December 13, 2018 @Media Center, Osaka City University, Japan International Symposium in Honor of Professor Nambu for the 10th Anniversary of his Nobel Prize in Physics

Neutrino CP violation in the J-PARC neutrino experiments

T. Nakaya (Kyoto University)

南部陽一郎物理学研究所HPより

「中二

Faculty of Sciences Graduate School of Science

而半和

echnology

世早晋

[3]三

Advanced Hesearch Institute for Natural Science and

南部陽一郎物理学研究所

and the

Nambu Yoichiro Institute of Theoretical and Experimental Physics

南部陽一郎

Land Friday

© 研究所プレート(理学部棟玄関に12/14設置予定)

教堂研究所

Advanced Mathematical Institute

Neutrinos

- Week interactions only
 - Small mass
 - Origin in physics beyond the standard model?
 - Mixing
 - 3 neutrinos are mixed
 - Different mixing patterns from that of quarks
 - What symmetry exists?
 - No experimental information on the CP symmetry (between a particle and the antiparticle)

 v_2

V

 V_{3}

Much exciting to study neutrinos after the discovery of neutrino oscillation in 1998

Abundant particles in our universe

our world is invisible

- · Dark Energy
- · Dark Matter
- · Neutrinos
 - · Cosmic Neutrino Background (0.03%)
 - · (Relic) Supernova Neutrinos
 - · Solar Neutrinos
 - · Atmospheric Neutrinos
 - · Geo-neutrinos
 - + We can make neutrinos by reactors and accelerators.

Image of our universe

Dark Matter

Neutrinos

Matter

CP Violation

- In the Big-Bang, particles and antiparticles were produced in same amounts.
- Later, they would annihilate.
 - $e^+ + e^- \rightarrow photons$
 - $p + p_{bar} \rightarrow photons$
- Violation of the symmetry between a particle and the anti-particle.
 - CP violation

CP violation is necessary for particles only to survive and to form our universe.

Probing Neutrino CPV

- Neutrino Oscillations with CP violation [Mainly Experimental study]
 - Weak (flavor) state ≠ Mass state
 - · 3 generations → Imaginary Phase in a mixing matrix
 - \cdot [Neutrino] PMNS matrix \sim [Quark] CKM matrix
 - · Example: $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$
- · Heavy Majorana Neutrino (N) if exists [Theoretical study]
 - · NOT easy to access (very very difficult)
 - \cdot The decay of N
 - $\cdot \mathsf{P}(\mathsf{N} \rightarrow \mathsf{I}_{\mathsf{L}} + \overline{\phi}) \neq \mathsf{P}(\mathsf{N} \rightarrow \mathsf{I}_{\mathsf{L}} + \overline{\phi})$
 - $\cdot\,$ Or, the oscillations of N

Leptogenesis and Neutrino CPV

· Saharov conditions for Baryon Asymmetry

- · [B] Baryon Number Violation
- [CP] C and CP violation
- [T] Interactions out of thermal equilibrium
- Leptogenesis and Low Energy CP violation in Neutrinos
 - [B] Sphaleron process for Δ (B+L) \neq 0
 - [CP] Heavy Majorana Neutrino decay and/or Neutrino oscillations
 - [Phys. Rev. D75, 083511 (2007)] $|\sin\theta|_{13}\sin\delta|_{>}0.09$ is a necessary condition for a successful "flavoured" leptogenesis with hierarchical heavy Majorana neutrinos when the CP violation required for the generation of the matter-antimatter asymmetry of the Universe is provided entirely by the Dirac CP violating phase in the neutrino mixing matrix.
 - $\cdot \sin\theta_{13} \sim 0.15 \Rightarrow |\sin\delta| > 0.6$

How to measure neutrino CPV?

· Measure $P(\nu_{\mu} \rightarrow \nu_{e})/P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) \neq 1$

· or $P(\nu_{\mu} \rightarrow \nu_{\tau})/P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}) \neq 1$ because of $P(\nu_{\mu} \rightarrow \nu_{\mu})/P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}) = 1$

- Or, precisely measure P($\nu \mu \rightarrow \nu_e$) with the assumption of 3 light neutrinos. Within the framework of 3 neutrinos, CP violation will be governed by the imaginary phase δ_{CP} in the neutrino mixing matrix.
- Matter effect can mimic the genuine CP violation. The measurement of the matter effect is equally important to study neutrino CP violation. The matter effect determine the neutrino mass ordering.

10

Formula of Oscillation Probability with CP violation

K2K & T2K Experiments

The T2K Collaboration

Canada	Italy	Poland	Spain	
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	IFAE, Barcelona	U. Sheffield
U. Alberta	INFN, U. Napoli	NCBJ, Warsaw	IFIC, Valencia	U. Warwick
U. B. Columbia	INFN, U. Padova	U. Silesia, Katowice		
U. Regina	INFN, U. Roma	U. Warsaw	Switzerland	USA
U. Toronto		Warsaw U. T.	ETH Zurich	Boston U.
U. Victoria	Japan	Wroklaw U.	U. Bern	Colorado S. U.
U. Winnipeg	ICRR Kamioka		U. Geneva	Duke U.
York U.	ICRR RCCN			Louisiana S. U.
	Kavli IPMU	Russia	United Kingdom	Stony Brook U.
France	КЕК	INR	Imperial C. London	U. C. Irvine
CEA Saclay	Kobe U.		Lancaster U.	U. Colorado
IPN Lyon	Kyoto U.		Oxford U.	U. Pittsburgh
LLR E. Poly.	Miyagi U. Edu.		Queen Mary U. L.	U. Rochester
LPNHE Paris	Osaka City U.		STFC/Daresbury	U. Washington
	Okayama U.		STFC/RAL	
Germany	Tokyo Metropolitan U.	~500 members,	U. Liverpool	
Aachen U.	U. Tokyo	59 Institutes.		
		11 countries		
		TT coulities		

Neutrino oscillation experiments in Japan Intense Neutrino Beam for $(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}$ study

• 22.5 kton (Super-K, ~2026)
• 190 kton (Hyper-K, 2027~)

T2K ν beam

•30 GeV ~2×10¹⁴ protons extracted every 2.5/1.3

sec. directed to the carbon target.

•Secondary π^{\pm} (and K[±]) focused by three electromagnetic horns (±250kA/320kA)

• ν_{μ} beam from mainly $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$

 $\cdot \, \nu_{\,\mathrm{e}}$ (1~2%) in the beam come from K a decays

•Reversing the current of horns, Anti-n beam ($\nu \mu$) can be produced

T2K-Far Detector: Super-Kamiokande

39.3m

- Water Cherenkov detector with 50 kton mass (22.5 kton Fiducial volume) located at 1km underground
- Good performance (momentum and position resolution, PID, charged particle counting) for sub-GeV neutrinos.
- * [Typical] 61% efficiency for T2K signal ν_{e} with 95% NC-1 π^{0} rejection
 - Inner tank (32 kton) :11,129 20inch PMT
 - Outer tank:1,885
 8inch PMT

Neutrino Detection at SK Far Detector

A door to Neutrino CP violation is opened

- $\nu \mu \rightarrow \nu_e$ oscillation w/ Δm_{atm^2} discovered by the T2K experiment
 - Indication in 2011 [PRL 107, 041801 (2011)]
 - Observation in 2013 [PRL 112, 061802 (2014)]

Synopsis: Inching Closer to CP Violation in Neutrinos

October 24, 2018

More data and improved analysis methods lead to better confidence that neutrinos and antineutrinos behave slightly differently.

Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), University of Tokyo

Nature must treat matter and antimatter differently, otherwise the early Universe would have created both in equal amounts. However, most particles obey "*CP* symmetry," which states that the laws of physics are the same if a particle is swapped with a mirror reflection of its antiparticle. Quarks violate this symmetry but not by enough to explain matter's dominance over antimatter. Now, researchers with the T2K Collaboration report with improved statistical confidence that *CP* symmetry is violated in neutrinos.

New T2K CPV Results in 2018

Ref. T2K 2017 CPV result is just published in PRL

PHYSICAL REVIEW LETTERS 121, 171802 (2018)

Editors' Suggestion

Featured in Physics

Search for *CP* Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×10^{21} Protons on Target

K. Abe,⁴⁸ R. Akutsu,⁴⁹ A. Ali,²⁰ J. Amey,¹⁷ C. Andreopoulos,^{46,27} L. Anthony,²⁷ M. Antonova,¹⁶ S. Aoki,²⁴ A. Ariga,²
Y. Ashida,²⁵ Y. Azuma,³⁴ S. Ban,²⁵ M. Barbi,³⁹ G. J. Barker,⁵⁸ G. Barr,³⁵ C. Barry,²⁷ M. Batkiewicz,¹³ F. Bench,²⁷
V. Berardi,¹⁸ S. Berkman,^{4,54} R. M. Berner,² L. Berns,⁵⁰ S. Bhadra,⁶² S. Bienstock,³⁶ A. Blondel,^{12,*} S. Bolognesi,⁶

New T2K Data (3.16 E21 POT ← 2.2E21 POT)

J-PARC Accelerator has achieved stable operation with ~500 kW beam power

Oscillation Analysis: Step Neutrino Flux Model

Fit to ND280 data constrains neutrino flux

ND280 Data

parameters and interaction model parameters

Challenges

- Systematic uncertainties from neutrino-nucleus cross sections -

A01

WAGASCI Project

Osaka City Univ. Ken'ichi Kin on behalf of the WAGASCI Collaboration

Neutrino Frontier Workshop 2016

Central detector

WAGASCI Collaboration

Institute for Nuclear Research of the Russian Academy of Science.

M. Antonova, A. Izmaylov, M. Khabibullin, A. Khotjantsev, A. Kostin, Y. Kudenko, A. Mefodiev, O. Mineev, T. Ovsjannikova, S. Suvorov, N. Yershov

<u>KEK</u>

T. Ishida, T. Kobayashi

Kyoto University

S. V. Cao, T. Hayashino, A. Hiramoto, A. K. Ichikawa, A. Minamino, K. Nakamura, T. Nakaya, K. Yoshida

Laboratorie Leprince-Ringuet, Ecole Polytechnique

A. Bonnemaison, R. Cornat, O. Draper, O. Ferreira, F. Gastaldi, M. Gonin, J. Imber, M. Licciardi, T. Mueller, B. Quilain, O. Volcy

Osaka City University

Y. Azuma, T. Inoue, J. Harada, K. Kin, Y. Seiya, K. Wakamatsu, K. Yamamoto

University of Geneva

A. Blondel, F. Cadoux, K. Karadzhov, Y. Favre, E. N. Messomo, L. Nicola, S. Parsa, M. Rayner

<u>University of Tokyo</u>

N. Chikuma, F. Hosomi, T. Koga, R. Tamura, M. Yokoyama Institute of Cosmic-Ray Research, University of Tokyo Y. Hayato

8 Institute

53 Collaborators

Goal of WAGASCI experiment

Measure neutrino cross sections of H_2O and CH with 10% accuracy. Measure the neutrino cross section ratio btw. H_2O and CH within 3% accuracy

Light yield measurement by cosmic-rays

Oscillation Analysis: Step 2

Prediction at Super-K

Oscillation Probability Constrained by near detector

$$N(p_k, \theta_k; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) = \sum_{i}^{E_v \text{ bins } flavors} \sum_{j}^{flavors} P_{v_j \to v_k}(E_{v,i}; \theta_{23}, \Delta m_{32}^2, \delta_{CP}...) \Phi_j^{far}(E_{v,i}) \sigma_k(E_{v,i}, p_k, \theta_k) \epsilon(p_k, \theta_k) M_{det}$$

Fit to SK data to extract oscillation parameter intervals

v Mode v_e Candidates

Observation at Super-K

Predictions and Observation

		Observed			
Sample	$\delta_{\rm cp}$ =- $\pi/2$	δ _{cp} =0	$\delta_{cp}=\pi/2$	$\delta_{ ext{cp}}=\pi$	Rates
e-like FHC	73.8	61.6	50.0	62.2	75
e-like+ π FHC	6.9	6.0	4.9	5.8	15
e-like RHC	11.8	13.4	14.9	13.2	9
μ -like FHC	268.5	268.2	268.5	268.9	243
μ -like RHC	95.5	95.3	95.5	95.8	102

 The number of observed events are largely in line with the predictions after oscillations

· The e-like samples have rates most consistent with the $\delta_{cp}=-\pi/2$ hypothesis

· The observed μ -like rate in neutrino mode is lower than prediction

consistent within statistical and systematic errors

(Simulation) Oscillation Parameter Sensitivities

Without the reactor experiment constraint on $sin^2 2 \theta_{13}$

(Data) θ_{13} and δ_{CP}

- Fit without the reactor constraint: closed contours in $\delta_{\rm cp}$ at 90% CL
- The T2K value for $\sin^2 \theta_{13}$ is consistent with the PDG 2016
 - Adding the reactor constraint improves the constraint on $\delta_{\rm cp}$ average:

Measurement of δ_{cp} with reactor θ_{13}

Best fit point:

-1.82 radians in Normal Hierarchy

The 1σ CL confidence interval: The 2σ CL confidence interval:

Normal hierarchy: [-2.44, -1.23] radians Normal hierarchy: [-2.91, -0.85] radians Inverted hierarchy: [-1.57, -1.16] radians

· CP conserving values (0, π) fall outside of the 2 σ CL intervals

- Neutrino: 58 events observed with 15 background expected
- · Anti-neutrino: 18 events observed with 5.3 background expected (>4 σ observation)

Super-K with almospheric V.

 $\cdot\,$ In addition to CP violation, it is also sensitive to mass hierarchy.

SK only

CP violation parameter δ_{CP}

 $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -4.3$

SK+T2K

 $\Delta \chi^2 = \chi^2_{\text{NH}} - \chi^2_{\text{IH}} = -5.2$ talk at NEUTRINO 2018

I. M. Soler, Talk at NOW 2018

Comparison between different global fits

	$\operatorname{Nufit}[1]$	Capozzi et al.,[2]	Salas et al.,[3]
$\sin^2 \theta_{12}$	$0.307\substack{+0.013\\-0.012}$	$0.304_{-0.013}^{+0.014}$	$0.320\substack{+0.20\\-0.16}$
$\sin^2 \theta_{23}$	$0.538\substack{+0.033\\-0.069}$	$0.551\substack{+0.019\\-0.070}$	$0.547^{+0.20}_{-0.30}$
$\sin^2 \theta_{13}$	$0.02206\substack{+0.00075\\-0.00075}$	$0.0214\substack{+0.0009\\-0.0007}$	$0.0216\substack{+0.00083\\-0.00069}$
δ_{CP}	234_{-31}^{+43}	234^{+41}_{-32}	218^{+38}_{-27}
$\frac{\Delta m_{21}^2}{10^{-5} {\rm eV}^2}$	$7.4^{+0.21}_{-0.20}$	$7.34_{-0.14}^{+0.17}$	$7.55_{-0.16}^{+0.20}$
$\frac{\Delta m_{31}^2}{10^{-3} {\rm eV}^2}$	$2.494^{+0.033}_{-0.031}$	$2.455^{+0.035}_{-0.032}$	$2.50^{+0.03}_{-0.03}$

[1] NuFIT 3.2 (2018), www.nu-fit.org

[2] F. Capozzi, E. Lisi, A. Marrone, and A. Palazzo, Prog.Part.Nucl.Phys. 102 (2018) 48-72

[3] P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola, J.W.F. Valle, Phys.Lett. B782 (2018) 633-640

CP violation (w/ δ CP~- π /2) is preferable.

· 3σ sensitivity to CP violation for favorable parameters based on

- \cdot 20×10²¹ Protons on Target with the upgrade of J-PARC to 1.3MW (~10 year long run) before year 2026.
- 50 % more events with improvements of the beam line and event reconstructions.
- · ~2/3 smaller systematic uncertainties.

T2K-II: PHYSICS POTENTIAL

CP violation in Hyper-K beam ν

- Keep looking for GUT with neutrinos.
- Example: $p \rightarrow e^{+}\pi^{0}$ in Hyper-K

42

Exploration of Particle Physics and Cosmology with Neutrinos

文部科学省 科学研究費補助金 新学術研究(研究領域提案型)							
ニュートリノで拓く	素粒子と宇宙	ホーム	研究概要	リンク	お問い合わせ	English	

Experimental group of T2K

Review Committee

AU2:加速奋ーュートリノヒームで係る紊粒子の対称性						
	氏名	所属	専門	担当		
研究代表 者	中家 剛	京都大学 教授	素粒子実験	総括、ニュー トリノ振動測 定		
	小関 忠	高エネルギー加速器 研究機構 教授	加速器	ビームの大強 度化		
研究分担 者	中平 武	高エネルギー加速器 研究機構 准教授	素粒子実験	ビームモニタ リング		
	清矢 良浩	大阪市立大学 教授	素粒子実験	水標的測定器 の開発		
	福田 努	名古屋大学 特任助教	素粒子実験	原子核乾板現 象、画像解析		
	Bronner Christophe	東京大学 助教	素粒子実験	ニュートリノ 反応シミュレ ーション		
連携研究 者	Hartz Mark	東京大学 助教	素粒子実験	ニュートリノ ビームフラッ クス計算		
	Friend Megan	高エネルギー加速器 研究機構 助教	素粒子実験	ニュートリノ ビーム照射		

総括班評価者						
	氏名	所属	専門			
	荻尾 彰一	大阪市立大学 教授	宇宙線			
評価者	高田 昌広 🖂	東京大学 国際高等研究所カブリ数物連携宇宙研究 機構 教授	理論物理学(宇宙 論)			
	大野木 哲也 🖂	大阪大学 教授	素粒子論			
	飯嶋 徹	名古屋大学 教授	素粒子実験・原子 核実験			
	幅 淳二 🛛 🖂	高エネルギー加速器研究機構 理事	素粒子実験			

他、研究者、大学院生、あわせて総計約15名

44

- · A hint of CP violation in neutrinos.
 - \cdot 95% CL (2 σ) indication from T2K today
 - · $\delta_{CP} \sim -\pi/2$ (CP violation) is preferable in the global fit
 - \cdot T2K-II is proposed to reach 3 σ discovery sensitivity with 1.3 MW beam.
 - · Hyper-K will be realized and will study neutrino CP violation with >5 σ discovery.

Backup

Systematic Errors

	% Errors on Predicted Event Rates (Osc. Para. A)					
	1R µ	-like	1R e-like			
Error Source	FHC	RHC	FHC	RHC	FHC CC1 π	FHC/RHC
SK Detector	2.40	2.01	2.83	3.79	13.16	1.47
SK FSI+SI+PN	2.20	1.98	3.02	2.31	11.44	1.58
ND280 const. flux & xsec	2.88	2.68	3.02	2.86	3.82	2.31
Eb	2.43	1.73	7.26	3.66	3.01	3.74
$\sigma(\nu_{e})/\sigma(\nu_{\mu}), \sigma(\nu_{e})/\sigma(\nu_{\mu})$	0.00	0.00	2.63	1.46	2.62	3.03
NC1 r	0.00	0.00	1.07	2.58	0.33	1.49
NC Other	0.25	0.25	0.14	0.33	0.99	0.18
Total Systematic Error	4.91	4.28	9.60	7.87	18.65	5.93

 Total error is in the 4-10% range. ~6% error on the relative rate for neutrino mode and antineutrino mode samples

 It is a very interesting situation, and we need more data.

atmospheric neutrino oscillation

51

Nucl.Phys. B669, 255(2003) Nucl. Phys. B680, 479(2004)

 $\frac{\Phi(\nu_{e})}{\Phi_{0}(\nu_{e})} - 1 \approx P_{2}(r \cdot \cos^{2}\theta_{23} - 1) \text{ Solar term}$ $-r \cdot \sin \tilde{\theta}_{13} \cdot \cos^{2} \tilde{\theta}_{13} \cdot \sin 2\theta_{23}(\cos \delta \cdot R_{2} - \sin \delta \cdot I_{2})$ $+ 2 \sin^{2} \tilde{\theta}_{13}(r \cdot \sin^{2}\theta_{23} - 1)$ $\theta_{13} \text{ resonance term} (\delta CP)$ $\theta_{13} \text{ resonance term}$ $\mathbf{r} : \mu/e flux ratio (~2 at low energy)$ $P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } \mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu\tau} \text{ in matter}$ $R_{2} = Re(A^{*}_{ee}A_{e\mu})$ $I_{2} = Im(A^{*}_{ee}A_{e\mu})$ $I_{2} = Im(A^{*}_{ee}A_{e\mu})$ $A_{ee} : survival amplitude of the 2\nu system$ $A_{e\mu} : transition amplitude of the 2\nu system$ 0.5

 V_e appearance (and V_μ disappearance) is expected with the matter effect in the Earth. - effect for neutrinos in the case of normal

- mass ordering
- effect for anti-neutrinos in the inverted mass ordering

T2K Beam monitoring

Expansion of the Fiducial Volume

Sample	Towall Cut	Wall Cut
CCQE 1-Ring e-like FHC	170 cm	80 cm
CCQE 1-Ring μ -like FHC	250 cm	50 cm
$CC1\pi$ 1-Ring e-like FHC	270 cm	50 cm
CCQE 1-Ring e-like RHC	170 cm	80 cm
CCQE 1-Ring μ -like RHC	250 cm	50 cm

Fitting ND280 Data

· Example fitted FGD2 (water) CC-0 π muon momentum · The fit reproduces the data well with a p-value of 0.47

$\sin^2\theta_{23}$

- Fit the normal and inverted hierarchies separately
- Results with the reactor constraint on $sin^2 2\theta_{13}$
- Constraint on $\sin^2 \theta_{23}$ is slightly stronger than the sensitivity

θ_{23} octant and mass hierarchy

- Bayesian analysis: natural way to infer data preference for θ_{23} octant or mass hierarchy
- \cdot Assume equal prior probability for both octant and hierarchy hypotheses
- Fraction of steps from Markov Chain in each octant/hierarchy is posterior probability for the octant/hierarchy hypothesis
- · T2K data prefers the normal hierarchy and upper octant

	$\sin^2 \Theta_{23} < 0.5$	sin ² 0 ₂₃ > 0.5	Sum
NH ($\Delta m^{2}_{32} > 0$)	0.204	0.684	0.888
IH ($\Delta m_{32}^2 < 0$)	0.023	0.089	0.112
Sum	0.227	0.773	

Posterior probabilities (with reactor constraint)