NITEP Workshop 18/12/14

Symmetry Breaking in Quantum Curves & Super Chern-Simons Matrix Models

Sanefumi Moriyama (Osaka City Univ)

Main References:

S.M., T.Nosaka, JHEP, 2015;

S.M., S.Nakayama, T.Nosaka, JHEP, 2017;

S.M., T.Nosaka, T.Yano, JHEP, 2017;

N.Kubo, S.M., T.Nosaka, 2018;

T.Furukawa, S.M., to appear (see TF's poster).

NITEP Workshop 18/12/14

Geometry Symmetry Breaking in <u>Quantum Curves</u> & <u>Super Chern-Simons Matrix Models</u> M2-brane Physics

Sanefumi Moriyama (Osaka City Univ)

Main References:

S.M., T.Nosaka, JHEP, 2015;

S.M., S.Nakayama, T.Nosaka, JHEP, 2017;

S.M., T.Nosaka, T.Yano, JHEP, 2017;

N.Kubo, S.M., T.Nosaka, 2018;

T.Furukawa, S.M., to appear (see TF's poster).

0. Overview

String Theory

String Duality & M-Theory

String Duality & M-Theory

M is for Mother / Membrane / Mystery

- Mother theory for Strings ?
- Theory of Membranes ?
- Mysterious Theory ?
 - Worldvolume Theories for M2 / M5 ?
 - Degrees of Freedom $N^{3/2} / N^3$?
 - Whole Moduli Space ?

You Are Here! (Hopefully)

A Map of The Earth

- Investigate Special Points
 - e.g. Osaka City, Equator, Polar Points, ..., The Center of Earth
- Understand the Symmetry of the Earth
 - "The Earth is approximately A Sphere." "so(3) Symmetry"

Our History

- Osaka (Phenomenological)
- Sphere (Theoretical)
- The Center (Ultra-Theoretical)

History of String Theory

- Osaka (Phenomenological)
- Sphere (Theoretical)
- The Center (Ultra-Theoretical)

Our History

Consistency in Quantum Theory, Constraints from Symmetry, ... History of String Theory or M-Theory

A Map of M-Theory

A Map of M-Theory

Contents

- 1. ABJM Theory (The Center)
- 2. Super Chern-Simons Theories (Sphere)
- **3. Symmetry & Symmetry Breaking** (Maybe Polar Points, Not Osaka City Yet)

1. ABJM Theory

The Worldvolume Theory Describing M2 on Background with Largest SUSY "The Center of Earth"

Worldvolume Theory of M2-branes

- Single M2-brane (Breaking Transl. Sym. & SUSY)
 * 8 bosons (spin 0) + 8 fermions (spin 1/2)
- Multiple M2-branes ???

* gauge field (spin 1)

• Supersymmetrize Chern-Simons field to $\mathcal{N}=8!$ [J.H.Schwarz 2004]

* No DOF for CS in 3D

• Only $\mathcal{N}=3$ for Arbitrary Gauge/Representation

ABJM Theory

[Aharony-Bergman-Jafferis-Maldacena $N_1 = N_2$, Hosomichi-Lee-Lee-Lee-Park $N_1 \neq N_2$, Aharony-Bergman-Jafferis $N_1 \neq N_2$, 2008]

Brane Configuration in IIB

From Large Supersymmetries

Brane Configuration in IIA

\rightarrow T-duality to IIA

(IIA String Theory)

Brane Configuration in M

\rightarrow Lift to M-Theory

(1,0) KK-monopole + (1,k) KK-monopole $\Rightarrow C^4/Z_k$ (M-Theory)

ABJM Theory

Partition Function OR VEV

$$\langle s_{\gamma} \rangle_{k} (N_{1} | N_{2})$$

= ...

Partition Function OR VEV of Half-BPS Wilson Loop in Rep Y on $Min(N_1, N_2) \ge M2 \ge |N_2 - N_1| \ge Fractional M2$

$\langle s_{\gamma} \rangle_{k} (N_{1} | N_{2})$ = $\int \dots DA \dots \exp(-S_{ABJM}[A,...]) \operatorname{tr} P \exp \int A_{\mu} dx^{\mu} + \dots$

After Localization Technique, ... [Kapustin-Willett-Yaakov 2009]

ABJM Matrix Model

Grand Canonical Ensemble

Canonical Partition Function

$$Z_k(N) = \langle s_{\gamma} = 1 \rangle_k(N | N)$$

(Partition Function without Fractional Branes (Rank Difference) or Wilson loops (s_{γ}))

• Grand Canonical Partition Function

$$\Xi_k(z) = \Sigma_{N=0}^{\infty} z^N Z_k(N)$$

(Generating Function, N : Particle Number, z : Dual Fugacity)

From Matrix Models To Curves

T=*T*(*z*) : Kahler Parameters

From Matrix Models To Curves

From Matrix Models To Curves

for Matrix Models Because

- Interpretation in M2 is Clearer

Generalization to Other Orbifolds, Orientifolds,
 Rank Deformations, ... is Easier

- Correspondence is Clearer
- Geometrical Viewpoint Helps

2. Super Chern-Simons Theories

Generalizing ABJM From Matrix Model Viewpoint "The Earth is a sphere"

Motivation

U(N)

- ABJM Theory = The Center of Earth
- Generalization is inevitable for the Map
- Regarding ABJM Quiver Diagram

 $U(N)_{k}$

as Affine Dynkin Diagram A_1 , k ADE Generalization with $\mathcal{N}=3$

ADE Generalization

ADE Generalization

Spectral Pfaffian (instead of det) For Affine D [M-Nosaka, Assel-Drukker-Felix 2015]

Special Class of A_r Quiver

[Imamura-Yokoyama 2008]

As a simple case

Results in D5 Del Pezzo

(2,2) Model Is Described By Topological Strings Free Energy of Top Strings $\exp\left[\Sigma N^{d}_{jL,jR} F^{d}_{jL,jR}(T)\right]$ $N^{d}_{jL,jR}$: BPS index of degree *d*, spins (j_{L}, j_{R}) on **Local D5 Del Pezzo** Natural Because $H = (Q^{1/2} + Q^{-1/2})^2 (P^{1/2} + P^{-1/2})^2$ (Curve Eq of D5(=so(10)) Del Pezzo)

As further generalizations

(2,2)Model($\{+1,+1,-1,-1\}$),(1,1,1,1)Model($\{+1,-1,+1,-1\}$) & Rank Deformations (N_1, N_2, N_3, N_4) [M-Nakayama-Nosaka 2017]

(2,2) Model & (1,1,1,1) Model Are Connected Via Hanany-Witten Transitions

Both (2,2) & (1,1,1,1) Models Are Described By Topological Strings In A Single Function

Free Energy of Top Strings exp [$\Sigma N^{d}_{jL,jR} F^{d}_{jL,jR}$ (*T*)]

• Six Kahler Parameters

$$T_i^{\pm}(\mu, M_1, M_2) = ..., \quad (i = 1, 2, 3)$$

 Total BPS index is Distributed by Various Combinations of Kahler Parameters.

Explicit Decomposition of BPS index

- 6 Degrees for 6 Kahler Parameters
 - $\Sigma N^{d}_{(jL,jR)}(d_{1}^{+},d_{2}^{+},d_{3}^{+};d_{1}^{-},d_{2}^{-},d_{3}^{-}) \bullet (T_{1}^{+},T_{2}^{+},T_{3}^{+};T_{1}^{-},T_{2}^{-},T_{3}^{-})$
- BPS Index
- $d=1, (j_{L}, j_{R})=(0, 0)$ $16 \rightarrow 2(1, 0, 0; 0, 0, 0)+4(0, 1, 0; 0, 0, 0)+2(0, 0, 1; 0, 0, 0)$

+2(0,0,0;1,0,0)+4(0,0,0;0,1,0)+2(0,0,0;0,0,1)

Numerical Table by Experts [Huang-Klemm-Poretschkin 2013]

How About Higher Degrees?

Explicit Decomposition of BPS index

d	$\{m{d}=(d_{1}^{+},d_{2}^{+},d_{2}^{+})\}$	$\pm N^{\boldsymbol{d}}_{j_L,j_R}(j_L,j_R)$			
1	(1, 0, 0; 0, 0, 0)	(0, 0, 0; 1, 0, 0)	2(0,0)		
	(0, 1, 0; 0, 0, 0)	(0, 0, 0; 0, 1, 0)	4(0,0)		
	(0, 0, 1; 0, 0, 0)	(0, 0, 0; 0, 0, 1)	2(0,0)		
2	(0, 2, 0; 0, 0, 0), (1, 0, 1; 0, 0, 0)	(0, 0, 0; 0, 2, 0), (0, 0, 0; 1, 0, 1)	$(0, \frac{1}{2})$		
	(1, 0, 0; 0, 1, 0), (0, 1, 0; 0, 0, 1)	(0, 1, 0; 1, 0, 0), (0, 0, 1; 0, 1, 0)	$2(0,\frac{1}{2})$		
	(1, 0, 0; 1, 0, 0), (0, 1, 0)	$4(0,\frac{1}{2})$			
3	(2, 0, 0; 1, 0, 0), (0, 2, 0; 0, 0, 1) (1, 1, 0; 0, 1, 0), (1, 0, 1; 0, 0, 1)	(1, 0, 0; 2, 0, 0), (0, 0, 1; 0, 2, 0), 0; 1, 1, 0), (0, 0, 1; 1, 0, 1)	2(0, 1)		
	(0, 2, 0; 0, 1, 0), (1, 0) (1, 1, 0; 1, 0, 0), (0, 1) Deco	Decompositions Not Unique Due to Relations among T's $2T_2^{\pm} = T_1^{\pm} + T_3^{\pm}$,			
	$\begin{array}{c} (0,0,2;0,0,1), (0,2 \\ (0,1,1;0,1,0), (1,0 \end{array}) \end{array} $				
	$T_1^+ + T_1^- = T_2^+ + T_2^- = T_3^+ + T_3^-, \dots$				
		A Trouble			

Organizing BPS Index Differently

Organizing BPS Index Differently

In General (M_1, M_2) Deformation,

d	(JL, JR)	d_{I}	RL2	$(-1)^{a-1} \sum_{d_{\mathrm{II}}} \left(N_{j_{\mathrm{L}},j_{\mathrm{R}}}^{(d,d_{\mathrm{I}},d_{\mathrm{II}})} \right)_{d_{\mathrm{II}}}$
1	(0, 0)	± 1	8	$2_{+1} + 4_0 + 2_{-1}$
2	$(0, \frac{1}{2})$	0	8	$2_{+1} + 4_0 + 2_{-1}$
		± 2	1	1_0
3	(0,1)	± 1	8	$2_{+1} + 4_0 + 2_{-1}$
4	$(0, \frac{1}{2})$	0	1	10
	$(0, \frac{3}{2})$	0	29	$1_{+2} + 8_{+1} + 11_0 + 8_{-1} + 1_{-2}$

Interpreted As Further Decomposition $so(8) \rightarrow [su(2)]^3$ e.g. $28 \rightarrow (3,1,1,1) + (1,3,1,1) + (1,1,3,1) + (1,1,1,3) + (2,2,2,2)$ in $so(8) \rightarrow [su(2)]^4$

More Fun

	d	$(j_{ m L},j_{ m R})$	BPS	representations
	8	$(0, \frac{7}{2})$	4726	${\bf 1386 + 1050 + 2 \times 945 + 210 + 54 + 3 \times 45 + 1}$
		$(0, \frac{5}{2}), (\frac{1}{2}, 4)$	3431	${\bf 1050} + {\bf 945} + {\bf 770} + 2 \times {\bf 210} + 2 \times {\bf 54} + 3 \times {\bf 45} + 3 \times {\bf 1}$
		$\left(\frac{1}{2},3\right)$	1602	$945 + 2 \times 210 + 54 + 4 \times 45 + 3 \times 1$
		$(0,rac{3}{2}),(1,rac{9}{2})$	1345	${\bf 945+210+54+3\times 45+1}$
		$(\frac{1}{2},2),(1,\frac{7}{2})$	357	$210 + 54 + 2 \times 45 + 3 \times 1$
		$(0, \frac{1}{2}), (\frac{3}{2}, 5)$	311	${f 210}+{f 54}+{f 45}+2 imes {f 1}$
		$(0, \frac{9}{2})$	257	$210 + 45 + 2 \times 1$
		$(\frac{1}{2}, 1), (\frac{1}{2}, 5), (1, \frac{5}{2}), (\frac{3}{2}, 4)$	46	45 + 1
		$(2, \frac{11}{2})$	45	45
		$(1, \frac{3}{2}), (1, \frac{11}{2}), (\frac{3}{2}, 3), (2, \frac{9}{2}), (\frac{5}{2}, 6)$	1	1

Numerical Table by Experts [Huang-Klemm-Poretschkin 2013] Identifying as Representations using Matrix Models

Finally, "A Map of M-theory"

Nice to Summarize Numerical Results by so(10) \rightarrow so(8) & so(8) \rightarrow [su(2)]³

- But Why ?
- Any Explanations ?

[Also Raised by Y.Hikida & S.Sugimoto,

YITP Workshop "Strings & Fields 2017"]

• Now We Have Answer From Curve Viewpoint

3. Symmetry, Symmetry Breaking

Understanding Symmetry Breaking in Super Chern-Simons Theories From Curve Viewpoint

Question: How Symmetry is Breaking ?

Spectral Det Det $(1 + z H^{-1}) < Q = e^q, P = e^p, [q,p] = i 2\pi k$ (2,2) Model $so(10) \rightarrow so(8)$ $H = (Q^{1/2} + Q^{-1/2})^2 (P^{1/2} + P^{-1/2})^2$ $so(10) \rightarrow [su(2)]^3$ (1,1,1,1) Model $H = (Q^{1/2} + Q^{-1/2})(P^{1/2} + P^{-1/2})(Q^{1/2} + Q^{-1/2})(P^{1/2} + P^{-1/2})$ In Either Case, $H = \sum_{(m,n)=\{-1,0,1\}} c_{mn} Q^m P^n$ (Since $Q^{\alpha}P^{\beta} = e^{i2\pi k\alpha\beta}P^{\beta}Q^{\alpha}$)

D5 Quantum Curve

As Classical Curves Defined by Zeros of Polynomial Rings

Definition: Spectral Problem of

$$H = \sum_{(m,n) = \{-1,0,1\} \times \{-1,0,1\}} c_{mn} Q^m P^n$$

With

D5 Classical Curve

[Kajiwara-Noumi-Yamada 2015]

D5 Curve Parameterized by Asymptotic Values

 $0 = QP - (e_{3} + e_{4})P + e_{3}e_{4}Q^{-1}P$ -($e_{1}^{-1} + e_{2}^{-1}$)Q + E/α -...Q⁻¹ +($e_{1}e_{2}$)⁻¹QP⁻¹ -...P⁻¹ +...Q⁻¹P⁻¹

Subject to Vieta's Formula 解と係数の関係 (h₁h₂)² = e₁...e₈ Enjoys D5 Weyl Group Under Rational Maps

Similarly, D5 Quantum Curve

[Kubo-M-Nosaka 2018]

Rational Map in Classical Curve, Lifted to Similarity Transformation in Quantum Curve

- Same Parameterization
- $H/\alpha = QP (e_3 + e_4)P + e_3 e_4 Q^{-1}P$ -(e_1^{-1} + e_2^{-1})Q + E/\alpha -...Q^{-1} +(e_1 e_2)^{-1}QP^{-1} -...P^{-1} +...Q^{-1}P^{-1}

But Normal Order by Q: Left & P: Right

D5 Weyl Transformation

Trivial Transformations (Switching Asymptotic Values) $s_1: h_1/e_7 \Leftrightarrow h_1/e_8$ $s_2: e_3 \Leftrightarrow e_4$ $s_5: 1/e_1 \Leftrightarrow 1/e_2$ $s_0: e_5/h_2 \Leftrightarrow e_6/h_2$

D5 Weyl Transformation

For Nontrivial s_3 , we choose $G = \exp[F_3(q) - F_7(q)]$ $\exp[F_3(q) - F_3(q - 2\pi i k)] = \exp[q] - e_3$, $\exp[F_7(q + 2\pi i k) - F_7(q)] = \exp[q] - h_1/e_7$

Then

 $Q' = GQG^{-1} = Q$ $P' = GPG^{-1} = (Q - e_3)P(Q - h_1/e_7)^{-1}$ $s_3: e_3 \Leftrightarrow h_1/e_7$ Similarly, $s_4: 1/e_1 \Leftrightarrow e_5/h_2$ Totally, D5=so(10) Weyl Transf.

Gauge Fixing

- $(h_1, h_2, e_1, \dots, e_8)$ **10** Param. For 8 Asympt. Values
- Similarity Transformation

 $G = \exp[iap/(2\pi k)], G = \exp[-ibq/(2\pi k)]$

Then, Identification $(Q,P)^{\sim}(e^{a}Q,P)$, $(Q,P)^{\sim}(Q,e^{b}P)$

• Totally, 4 Gauge Fixing Conditions

$$e_2 = e_4 = e_6 = e_8 = 1$$

• 6 Param. Subject to 1 Vieta's Constraint

$$\rightarrow$$
 5 DOF

Matrix Models

• (2,2), $H = (Q^{1/2} + Q^{-1/2})^2 (P^{1/2} + P^{-1/2})^2$

 $(h_1, h_2, e_1, e_3, e_5, e_7) = (1, 1, 1, 1, 1, 1, 1)$

• (1,1,1,1), $H = (Q^{1/2} + Q^{-1/2})(P^{1/2} + P^{-1/2})(Q^{1/2} + Q^{-1/2})(P^{1/2} + P^{-1/2})$ ($h_1, h_2, e_1, e_3, e_5, e_7$)=(1,1, $e^{-\pi i k}, e^{+\pi i k}, e^{-\pi i k}, e^{+\pi i k}$)

Subject to $(h_1h_2)^2 = e_1e_3e_5e_7$

Matrix Models

• (2,2),
$$H = (Q^{1/2}+Q^{-1/2})^2 (P^{1/2}+P^{-1/2})^2$$

($h_1, h_2, e_1, e_3, e_5, e_7$)=(1,1,1,1,1,1)
• So(8)
• (1,1,1,1), $H = (Q^{1/2}+Q^{-1/2})(P^{1/2}+P^{-1/2})(Q^{1/2}+Q^{-1/2})(P^{1/2}+P^{-1/2})$
($h_1, h_2, e_1, e_3, e_5, e_7$)=(1,1, $e^{-\pi i k}, e^{+\pi i k}, e^{-\pi i k}, e^{+\pi i k})$
• Su(3) x [su(2)]² \neq [su(2)]³
Subject to $(h_1 h_2)^2 = e_1 e_3 e_5 e_7$

Symmetry Enhancement For (1,1,1,1)

- (1,1,1,1) Model Without Deformations
 [su(2)]³ Observed In Matrix Models
 su(3) x [su(2)]² Observed in Curves
- Reason

In Matrix Model Remaining Sym Was Studied As Further Deformations from (2,2) Model. In Fact,

- Intersection of so(8) & su(3) x $[su(2)]^2$ Is $[su(2)]^3$ and,
- Symmetry For (1,1,1,1) Is Enhanced Accidentally.

Out of 5-Dim Parameter Space, Identify (M_1, M_2) 2-Dim Subspace Containing (2,2) & (1,1,1,1) Models $(h_1, h_2, e_1, e_3, e_5, e_7) = (e^{-2\pi i k} h^{-1} e_2, e^{+2\pi i k} h e^{-1}, e^{-1}, e_2, e^{-1}, e_3)$ 2-Dim

"A Map of M-Theory ?"

Analogy in A Map of Earth

Summary

- M2-brane Backgrounds Are Parameterized By Curve Parameters, Forming "A Map".
- Exceptional Weyl Group Acts On The Map.

(2,2): $D_5 \rightarrow D_4$ (1,1,1,1): $D_5 \rightarrow A_2 \times (A_1)^2$ (2,1): $D_5 \rightarrow A_3$ (2,1,2,1): $E_7 \rightarrow D_5 \times A_1$

 All Symmetry Breakings from Matrix Models Are Reproduced

Discussions

- So Far Analytical Studies for CS Matrix Models.
 A New Avenue to Algebraic Studies.
- Reviews on Curves [Kajiwara-Noumi-Yamada 2015] are Motivated for Study of Painleve Equations. More Explicit Relations? Integrability? [Bonelli-Grassi-Tanzini 2017, Furukawa-M to appear]
- So Far Curves of Genus 1. Curves of Higher Genus?