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Introduction



• The correspondence between (large N) matrix models and
gauge theories has been known for long time and investigated
from various viewpoints.

AGT relation [Alday-Gaiotto-Tachikawa, 2009]
2d conformal blocks = Nekrasov partition function of N = 2
supersymmetric gauge theories

=⇒ Refined correspondence between (finite N) matrix models
and (N = 2) gauge theories

[Example] (β-deformed) matrix model having the potential
with three logarithmic terms←→ N = 2 SU(2) with Nf = 4

• (Motivation) Renewed interest in Painlevé/Gauge
correspondence

• We concentrate on one of irregular limits to Nf = 2
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Painlevé/Gauge correspondence

Painlevé equations

PVI PV PIII1 PIII2 PIII3

PIV PII PI

N = 2 supersymmetric SU(2) gauge theories with Nf flavors

Nf = 4 Nf = 3 Nf = 2 Nf = 1 Nf = 0

H2 AD H1 AD H0 ADArgyres-Douglas
theories

[Kajiwara-Masuda-Noumi-Ohta-Yamada, nlin/0403009]
[Bonelli-Lisovyy-Maruyoshi-Sciarappa-Tanzini, 1612.06235 [hep-th]] 4



[Dzhamay-Takenawa, 1408.3778 [math-ph]]

Painlevé and associated discrete Painlevé (dP) (alt=alternate)

PVI PV PIII1 PIII2 PIII3

PIV PII PI

d-PV d-PIII, d-PIV alt d-PII

d-PII alt d-PI

Nf = 4 Nf = 3 Nf = 2 Nf = 1 Nf = 0

H2 AD H1 AD H0 AD
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In this talk, we concentrate on

PVI PV PIII1 PIII2 PIII3

PIV PII PI

d-PV d-PIII, d-PIV alt d-PII

d-PII alt d-PI

Nf = 4 Nf = 3 Nf = 2 Nf = 1 Nf = 0

H2 AD H1 AD H0 AD

from the viewpoint of matrix models.
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Unitary matrix model



Generalized Gross-Witten-Wadia model

Let us consider the following unitary matrix model

ZU(N)(M) :=
1

vol(U(N))

∫
[dU] exp

(
Tr WU(U)

)
,

where U is an N×N unitary matrix model, with the potential

WU(z) = −
1
2g

(
z + 1

z

)
+ M log z, (M ∈ Z).

This reduces to multiple integrals over eigenvalues

ZU(N) =
1
N!

( N∏
i=1

∮ dzi
2πi zi

)
∆(z)∆(z−1) exp

( N∑
i=1

WU(zi)

)
,

∆(z) =
∏

1≤i<j≤N
(zi − zj), ∆(z−1) =

∏
1≤i<j≤N

(z−1
i − z−1

j ).
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Properties

(1) When M = 0, this is the famous Gross-Witten-Wadia (GWW)
model. In the large N, this model exhibits the third order
phase transition at S = 1 where S := Ng.

(2) For M ̸= 0 with M finite, the generalized GWW model also
exhibits the third order phase transition at S = 1 in the large N.

The free energy

F = log ZU(N)(M) =

∞∑
k=0
Fk(S)g2k−2,

where the planar contribution is

F0(S) =

(1/4), (S ≥ 1),
(1/2)S2(log S− (3/2)) + S, (0 ≤ S ≤ 1).

F ′′′
0 is discontinuous at S = 1. 9



(3) The partition function ZU(N)(M) is a τ-function of Painlevé
III′ equation.

(4) The partition function ZU(N)(M) can be written as

ZU(N)(M) = hN
0

N−1∏
j=1

(
1−Aj(M)Bj(M)

)N−j
.

If we set

Xn(M) :=
An+1(M)

An(M)
, Yn(M) :=

Bn+1(M)

Bn(M)
,

then Xn and Yn respectively satisfies the alternate discrete
Painlevé II (alt dPII) equations (with different parameters).
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(5) We expect that this partition function ZU(N)(M) is closely
related to the instanton partition function of the 4d N = 2
supersymmetric SU(2) gauge theory with Nf = 2
hypermultiplets in the self-dual Ω background via parameter
identifications:

1
g =

Λ2
gs

, N = −(m1 + m2)

gs
, M =

(m2 −m1)

gs
.

Here Λ2 is dynamical mass scale and mi are the mass of the
hypermultiplets.

(Irregular limit of AGT relation).

• The planar loop equation of the matrix model can be
identified with the Seiberg-Witten curve of Nf = 2 model.
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(6) In the double scaling limit, the alt dPII equation goes to the
Painlevé II equation. The loop equation in the double scaling
limit goes to the Seiberg-Witten curve of the Argyres-Douglas
(AD) model of type H1.

44 8

Nf = 2 (first realization) H1 AD (first realization)
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Some Details



(3) The τ-function of PIII′

The Painlevé III′ equation (q = q(s))

d2q
ds2 =

1
q

(
dq
ds

)2
− 1

s

(
dq
ds

)
+

q2

4 s2 (γ q + α) +
β

4 s +
δ

4 q

is a Hamiltonian system
dq
ds =

∂HIII′

∂p ,
dp
ds = −∂HIII′

∂q
with a Hamiltonian

HIII′(s) =
1
s

[
q2 p2 − (q2 + v2 q− s)p +

1
2(v1 + v2)q

]
.

The parameters α, β, γ, and δ of PIII′ are fixed as

α = −4 v1, β = 4(v2 + 1), γ = 4, δ = −4.
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• The τ-function of PIII′ is defined by

HIII′(s) =
d
ds log τ(s).

Let

σ(s) := sHIII′(s) = q2 p2−(q2+v2 q−s)p+1
2(v1+v2) = s d

ds log τ(s).

This function satisfies the σ-form of PIII′:

(sσ′′)2 − 4(σ − sσ′)σ′(σ′ − 1)−
(

v2 σ
′ − 1

2(v1 + v2)

)2
= 0.

Using [Forrester-Witte, math-ph/0201051], we can see that

τ(s) = s(1/2)MNZU(N)(M), s = 1
4g2 ,

with

v1 = M + N = −2m1
gs

, v2 = −M + N = −2m2
gs

.
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(4) alt dPII

• The unitary matrix model ZU(N)(M) can be solved by the
method of orthogonal polynomials. When M = 0, the GWW
model is studied by this method in [Periwal-Shevits, 1990].

• When M = 0,

ZU(N)(0) = I0(1/g)N
N−1∏
j=1

(1− R2
j )

N−j.

Here Iν(z) is the modified Bessel function of the first kind. Rn
satisfies the discrete Painlevé II equation (dPII equation)

Rn+1 + Rn−1 =
2n g Rn
1− R2

n
.
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• When M ∈ Z, the results of [Periwal-Shevits] are generalized
to

ZU(N)(M) = (−1)MNIM(1/g)N
N−1∏
j=1

(1−AjBj)
N−j.

An and Bn satisfy the following system of recursion relations
(string equations):

An+1 + An−1 =
2n g An

1−AnBn
, Bn+1 + Bn−1 =

2n g Bn
1−AnBn

,

AnBn+1 −An+1Bn = 2 M g.

When M ̸= 0, An ̸= Bn. But when M = 0, we can set
An = Bn = Rn and these recursion relations reduces to the
dPII equation.
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Let

Xn(M) =
An+1(M)

An(M)
, Yn(M) =

Bn+1(M)

Bn(M)
, (n ≥ 0).

Then these variables satisfy the alt dPII equations:

(n + 1)
1 + Xn Xn+1

+
n

1 + Xn Xn−1
=

1
2 g

(
−Xn +

1
Xn

)
+ n−M,

(n + 1)
1 + Yn Yn+1

+
n

1 + Yn Yn−1
=

1
2 g

(
−Yn +

1
Yn

)
+ n + M.
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(6) Double scaling limit

• The double scaling limit: N→∞, S = Ng→ 1 with

κ ≡ 1
N

1
(1− S)(1/2)(2−γst)

, (γst = −1)

kept finite. Here γst is the susceptibility of the system.

• In the N→∞ limit, we assume that a discrete variable fn
turns into a continuous function

fn → f
( n

N

)
≡ f(x), x ≡ n

N , (0 ≤ x ≤ 1).

Let
a3 ≡ 1

N , S ≡ N g = 1− c a2, (c = κ−2/3),

n g =
n
NNg = S x = 1− 1

2 a2t, An Bn = a2u(t).
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Then the string equations turns into the PII equation:
[Flaschka-Newell, 1980]

u′′ =
(u′)2

2 u + y2 − 1
2 t u− M2

2 u .

Let pu ≡ −u′/u. Then, this is equivalent to

u′ = −pu u, p′u =
1
2 p2

u − u +
1
2 t + M2

2 u2 .

This is a Hamiltonian system

u′ =
∂HII
∂pu

, p′u = −∂HII
∂u ,

with the Hamiltonian

HII = −
1
2p2

u u +
1
2 u2 − 1

2 t u +
M2

2 u .
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By a canonical transformation

(u, pu)→ (y, py); u = −py, pu = y +
M
py

,

the Hamiltonian becomes

HII =
1
2 p2

y +
1
2(y

2 + t)py + M y.

This leads to

y′ = py +
1
2 y2 +

1
2 t, p′y = −py y−M.

Then
y′′ = 1

2 y3 +
1
2 t y +

(
1
2 −M

)
.

By rescaling y and t, we get the standard form of PII equation:

y′′ = 2 y3 + t y + α, α =
1
2 −M.
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• Bäcklund transformations for PII are generated by s1 and π:

s1(y) = y +
2M
py

, π(y) = −y,

s1(py) = py, π(py) = −py − y2 − t,
s1(M) = −M, π(M) = 1−M.

• The translation T = s1π.

Tn(M) = M + n, (n ∈ Z).

Let yn(t) = Tn(y(t)), pn(t) = Tn(py(t)), (n ∈ Z). Then they obey

yn+1 + yn = −2(M + n)
pn

, pn + pn−1 = −y2
n − t.

These leads to the alternate discrete Painlevé I equation (alt
dPI):

2(M + n)
yn+1 + yn

+
2(M + n− 1)

yn + yn−1
= y2

n + t.
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PVI PV PIII1 PIII2 PIII3

PIV PII PI

d-PV d-PIII, d-PIV alt d-PII

d-PII alt d-PI

Nf = 4 Nf = 3 Nf = 2 Nf = 1 Nf = 0

H2 AD H1 AD H0 AD
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