz程度であるため、100秒で10MHz程度のドリフトを起こすMatisse-TXの周波数をロックする機構が必要である。そこで我々は、PA用光源の周波数ドリフトを防ぐための系を作成し、光格子中でのfillingの測定に安定的に使用できる光源を用意することを目指した。

4.1 中心周波数ロックのための光学系

この節では、PA用光源の周波数ロックを行うために必要な光学系及び装置について述べる。図4.1はロックを行う光学系の概略図である。PA用光源(オレンジ)に2つの光源(ECDL1, ECDL2)とtransfer cavityが系に加わっている。ECDL(外部共振器型半導体レーザー)の光のパスは、それぞれECDL1(赤)とECDL2(緑)で区別してある。今回作成した2つのECDLについては4.2節で詳しく述べる。

まず最初に、原子の共鳴周波数を基準とし、ECDL1をこの共鳴周波数にロックすることを行う。^{87}Rbと^{41}Kと^{87}RbのPAラインについては参考とされる文献がいくつか存在するが[27][28][29]、ともにRb原子のD1ラインである795nm付近に現れることが確認されている。そこで、周波数の基準として真空中にRb原子の封入されたセルを用いることにした。このセルに対してRb原子に共鳴する周波数の光を照射すると、光は原子によって散乱され透過光の強度が減少する。この性質を利用して、レーザー光が常に共鳴周波数になるようフィードバックをかけることによって、周波数を原子の共鳴にロックすることが可能となる。ECDLを用いた周波数ロックの方法としては、FMサイドバンド法やModulation transfer法がしばしば用いられる。図4.1はFMサイドバンド法によるロック法の概略図を示している。

次に、こうしてロックされたECDL1の光源(周波数f_0)を基準にして、transfer cavityをロックする。これによりcavityにロックできる周波数は

$$f_n = f_0 + n \cdot FSR \quad n = 0, \pm1, \pm2, \cdots$$

(4.1)

に限定される。FSRはtransfer cavityのフリースペクトラルレンジである。ロックされたcavityに対し、今度はもう一方のECDL2をロックする。(RbセルにロックしたECDLがECDL1, transfer cavityにロックしたECDLがECDL2である。) ECDL2はPAラインに近い周波数にセットしておく、それをtransfer cavityにロックする。ここではECDL2が
第4章 PA用光源の中心周波数安定化

$n = n'$の織にロックされたとする。最後にPA用光源とECDL2のピートを観測し、ピート周波数f_{beat}が一定になるようにPA用光源をロックする。

これによってPA用光源の周波数は

$$f = f_n \pm f_{\text{beat}} = f_0 + n' \cdot FSR \pm f_{\text{beat}}$$ (4.2)

にロックされるので、この値がPAラインf_{PA}に一致するようにピート周波数f_{beat}をセッ

トすればよい。
図 4.1 PA 用光源の中心周波数安定化のための光学系の概略図

ECDL1, ECDL2, PA

ECDL1 は Rb の共鳴周波数にロックされており、その光はファイバー通過後に Transfer cavity に入れる。Transfer cavity をロックした後、ECDL2 の光を cavity に入れ、Transfer cavity を使用して ECDL2 の周波数をロックする。最後に PA 用光源と ECDL2 のビートをとり、ビート周波数が一定になるように PA 用光源をビートロックする。
4.2 ECDL

ECDL (external-cavity diode laser) は、回折角に波長依存性のあるグレーティングを用いで外部共振器を形成することで、レーザーのダイオードの線幅を狭細化して発振させる。外部共振器の方法には Littrow 型と Littman 型がある。Littrow 型は、入射角と同じ方向に回折光を戻して LD とグレーティング間で共振器を形成し、反射光（グレーティングの 0 次回折光）を外へ出射する方式である。Littman 型は、回折光をミラーでグレーティングに

![図 4.2 ECDL の外部共振器の配置](image)

図 4.2 ECDL の外部共振器の配置 (a) Littrow 型 回折光を LD に戻し、LD とグレーティング間を外部共振器とする。 (b) Littman 型 回折光をミラーで返して LD に戻す。

打ち返して LD に戻すことで共振器を形成し、同様に反射光を外へ出射する。どちらの方式も、LD 単体より比べて共振器長が大きくなることで線幅を狭細化し、共振器で増幅されることで発振波長のパワーや大きくできる。共振器長を短く設計できる Littrow 配置は安定した発振モードを得られるため、本実験では Littrow 型を採用した。この配置は、線幅がやや大きくなるものの、取り出せるパワーや大きくなるという利点もある。回折光の波長と回折角の関係は

\[d(\sin \theta_i - \sin \theta_f) = n\lambda \] (4.3)

と表される。\(d \) はグレーティングの格子定数、\(\theta_i \) はグレーティングに対するレーザー光の入射角、\(\theta_f \) は回折角、\(\lambda \) は光の波長、\(n \) は回折の次数である。0 次回折光は \(\theta_f = \theta_i \) をみたすので、反射光である。回折光を LD に戻すとするなら、\(\theta_f = -\theta_i \) より、

\[\sin \theta_f = \frac{n\lambda}{2d} \] (4.4)

をみたせばよい。今回使用したグレーティングは \(d = 1800/mm \) であり、\(\lambda = 795nm \) で計算すると、1 次回折光は入射角を約 45.7° にすればよいことが分かる。(今回の条件では、\(n = 0, 1 \) 以外は式をみたさないので、1 次回折光以外では Littrow 型の配置ができない。)
図 4.3 作成した ECDL LDC と TED は D-SUB コネクタによって外部接続されている。グレーティングの裏側にある PZT は、BNC ケーブルで外部からシグナルを入力して動かす。

図 4.3 は、今回作成した ECDL である。前節の系を用意するにあたって、2 台の ECDL が必要となった。まず取り付けてある LD は、温度によって ASE（自然放射増幅光）の波長が変化し、およそ 0.2 nm/K である。波長を安定的に使用するには LD の温度を一定に保つ必要があり、ベルチェ素子とサーミスタを取り付け、Thorlab 社の温度コントローラ TED200C を使って安定化している。サーミスタは温度によって抵抗値が敏感に変化するためであり、一般的には

\[R(T) = R_0 \exp \left(\frac{B_{\text{val}}}{T} \right) \]

（4.5）

の形で変化する。我々が使用したサーミスタ NTC10kΩ は \(B_{\text{val}}[K] = 4300 \pm 130 \) であり、25℃(\(T = 298.15K \)) で \(R = 10000\)Ω となっている。TED200C は、サーミスタが指定された抵抗値になるようにベルチェ素子に電流を送り、温度調節対象を加熱・冷却する。ベルチェ素子と LD はアルミ板や台金を介して接しており、効率よく熱伝導を行うため、境界面にシリコーンを塗っている。LD には、流す電流のコントローラとして Thorlab 社の LDC202C を使用しており、流す電流はノイズ除去のためのローパスフィルタを通じてから送られる。LD 直前には静電気破壊防止のためのダイオード回路を取り付けてある。グレーティングには PZT 素子が取り付けてあり、周波数ロックの際のフィードバック信号を送ることで外部共振器長が変化し、波長の調節が可能となる。PZT フィードバックに加えて電流フィードバックもできるよう設計したが、今回の PA 用基準周波数光源としては PZT フィードバックのみの使用で十分な性能が得られる。
ECDL1の発振スペクトルを見ると、ASEの中心は813nmであるが、今回使用する波長である795nm付近で発振するようグレーティングの角度を調節している。ASEの端ではうまく発振できないことから、温度を23°Cから18°Cに変更した。図4.4(a)は調節後の

![グラフ](image)

図4.4 (a)ECDL1のI-Pプロット 発振閾値97mAを超えると、傾き0.6934mW/mAとなっている。(b)ECDL2のI-Pプロット 発振閾値89mAを超えると、傾き0.5724mW/mAとなる。

ECDL1のI-Pプロットである(温度は12.804kΩ～18.3°C)。発振閾値は97mAであり、125mAで20mW以上出ていることから、ロックに必要なパワード得られている。同様にしてECDL2も調節し、87RbのPAライン付近で発振するようグレーティングを調節している。温度は13.506kΩ～17.0°Cに設定した。図4.4(b)は、ECDL2のI-Pプロットである。

4.3 Transfer cavity

この節は、同研究室4年の鈴木君との共同研究である。ECDL1によって基準となる周波数数が用意できても、直接その光を使ってPA光の周波数をロックするのは難しい。なぜなら、2つの光の周波数は数百GHzも離れているため、ビートを使ってロックするにはフォトダイオードの帯域がTHzオーダーまで対応する必要が出ていかからである。しかしtransfer cavityを介すれば、このような困難を避けることができ、GHzオーダーの帯域で十分となる。その方法は4.1節で述べた通りで、基準となる光でcavityをロックすることで、その周波数からFSRの整数倍離れた周波数の光がcavityにロックできるようになる。このcavityは、2つの球面ミラーとPZT素子とガラス管で構成されている。球面ミラーの焦点は$f=100mm$であり、ガラス管とPZTの長さの和も100mmの共焦点共振器である。よってcavity長をLとおくと、FSRは

$$FSR = \frac{c}{4nL} \quad (4.6)$$
4.4 Rb セルを用いた周波数のロック

この節では、作成した ECDL1 と Rb セルを用いた周波数ロックについて述べる。
第4章 PA用光源の中心周波数安定化

4.4.1 飽和吸収信号

原子共鳴周波数にロックを行うためには、共鳴付近で周波数に敏感な透過光シグナルが必要であり、そのためには原子の運動によるドップラー効果を解消する必要がある。Probe光のみの場合では、気体の運動によるドップラー広がりが生じて、ブロードな吸収信号しか得られない。ここでは、静止した原子に共鳴する周波数の光を用意して二手にわけ、セルの両側から照射した場合を考える。その時、光の進行方向に速度成分を持つ場合は、ドップラー効果によって光と共鳴にならず、速度成分が0になる場合だけ光と共鳴する。まず十分に強い光（pump光とする）を入れることで、速度成分が0の原子はほとんどがこれと共鳴して励起状態に上がる。それにより、励起した原子は反対側からの光（probe光とする）と共鳴しなくなって透過光にくぼみが現れる（Lamb dip）。このくぼみは共鳴をもたらすので、ドップラー広がりも無く、共鳴周波数付近で鋭いシグナルとなる。多準位系においては、このくぼみは共鳴周波数の位置だけでなく、2種類の共鳴周波数の中間にも現れる（クロスオーバー）。2つの共鳴周波数をそれぞれf₁、f₂とおく。周波数f₀の光の進行方向に対して速度vと-vである原子がいたすると、それぞれの原子が感じる周波数はf₀(1-v/c)とf₀(1+v/c)であり、これがそれぞれf₁とf₂に等しくなるような周波数f₀があれば、このf₀でクロスオーバーが起きる。この条件を満たす時、

\[f₀ = \frac{f₁ + f₂}{2} \]

図4.6は、飽和吸収信号を得るための概略図である。Pump光は飽和強度I_sat程度入れ、セル内で原子の励起が起きている領域に重なるようにprobe光を入れてフォトダイオードで観測する。

Rbセルを使って実際に観測したものが図4.8である。probe光のみでは図4.7のようにフラットだった透過光シグナルが、pump光を入れることで新たなピークが現れる。この3つは\(^{85}\text{Rb}: F = 3 \rightarrow F' = 2\)，\(^{85}\text{Rb}: F = 3 \rightarrow F' = 3\)とこれらのクロスオーバーである。
4.4 Rb セルを用いた周波数のロック

図 4.6 飽和吸収分光の概略図

図 4.7 Rb セルに probe 光のみを入れたときのシグナル。黄色が ECDL1 の PZT に入力している三角波（アンプ前）、水色が PD で見た probe 光強度

4.4.2 FM サイドバンド変調法

FM サイドバンド変調法は、飽和吸収の信号を使って微分信号を得るために、probe 光を EOM で変調する方法である。まず EOM には function generator から周波数 \(\omega_m \) の正弦波を入力しておく。この EOM を通ることによって周波数 \(\omega \) の光は位相変調される。EOM に入力した電圧が half wave voltage より十分小さければ、この光は \(\omega \pm \omega' \) のサイドバンドを含む 3 つの周波数の和に近似できる。具体的には変調によって

\[
E = E_0 \exp \left(i(\omega t + \delta \sin(\omega' t)) \right)
\]

\[
= E_0 \exp(i\omega t) \left(1 + \delta \sin(\omega' t) \right)
\]

\[
= E_0 \exp(i\omega t) \left(1 + \frac{\delta}{2i} \left(\exp(i\omega' t) - \exp(-i\omega' t) \right) \right)
\]

と表される。セルを通過するとき、周波数に応じて位相や振幅の変化に違いがあるため、

\[
E = E_0 \left(T(\omega) \exp(i\omega t) + T(\omega + \omega') \frac{\delta}{2i} \exp(i(\omega + \omega' t)) - T(\omega - \omega') \frac{\delta}{2i} \exp(i(\omega - \omega' t)) \right)
\]

（4.10）
図 4.8 Pump 光を入れた上で probe 光をセルに照射して得られた飽和吸収信号 $^85\text{Rb}F = 3 \rightarrow F' = 2$ および $^85\text{Rb}F = 3 \rightarrow F' = 3$ とそのクロスオーバーである。

のように表され、これが PD によって $E^* E$ に比例した電圧信号になり、DC 成分と $2\omega'$ で振動する項を落としてからミキサーで混ぜば、Lock 回路に入力される信号は

$$V = \frac{\delta}{2}(T(\omega)T^*(\omega + \omega') - T^*(\omega)T(\omega - \omega'))$$

(4.11)

に比例し、最後に $\omega \gg \omega'$ を用いて近似すれば、

$$V \approx \frac{\delta}{2} \omega \cdot \frac{d}{d\omega} |T(\omega)|^2$$

(4.12)

と表せる。よって強度の振幅変調の微分となる。飽和吸収信号も強度の変調であり、信号のピークで微分信号が 0 になるようにして、常に電圧を 0 に戻すようなフィードバック回路でロックすれば、飽和吸収信号のピークの値に周波数をロックできることになる。図4.9 と図 4.10 は、FM サイドバンド法のセットアップと系の概略図である。

図 4.9 FM サイドバンド法の概略図
図 4.10 FM サイドバンド法のセットアップ

図 4.11 FM サイドバンド法による透過光 (青) と微分信号 (紫)

図 4.11 - 図 4.13 は、FM サイドバンド法による微分信号を観測したものである。飽和吸収の時と同じ $^{85}\text{Rb}: F = 3 \rightarrow F' = 2$、$^{85}\text{Rb}: F = 3 \rightarrow F' = 3$ とそのクロスオーバーのところを観測した。pump 光は 1.2mW で直径 5mm であり、Rb の飽和強度 4.49mW/cm² と同程度にしてある。probe 光は 0.3mW で直径 5mm である。LPF を入れることで、ノイズが除去されたきれいな微分信号を得た。3 つのピークのうち、クロスオーバーの微分信号が一番大きかったので、ここにロックをかけたところ、特に大きな振動がない限りは少なくとも 5 時間以上ロックがかけ続けているので、周波数のロックはできていると思われる。ロックがとばないようにするためには、光学系を取り付けたプレートボードに振動がないようにする等、雑音除去の仕組みが必要と思われる。
第4章 PA光源の中心周波数安定化

図4.12 FMサイドバンド法による透過光と微分信号（LPFあり）

図4.13 FMサイドバンド法による透過光と微分信号（LPFあり）を使ってロックした時のシグナル。大きな変動等が無ければこの状態で周波数はロックされ続ける。

4.4.3 Modulation transfer法

Modulation transfer法は、pump光をEOMに通してからセルに入射させた状態で、probe光をそのままセルを通過させることによって微分信号を取り出して周波数ロックを行うという手法である[30]。これは非線形の効果によってprobe光とそのサイドバンドとpump光が4光波混合を起こしもう片側のサイドバンドを形成する。この方法の利点は、フラットでバックグラウンドの無いところに分散型のシグナルが出るという点である。これにより、共鳴周波数のところとシグナルが0になるところが一致する。もう1つは、4光波混合のプロセスを用いているためにclosed transitionの遷移があるところ、そこに大きなシグナルが得られるという点である。我々が用いているD1ラインにはclosed transitionはないが、オフセットがのらない分、周波数の基準として正確な値にロックされることを期待してmodulation transferの系を組んだ。図4.14は、modulation transfer法のセットアップと系の概略図である。

ここで、$^{85}Rb : F = 3 \rightarrow F' = 2$、$^{85}Rb : F = 3 \rightarrow F' = 3$のクロスオーバーを用いてシグナルを観測した。pump光のパワーや2mWで、probe光は0.5mW、ビーム径は共に5mmである。PAの集光具合は異でS/Nが悪くなっているが、LPFを通すことできれいなシグナルを得られた。このclosed transitionが無い遷移で試したところ、原子の共鳴周
4.4 Rbセルを用いた周波数のロック

図 4.14 Modulation transfer 法のセットアップ

図 4.15 Modulation transfer 法による透過光 (青) と微分信号 (紫)

波数ではなくクロスオーバーで一番大きなシグナルを得た。FM サイドバンドのシグナルと比べると、たしかにオフセットがのっていないことが確認できた。Modulation transfer 法においても、前節と同じロック回路を用いてクロスオーバーに周波数ロックをつけたが、こちらも大きな振動が無い限りはロックされた状態が継続したため、ロックが可能であることが確かめられた。

以上より、どちらの方法も長期的な周波数ロック法として利用できることがわかった。FM サイドバンド法は微分信号にオフセットが乗ってロックされる周波数にずれが生じるが、これは大きく見積もっても 1MHz であり、PA 用光源として必要な線幅の狭さが数 MHz であることを考えると、オフセットは問題にならないことが分かる。よって周波数の基準としてはどちらの方法も満足であることが分かった。今回は、ロックが外れにくく大きな微分信号が得られる FM サイドバンド法による基準を用意し、transfer cavity のロックに使用することにした。
第4章 PA用光源の中心周波数安定化

図4.16 Modulation transfer法による透過光と微分信号（LPFあり）

図4.17 Modulation transfer法による透過光と微分信号（LPFあり）を使ってロックした時のシグナル
第５章 まとめと今後の展望

本研究では、Rb 原子が複数個ロードされたサイト数を計測するために必要な、^{87}Rb の光会合を行う装置の作成を目指した。その中で筆者の得た成果について記述する。

- $^{87}\text{Rb}_2$ の 0^{-} 状態への光会合を行うのに適した振動準位を探すため、ODT 中の Rb BEC に対して PA 用光源のレーザーを照射し、複数の準位について周波数をスキャンしながら PA によるロスシグナルを観測した。

- 得られた複数のシグナルについて、振動回転状態の同定を行った。

- 観測した振動準位の binding energy から、改良型の LeRoy-Bernstein 形式を用いて別の振動準位の binding energy を予測し、実際に振動準位 ($v=186$) の探索に成功した。この方法を用いることで、まだ観測できていない振動準位も順次見つけることができる。

- 振動準位への遷移の強さを測定し、複数の準位間で比較を行った。それにより、$^{87}\text{Rb}_2$ の PA を行うのに適した準位の選定が可能となった。

- PA 用光源の中心周波数安定化のための系を構築するため、基準となる光源として ECDL を Rb セルにロックするための系を作った。その上で、2 種類あるロックの方法をそれぞれ試し、それぞれの微分信号を比較を行い、FM サイドバンド法による周波数基準を用意した。

なお、本研究で行った光会合に用いる振動準位の選定は、Rb_2 だけでなく K_2 や KRb にも使用できる手法である。今回確立したシステムを用いて 3 種類の PA 光源が用意できれば、光格子中にロードされた二原子種混合気体の、格子サイト中での分布を定量的に調べられるようになると期待できる。

今後の展望としては、周波数の選定と並行して PA 用光源の中心周波数ドリフトを防ぐための系の構築も進め、transfer cavity と ECDL2 を介して PA 用光源をロックし、ドリフトを防ぐことによって PA 用光源として常時使用できる系の完成を目指す。
付録A 原子と光の相互作用：放射圧と双極子力

全系の記述と原子に働く力の導出

原子に対して準位間の共鳴周波数に対応した光が入射した時の相互作用を考える。原子系、レーザー場、相互作用ハミルトニアンを $\hat{H}_A, \hat{H}_F, \hat{H}_{\text{int}}$ とおくと、電気双極子近似のもとで全系のハミルトニアン \hat{H} は

$$\hat{H} = \hat{H}_A + \hat{H}_F + \hat{H}_{\text{int}}$$ (5.1)

$$\hat{H}_A = \frac{\hat{p}^2}{2M} + \sum_i E_i |i\rangle \langle i|$$ (5.2)

$$\hat{H}_F = \sum_k \hbar \omega_k \left(\hat{a}_k^\dagger \hat{a}_k + \frac{1}{2} \right)$$ (5.3)

$$\hat{H}_{\text{int}} = -\hat{\mu} \cdot \hat{E}(r)$$ (5.4)

と表される。ここで M は原子の質量、\hat{p} は重心の運動量算子、E_i は原子の固有状態 $|i\rangle$ に対応するエネルギー固有値であり、ω_k は波数 k で規定される電磁場モードの周波数、\hat{a}_k^\dagger 及び \hat{a}_k はその電磁場モードの生成・消滅演算子である。$\hat{\mu}$ は原子の双極子モメント演算子で、

$$\hat{\mu} = \sum_{i,j} \langle i|\hat{\mu}|j\rangle |i\rangle \langle j|$$ (5.5)

のように $\{|i\rangle\}$ の固有関数形で表される。また電場の演算子 $\hat{E}(r)$ も、

$$\hat{E}(r) = \sum_k E_k (\hat{a}_k + \hat{a}_k^\dagger)$$ (5.6)

と書ける。ここで原子の大きさが光の波長に比べて十分に小さいことから、電場は原子内で一様であるとする。以下では簡単のために、原子は基底状態 $|1\rangle$, 勧起状態 $|2\rangle$, 2 準位間共鳴周波数 ω_0 の 2 準位原子系とする。この時、原子の双極子モメント演算子は

$$\hat{\mu} = \mu(|2\rangle 1| + |1\rangle 2|)$$ (5.7)

と書ける。μ は共鳴周波数に対応した光の入射時における原子の双極子モメントを示す。
図 5.1 2 準位原子系とレーザー光の相互作用

となるので、回転波近似\(^2\)を行うことで、相互作用ハミルトニアン \(\hat{H}_{\text{int}} \) は

\[
\hat{H}_{\text{int}} = \sum_k \hbar g_k (|2\rangle\langle 1| + |1\rangle\langle 2|)(\hat{a}_k + \hat{a}^\dagger_k)
\]

\[
\approx \sum_k \hbar g_k (|2\rangle\langle 1|\hat{a}_k + |1\rangle\langle 2|\hat{a}^\dagger_k)
\tag{5.8}
\]

と表される。

ここで \(g_k = -\mu \cdot E_k / \hbar \) である。以上より、全系のハミルトニアン \(\hat{H} \) は

\[
\hat{H} = \hat{H}_0 + \hat{H}_1
\]

\[
\hat{H}_0 = \frac{\hat{p}^2}{2M} + \sum_{i=1}^2 E_i |i\rangle\langle i| + \sum_k \hbar \omega_k \left(\hat{a}^\dagger_k \hat{a}_k + \frac{1}{2} \right)
\]

\[
\hat{H}_1 = \sum_k \hbar g_k \left(|2\rangle\langle 1|\hat{a}_k + |1\rangle\langle 2|\hat{a}^\dagger_k \right)
\tag{5.11}
\]

と表される。

ここで相互作用表示に変更し、

\[
\hat{H}_1 = e^{i\hat{H}_0 t/\hbar} \hat{H}_1 e^{-i\hat{H}_0 t/\hbar} = \sum_k \hbar g_k (|2\rangle\langle 1|\hat{a}_k e^{-i(\omega_k - \omega_0) t} + |1\rangle\langle 2|\hat{a}^\dagger_k e^{i(\omega_k - \omega_0) t})
\tag{5.12}
\]

と表すことにする。これにより、系を記述する波動関数 \(\psi_I \) は、\(i\hbar \frac{\partial \psi_I}{\partial t} = \hat{H}_I \psi_I \) の解である \(\psi(t) \) を用いて

\[
\psi(t) = e^{i\hat{H}_0 t/\hbar} \psi_I(t)
\tag{5.13}
\]

\(^2\)電磁場の光子を 1 つ増やして原子を励起状態に遷移させるという意味を持ち、エネルギー保存側からこれが起こる確率は小さい。\(|1\rangle\langle 2|\hat{a}_k \) も同様に小さく、これらを無視できるとして近似する。
の形で表される。

更に、入射するレーザー光を周波数 ω の単一モードであるとし、半古典論によってレーザー場を古典的な平面波 $E(t) = E_0 \cos \omega t$ とみなせば、相互作用ハミルトニアン \hat{H}_I は

$$\hat{H}_I = -\frac{\hbar \Omega_R(r)}{2} \left(e^{-i(\phi(r)+\delta t)} |2\rangle \langle 1| + e^{i(\phi(r)+\delta t)} |1\rangle \langle 2| \right)$$ \(5.14\)

となる。ここで $\Omega_R(r) = |\mu| E_0 / \hbar$ はラビ周波数、$\delta = \omega - \omega_0$ は離調、$\phi(r)$ は電気双極子モーメント μ の位相因子で $\mu = |\mu| e^{i\phi(r)}$ である。この時、この 2 準位原子系の状態 $|\psi\rangle$ は

$$|\psi\rangle = c_1(t) |1\rangle + c_2(t) |2\rangle$$ \(5.15\)

の形で表される。密度行列 $\hat{\rho}$ は

$$\hat{\rho} = |\psi\rangle \langle \psi|$$ \(5.16\)

$$\rho_{ij} = \langle i | \hat{\rho} | j \rangle = c_i(t)c_j^*(t)$$ \(5.17\)

となる。

以上をまとめると、2 準位原子と古典的な単一モードレーザー場が相互作用している系のハミルトニアン \hat{H} は、$\hat{H}_0 = \hat{H}_A + \hat{H}_F$ (\hat{H}_A, \hat{H}_F はそれぞれ 2 準位原子系、レーザー場のハミルトニアンを表す。)、原子系とレーザー場の相互作用ハミルトニアン \hat{H}_I、原子系と真空の相互作用ハミルトニアン \hat{H}_{vac} を用いて

$$\hat{H} = \hat{H}_0 + \hat{H}_I + \hat{H}_{vac}$$ \(5.18\)

$$\hat{H}_0 = \frac{\hat{p}^2}{2M} + \sum_{i=1}^{2} E_i |i\rangle \langle i| + \hbar \omega \left(\hat{a}^\dagger \hat{a} + \frac{1}{2} \right)$$ \(5.19\)

$$\hat{H}_I = -\frac{\hbar \Omega_R(r)}{2} \left(e^{-i(\phi(r)+\delta t)} |2\rangle \langle 1| + e^{i(\phi(r)+\delta t)} |1\rangle \langle 2| \right)$$ \(5.20\)

$$\hat{H}_{vac} = \sum_k \hbar g_k (|2\rangle \langle 1| \hat{a}_k e^{-i(\omega_k - \omega_0)t} + |1\rangle \langle 2| \hat{a}_k^\dagger e^{i(\omega_k - \omega_0)t})$$ \(5.21\)

と記述される。原子の重心運動は、ハイゼンベルクの運動方程式から、

$$\frac{d\hat{r}}{dt} = \frac{1}{i\hbar} [\hat{r}, \hat{H}] = \frac{\partial \hat{H}}{\partial \hat{p}} = \frac{\hat{p}}{M}$$ \(5.22\)

$$\frac{d\hat{p}}{dt} = \frac{1}{i\hbar} [\hat{p}, \hat{H}] = -\frac{\partial \hat{H}}{\partial \hat{r}} = -\nabla \hat{H}_I - \nabla \hat{H}_{vac}$$ \(5.23\)

であるので、原子に働く平均の力 $(\vec{F}(r,t))$ は
\[
\langle \mathbf{F}(\mathbf{r}, t) \rangle = -\langle \nabla \hat{H}_I \rangle - \langle \nabla \hat{H}_{vac} \rangle \\
= \langle \nabla \left[\frac{\hbar \Omega_R(\mathbf{r})}{2} \left(e^{-i(\phi(\mathbf{r})+\delta t)} |2\rangle \langle 1| + e^{i(\phi(\mathbf{r})+\delta t)} |1\rangle \langle 2| \right) \right] \rangle \\
= \mathbf{F}_d(\mathbf{r}, t) + \mathbf{F}_r(\mathbf{r}, t) \quad (5.24)
\]

\[
\mathbf{F}_d(\mathbf{r}, t) = \hbar u(t) \nabla \Omega_R(\mathbf{r}) \quad (5.25)
\]

\[
\mathbf{F}_r(\mathbf{r}, t) = \hbar \Omega_R(\mathbf{r}) v(t) \nabla \phi(\mathbf{r}) \quad (5.26)
\]

\[
u(t) = \Re\{\rho_{12} \exp[-i(\delta t + \phi(\mathbf{r}))]\} \quad (5.27)
\]

\[
v(t) = \Im\{\rho_{12} \exp[-i(\delta t + \phi(\mathbf{r}))]\} \quad (5.28)
\]

となる。\(\mathbf{F}_d \) はラピ周波数 \(\Omega_R(\mathbf{r}) \) の空間的な変化によって生まれる双極子力、\(\mathbf{F}_r \) は位相 \(\phi(\mathbf{r}) \) の空間変化によって生まれる輻射圧である [14][15]。

輻射圧と双極子力

密度行列 \(\rho(t) \) を用いて、原子の内部状態についての運動方程式を立てる。

\[
\frac{d\rho(t)}{dt} = \frac{1}{i\hbar}[\hat{H}_A + \hat{H}_I, \rho] + \left(\frac{d\rho}{dt} \right)_{\text{spon}} \quad (5.29)
\]

真空場との相互作用を考えることで自然放出が導かれるが、ここでは現象論的に集荷項を導入することにより、\(\Gamma \) を励起状態からの緩和率とする。自然放出により、双極子モーメントの位相緩和も引き起こされるから、

\[
\left(\frac{d\rho(t)}{dt} \right)_{\text{spon}} = \Gamma \rho_{11} |1\rangle \langle 1| - \frac{\Gamma}{2} \rho_{12} |1\rangle \langle 2| - \frac{\Gamma}{2} \rho_{21} |2\rangle \langle 1| - \Gamma \rho_{22} |2\rangle \langle 2| \quad (5.30)
\]

と表される。ここで \(w(t) = (\rho_{22} - \rho_{11})/2 \) とおけば,

\[
\frac{d}{dt} \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix} = \begin{pmatrix} -\frac{\Gamma}{2} & \delta + \phi & 0 \\ -\delta - \phi & -\frac{\Gamma}{2} & \Gamma_R \\ 0 & -\Omega_R & -\Gamma \end{pmatrix} \begin{pmatrix} u(t) \\ v(t) \\ w(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -\frac{\Gamma}{2} \end{pmatrix} \quad (5.31)
\]

となってブロック方程式に帰着する。この定常解を求めれば,

\[
u = -\frac{s}{\Omega_R} \frac{\Gamma}{1+s}, \quad v = -\frac{\Gamma}{2\Omega_R} \frac{s}{1+s}, \quad w = -\frac{1}{2} \frac{1}{1+s} \quad (5.32)
\]

となる。ここで \(s \) は飽和パラメータであり,

\[
s = \frac{I/I_0}{1+(\delta/\Gamma)^2}, \quad \frac{I}{I_0} = \frac{2\Omega_R^2}{\Gamma^2} \quad (5.33)
\]
また \(I_0 \) は飽和強度を表す。\(\rho_{11} + \rho_{22} = 1 \)であるから、この時 \(\rho_{22} \) は
\[
\rho_{22} = \frac{1}{2} \frac{s}{1 + s} = \frac{\Omega^2_R}{4\delta^2 + 2\Omega^2_R + \Gamma^2}
\]
(5.34) となっている。
以上から、輻射圧 \(F_r(r, t) \) を求める。光軸付近のレーザー光を平面波で近似して \(\phi(r) = -k \cdot r \) すれば、(2.26), (2.32), (2.34) から
\[
F_r(r, t) = \hbar k \rho_{22}
\]
(5.35) と表される。レーザー周波数 \(\omega \) に関するオーレンツ分布となっている。レーザー光からの光子運動量 \(\hbar k \) と自然放出レート*3 の積となっている。輻射圧は単位時間あたりに原子がレーザー光から受け取った運動量の和を表している。レーザーからの光子は同じ向きの運動量 \(\hbar k \) を持ち、吸収される度にその方向に原子の運動量変化が起きる一方、自然放出による緩和では、光子の発射される方向がランダムである。そのため自然放出による運動量変化の寄与は平均して 0 ということになり、光子の吸収と放出の 1 サイクルでは、原子の運動量は平均して \(\hbar k \) 変化する。このサイクルは、原子が光子を散乱する過程とみなされる。そのため、このサイクルによって原子が受ける単位時間あたりの平均運動量変化を分散力と呼び、\(F_{scat}(r, t) \) と表すことになるが、これは結局輻射圧 \(F_r(r, t) \) と同じ表式になるので、
\[
F_{scat}(r, t) = \frac{\hbar k \Gamma}{2(1 + I/I_{sat} + 4\delta^2/\Gamma^2)}
\]
(5.36) となる。このサイクルは自然放出過程においてエネルギーの散逸を伴うため、原子の冷却に用いることができる。

3 緩和率 \(\Gamma \) と原子が励起状態にある確率 \(\rho_{22} \) の積で表される。

双極子力 \(F_{d}(r, t) \) はラビ周波数 \(\Omega_{R}(r) \) の定義から、振幅 \(E_{0} \) が空間依存性を持つようなレーザー場において生じる力である。完全な平面波であるならば電場の振幅は一定であるから、\(\nabla \Omega_{R} = 0 \) となって双極子力は働かない。しかし我々が使う一般的なレーザー光はガウシアンビームであり、
\[
E(r) = E_{0} \frac{\omega_{B}}{\omega(z)} \exp \left[i(kz - \phi(z)) - \left(x^2 + y^2 \right) \left(\frac{1}{\omega(z)^2} + i \frac{k}{2R(z)} \right) \right]
\]
(5.37)
\[
\omega(z) = \omega_{B} \sqrt{1 + \left(\frac{\lambda z}{\pi \omega_{B}^{2} n} \right)^2} = \omega_{B} \sqrt{1 + \frac{z^2}{z_0^2}}
\]
(5.38)
\[
R(z) = z \left[1 + \left(\frac{\pi \omega_{B}^{2} n}{\lambda z} \right)^2 \right] = z \left(1 + \frac{z_0^2}{z^2} \right)
\]
(5.39)
図 5.2 レーザー光強度 I と離調 δ に対する ρ_{22} の変化

$$\phi(z) = \tan^{-1} \left(\frac{\lambda z}{\pi \omega_B^2 n} \right) = \tan^{-1} \left(\frac{z}{z_0} \right)$$ \hspace{1cm} (5.40)

$$z_0 = \frac{\pi \omega_B^2 n}{\lambda}$$ \hspace{1cm} (5.41)

の式で表されるため、振幅が空間変化していることが分かる。このような光と原子の相互作用では、原子に双極子力が働く。双極子力は、(2.25), (2.32), (2.33)

$$F_d(r, t) = -\frac{\hbar \delta}{4} \nabla s - \frac{\hbar \delta}{4} \nabla \Omega_R^2$$ \hspace{1cm} (5.42)

と表され、周波数 ω に対して分散型の分布となっている。負に離調 ($\delta < 0$) されていれば原子はレーザー光強度の増大する方向に力を受け、正に離調 ($\delta > 0$) されていれば逆に減少する方向へ力を受ける。この双極子力は保存力であり、そのポテンシャル $U(r)$ は

$$U(r) = \frac{\hbar \delta}{2} \ln[1 + s]$$

$$= \frac{\hbar \delta}{2} \ln \left[1 + \frac{\Omega_R^2(r)}{\delta^2 + \Gamma^2/4} \right]$$ \hspace{1cm} (5.43)

で表される。このポテンシャルを利用した原子のトラップは光双極子トラップ (ODT) と呼ばれる [16]。これを用いる際、レーザー光には原子の遷移の自然幅 Γ より十分大きい離調をつけるので [17][18], $|\delta|/\Gamma \gg 1, I/I_0$ と近似すると,

$$U(r) \approx \frac{\hbar \delta}{2 \delta/\Gamma} \frac{I/I_0}{(2\delta/\Gamma)^2}$$ \hspace{1cm} (5.44)
のようになり、ポテンシャルの深さがレーザー光強度Iに比例する。双極子力は保存力であることから、エネルギーの散逸を伴わないので原子を捕捉する双極子トラップとして用いることができる。双極子トラップは蒸発冷却の他にも、磁気モーメントを持たない原子のトラップや、光格子の生成などにも利用されている。
付録B ECDL用ロック回路

ここでは、ECDLの周波数ロック回路を掲載する。回路は先行研究 [29] を参考に作成した。また、LDの静電気破壊防止及びLDCの高周波のノイズを除去するための回路も作成したので併せて掲載する。

図 5.3 作成したロック回路の写真 (前面)

図 5.4 作成したロック回路の写真 (後面)
図 5.5 ECDL の周波数ロック回路 フィードバック回路は PZT 側と LD の電流源 (LDC) 側に分かれており、PZT 側は低周波成分について信号を返している。
図 5.6 LD の静電気破壊防止及び LDC の高周波ノイズ除去回路 ローパスフィルタによって LDC の高周波ノイズが LD に流れるのを防ぎ、中央のダイオードで静電気破壊防止回路を形成している。また、ロック回路からの current 用フィードバック信号が LDC 側に流れないので、間にチョークコイルが入っている。
付録 C 高速 PD(フォトダイオード)

本研究で作成した高速 PD の回路と写真を掲載する。先行研究 [57] を参考にして作成し、PD の素子は S5971 を使用した。オペアンプ TL081 側を DC 出力、ハイパスフィルタ後のオペアンプ AD829 側を AC 出力としており、帯域は 15MHz である。

図 5.7 高速 PD の回路図 AC 成分と DC 成分がそれぞれ出力される。
図 5.8 高速 PD の写真
付録 D 光格子のためのパスの作成

光格子は、ODT の光源に使用している 1080nm のファイバーレーザーを使用している。図 5.11 は、3 次元光格子の水平方向の 2 軸について、作成した光源側のパスである。各軸の光格子が干渉しないように互いの偏光方向を直交させ、周波数をずらしている。周波数をずらす方法として AOM(音響光学素子)を使用している。RF を光の入射方向と垂直に入射して AOM の結晶を格子振動させ、AOM に入った光が回折してフォノンの運動量をもらうことにより、光の周波数を変化させる。入力する RF の周波数及び大きさによって回折効率は変化する。今回は、先行研究 [37] を参考にして作成した RF 調節用の AOM ドライバの回路を記載する。

図 5.9 パスの概略図 アンプされたファイバーレーザーを分割して、AOM によって周波数をシフトさせる。
図 5.10 AOM ドライバの回路図　VCO に加える電圧を調節して AOM に入射させる RF 周波数を調節する部分と RF の大きさを調節する部分に分かれており、後者は AOM 入射後の光を PD で観測し、そのパワーや一定になるようアンプを調節するフィードバック回路も含んでいる。
図 5.11 ファイバーレーザー出射後のパス

参考文献

[29] 相川清隆. □ All-optical selective formation of ultracold molecules in the rovibrational ground state. □ 博士論文, 東京大学 (2011).

[37] 斉藤祐介, 福岡健太. □ 混合ポアス気体の共振器增幅光トラップに向けた単ーむークDPSS レーザーの開発. □ 博士論文, 東京大学 (2010).
謝辞

本論文は、東京大学大学院工学系研究科理工学専攻井上研究室での2年間の研究をまとめたものです。この研究にあたり、多くの方からのご指導、ご協力をいただきましたことを深く感謝致します。

指導教員である井上慎准教授には、ミーティングや日々の生活の中で、物理学的な知識から実験における基礎的技術、研究に対する姿勢に至るまで、様々な面でご指導ご助言をいただきました。物理界における動向や最近の流行についての話はとても興味深く、難しい概念を分かりやすく啃み砕いて説明される姿には感銘を受けました。とても有意義な時間を過ごさせていただき、心より感謝申し上げます。

小林淳助教には、ミーティングや日々の雑談の中で、実験に関する技術や手法について的確な助言をいただきましたことに深く感謝致します。氏の研究に対する熱意や、実験における着眼点の鋭さには目を見張るものがありました。

博士課程2年の加藤宏平氏には、研究室に配属になった時から大変お世話になりました。要領の悪い僕に、実験の手法から装置の説明、回路のデバッグに至るまで、懇切丁寧に教えていただきました。また、僕のPAの実験にも協力していただき、実験の方針についての相談や議論の相手をしてくれました。本当にありがとうございました。

修士課程1年の長田有道氏とは、修士2年目の時に一緒に実験を行い、とても刺激になりました。物理の知識にも長けていて、分からないことがあったときは共に議論したり、相談にのっていただきました。とても感謝しています。

学部4年の鈴木浩博氏とは、修士2年の後半から一緒に実験を行いました。研究計画の段階から一緒に考えたり作業をしている中で、とても充実した時間を過ごせたと思います。本当にありがとうございました。

学部4年の大久保弘樹氏と荻野敦氏の両名とは、物理の話はもちろんのこと、共に学び多くの刺激を受けて充実した研究生活を送ることができました。心より感謝申し上げます。

昨年度に修士課程を修了された斉藤裕介氏は、修士1年の時、実験や工作について基礎から親身になって教えてくださいました。光格子のパズク構築時には、修士課程の終盤で忙しい時期だったにもかかわらず僕の面倒を見てくださり、とても感謝しています。

この研究生活は僕にとってかけがえのない2年間になったと思います。研究活動を支えてくださった多くの皆様に深くお礼申し上げますとともに、今後のご活躍をお祈り致します。