Constructive Wall-Crossing \& Seiberg-Witten

Piljin Yi
(KIAS)
QFTSTRI2, Osaka

April 2012

IIO2.I729 with Sungjay Lee
I I 07.0723 with Heeyeon Kim, Jaemo Park, and Zhaolong Wang
wall-crossing is discontinuity of charged \& particle-like BPS states in vacuum moduli space / parameter space

prototype : N=2 Seiberg-Witten $\mathrm{SU}(2) \rightarrow \mathrm{U}(\mathrm{I})$

Kontsevich-Soibelman, 2008
(also Gaiotto-Moore-Neitzke, 2008-2009)

$$
\left[V_{\alpha}, V_{\beta}\right]=(-1)^{\langle\alpha, \beta\rangle}\langle\alpha, \beta\rangle V_{\alpha+\beta} \quad K_{\gamma} \equiv \exp \left(\sum_{n} \frac{V_{n \gamma}}{n^{2}}\right)
$$

where $\Omega^{ \pm}$are $2^{\text {nd }}$ helicity trace of one-particle Hilbert spaces

$$
\begin{gathered}
S O(4)=S U(2)_{\text {rotation }} \times S U(2)_{\mathrm{R}-\text { symmetry }} \\
J
\end{gathered}
$$

$$
\begin{array}{|ll}
\hline \Omega=-\frac{1}{2} \operatorname{tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} \\
2^{\text {nd }} \text { helicity trace }
\end{array} \quad \begin{array}{ll}
y=1 & \Omega(y)=-\frac{1}{2} \operatorname{tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} y^{2 I_{3}+2 J_{3}} \\
& \begin{array}{l}
\text { protected spin character } \\
\text { Gaiotto, Moore, Neitzke 2010 }
\end{array}
\end{array}
$$

$$
\rightarrow(-1)^{2 l} \times(2 l+1)
$$

$$
\text { on [a spin } 1 / 2+\text { two spin } 0 \text {] }
$$

$$
\times[\text { angular momentum } l \text { multiplet }]
$$

$$
\left[V_{\alpha}, V_{\beta}\right]=(-1)^{\langle\alpha, \beta\rangle}\langle\alpha, \beta\rangle V_{\alpha+\beta} \quad \bar{\Omega}(\Gamma)=\sum_{p \mid \Gamma} \Omega(\Gamma / p) / p^{2} \quad \begin{aligned}
& \text { rational } \\
& \text { invariant }
\end{aligned}
$$

why wall-crossings happen ?
does Kontsevich-Soibelman work for all $\mathrm{N}=2$ theories ?

$$
\text { why rational invariants ? } \bar{\Omega}(\Gamma)=\sum_{p \mid \Gamma} \Omega(\Gamma / p) / p^{2}
$$

or more generally, is it possible to derive wall-crossing rules entirely from an elementary field theory computation?
why wall-crossings happen ?
does Kontsevich-Soibelman work for all $\mathrm{N}=2$ theories ?
why rational invariants?
or more generally, is it possible to derive wall-crossing rules entirely from an elementary field theory computation ?

1998 Lee + P.Y.
$\mathrm{N}=4 \mathrm{SU}(\mathrm{n}) 1 / 4 \mathrm{BPS}$ states via multi-center classical dyon solitons

1999 Bak + Lee + Lee + P.Y.
$\mathrm{N}=4 \mathrm{SU}(\mathrm{n}) 1 / 4 \mathrm{BPS}$ states via multi-center monopole dynamics
1999-2000 Gauntlett + Kim + Park + P.Y./ Gauntlett + Kim + Lee + P.Y. $\mathrm{N}=2 \mathrm{SU}(\mathrm{n}) \mathrm{BPS}$ states via multi-center monopole dynamics
a generic BPS state with 4 supercharges preserved is a loose bound state of many charge centers
a generic BPS state with 4 supercharges preserved is a loose bound state of many charge centers

$$
\gamma_{\text {total }}=\sum_{A} \gamma_{A}
$$

in particular, for $\operatorname{SU}(2)$ Seiberg-Witten, we expect

in particular, for $\operatorname{SU}(2)$ Seiberg-Witten, we expect

$$
\begin{array}{ll}
W^{+}=M+\bar{D} & \text { vector multiplet } \\
& \Omega=-2
\end{array}
$$

wall-crossing \leftarrow dissociation of supersymmetric bound states

1998 Lee + P.Y.
$\mathrm{N}=4 \mathrm{SU}(\mathrm{n}) 1 / 4 \mathrm{BPS}$ states via multi-center classical dyon solitons

1999 Bak + Lee + Lee + P.Y.
$\mathrm{N}=4 \mathrm{SU}(\mathrm{n}) 1 / 4 \mathrm{BPS}$ states via multi-center monopole dynamics
1999-2000 Gauntlett + Kim + Park + P.Y./ Gauntlett + Kim + Lee + P.Y.
$\mathrm{N}=2 \mathrm{SU}(\mathrm{n}) \mathrm{BPS}$ states via multi-center monopole dynamics

2001 Denef:
$\mathrm{N}=2$ supergravity via classical multi-center black holes attractor solutions
$\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{A}}\right]=\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle / 2}{R_{A B}}$
$\zeta \equiv \frac{\sum_{A} Z_{\gamma_{A}}}{\left|\sum_{A} Z_{\gamma_{A}}\right|}$
a generic BPS black hole with 4 supercharges preserved is a loose bound state of many single-centered black holes

wall-crossing \rightarrow emergence of supersymmetric bound states

$$
\begin{aligned}
& W^{+}=M+\bar{D} \\
& W^{-}=\bar{M}+D \\
& D_{n}=(n+1) M+n \bar{D} \\
& \bar{D}_{n}=(n-1) M+n \bar{D} \\
& M=(1,0) \\
& M=(-1,0) \quad \bar{D}=(-1,2) \\
& D=(1,-2)
\end{aligned}
$$

wall-crossing problem
= how to count \& classify such supersymmetric bound states

$$
\gamma_{\text {total }}=\sum_{A} \gamma_{A}
$$

2000 Stern + P.Y.
wall-crossing formula for simple magnetic charges;
weak coupling regime

2002 Denef:
quiver dynamics representation of $N=2$ supergravity $B H$'s
-
-
2008 de Boer + El Showk + Messamah + van den Bleeken
2- \& 3-particle bound state conjecture

2010/2011 Manschot + Pioline + Sen:
general n-particle conjecture \& evaluation
\rightarrow how to count \& classify such supersymmetric bound states, entirely from low energy dynamics of constituent particles

$$
\gamma_{\text {total }}=\sum_{A} \gamma_{A}
$$

yet, for supersymmetric solutions only with constrained distances, physically sensible quantum mechanics with four supercharges do not exist

20II S. Lee + P.Y./ H. Kim + J. Park + Z.Wang + P.Y.

 reformulation and full solution via generic dyon/BH dynamicsreal space dynamics among dyons, index theorems,
\& universal wall-crossing formulae.
removed almost all hypotheses/conjectures that have been invoked in the past \& in some sense "proves" Konsevitch-Soibelman proposal
again, with $2^{\text {nd }}$ helicity trace (or protected spin character)

$$
\begin{gathered}
S O(4)=S U(2)_{\text {rotation }} \times S U(2)_{\mathrm{R}-\text { symmetry }} \\
J
\end{gathered}
$$

$$
\Omega=-\frac{1}{2} \operatorname{tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} \quad \underset{y=1}{\Leftarrow} \quad \Omega(y)=-\frac{1}{2} \operatorname{tr}(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} y^{2 I_{3}+2 J_{3}}
$$

$$
\rightarrow(-1)^{2 l} \times(2 l+1)
$$

on [a spin $1 / 2+$ two spin 0]
x [angular momentum l multiplet]

(I) index for n-body problems

Kim+Park+P.Y.+Wang 201I

$$
\Omega_{\text {before statistics }}=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\rangle+n-1} I_{n}\left(\left\{\gamma_{A}\right\}\right) \prod_{A} \Omega\left(\gamma_{A}\right)
$$

$$
\begin{aligned}
I_{n}\left(\left\{\gamma_{A}\right\}\right) & =\int_{\mathcal{K}_{A}=0} \operatorname{ch}(\mathcal{F}) \\
& =\frac{1}{(2 \pi)^{n-1}(n-1)!} \int_{\mathcal{K}_{A}=0} \mathcal{F}^{n-1}
\end{aligned}
$$

$$
\mathcal{K}_{A}=\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{A}}\right]-\left.\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle / 2}{\left|\vec{x}_{A}-\vec{x}_{B}\right|} \quad \mathcal{F} \equiv \sum_{A>B} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \mathcal{F}_{\text {Dirac }}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right)\right|_{\mathcal{K}_{A}=0}
$$

(2) the wall-crossing formula from real space dynamics of dyons with Bose/Fermi statistics

Kim+Park+P.Y.+Wang 201I
Manschot, Pioline, Sen 2010/201I

$$
\Omega^{-}\left(\sum \gamma_{A}\right)-\Omega^{+}\left(\sum \gamma_{A}\right)=(-1)^{\sum_{A>B}\left(\gamma_{A}, \gamma_{B}\right\rangle+n-1} \frac{\prod_{A} \bar{\Omega}^{+}\left(\gamma_{A}\right)}{|\Gamma|} I_{n}\left(\left\{\gamma_{A}\right\}\right)
$$

$$
+(-1)^{\sum_{A^{\prime}>B^{\prime}}\left\langle\gamma_{A^{\prime}}^{\prime}, \gamma_{B^{\prime}}^{\prime}\right\rangle+n^{\prime}-1} \frac{\Pi_{A^{\prime}}, \bar{\Omega}+\left(\gamma_{A^{\prime}}^{\prime}\right)}{\left|\Gamma^{\prime}\right|} I_{n^{\prime}}\left(\left\{\gamma_{A^{\prime}}^{\prime}\right\}\right)
$$

$$
\begin{aligned}
& \sum_{A=1}^{n} \gamma_{A}=\cdots=\sum_{A^{\prime}=1}^{n^{\prime}} \gamma_{A^{\prime}}^{\prime}=\cdots \\
& \bar{\Omega}(\gamma)=\sum_{p \mid \gamma} \Omega(\gamma / p) / p^{2}
\end{aligned}
$$

with all charges γ_{A} on a single plane of charge lattice, this has been shown to be equivalent to the Kontsevich-Soibelman proposal
(Ashoke Sen, December 201I)

$D=4 N=2$ Seiberg-Witten

$$
\begin{gathered}
\left.\mathcal{L}_{U(1)^{r}}\right|_{\mathcal{N}=2}=\left.\mathcal{K}\left[\Psi^{m}, \bar{\Psi}^{\bar{k}}\right]\right|_{\theta^{2} \bar{\theta}^{2}}+\frac{1}{8 \pi} \operatorname{Im}\left[\left.\tau_{k l}\left(\Psi^{m}\right) \epsilon^{\alpha \beta} W_{\alpha}^{(k)} W_{\beta}^{(l)}\right|_{\theta^{2}}\right] \\
\left(\Psi_{D}\right)_{m}=\frac{\partial \mathcal{F}}{\partial \Psi^{m}} \\
\mathcal{F}=\mathcal{F}(\Psi) \quad \mathcal{K}(\Psi, \bar{\Psi})=-\frac{i}{2 \pi}\left(\bar{\Psi}^{\bar{k}}\left(\Psi_{D}\right)_{k}-\Psi^{k}\left(\bar{\Psi}_{D}\right)_{k}\right) \\
\tau_{k l}(\Psi)=\frac{\partial\left(\Psi_{D}\right)_{k}}{\partial \Psi^{l}}
\end{gathered}
$$

D=4 N=2 Seiberg-Witten

$$
S U(r+1) \rightarrow U(1)^{r}
$$

$$
\begin{gathered}
\Psi \\
\Phi=\left(\begin{array}{cccc}
\phi^{(1)} & 0 & \cdots & 0 \\
0 & \phi^{(2)} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \phi^{(r+1)}
\end{array}\right) \\
\\
\phi^{(1)}+\phi^{(2)}+\cdots+\phi^{(r+1)}=0
\end{gathered} \quad A_{\mu}=\left(\begin{array}{cccc}
A_{\mu}^{(1)} & 0 & \cdots & 0 \\
0 & A_{\mu}^{(2)} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & A_{\mu}^{(r+1)}
\end{array}\right)
$$

all massive off-diagonal fields are integrated out
we will represent BPS particles as
semi-classical solutions with non-Abelian cores cut-off,

which is sufficient

when the field theory vacuum sits near a marginal stability wall
as a preliminary step, treat one dyon dynamical at a time

BPS states as semiclassical \& asymptotic solutions

with electric charges n^{i} and magnetic charges m^{i}

$$
\mathcal{E}=|Z| \quad Z \equiv\left\langle m^{i} \phi_{D}^{i}+n^{i} \phi^{i}\right\rangle=|Z| \zeta
$$

$$
\begin{array}{lll}
F_{a}^{i}=i \zeta^{-1} \partial_{a} \phi^{i} & \operatorname{Re} \int_{S^{2}} F^{i}=4 \pi m^{i} & F_{a}^{i} \equiv B_{a}^{i}+i E_{a}^{i} \\
\left(F_{D}\right)_{a}^{i}=i \zeta^{-1} \partial_{a} \phi_{D}^{i} & \operatorname{Re} \int_{S^{2}} F_{D}^{i}=-4 \pi n^{i} & \left(F_{D}\right)_{a}^{i} \equiv \tau^{i j} F_{j}^{a}
\end{array}
$$

central charge \& central charge function

$$
\begin{aligned}
& Z \equiv\left\langle m^{i} \phi_{D}^{i}+n^{i} \phi^{i}\right\rangle=\langle\mathcal{Z}\rangle \\
& \mathcal{Z}(x) \equiv m^{i} \phi_{D}^{i}(x)+n^{i} \phi^{i}(x)
\end{aligned}
$$

a probe charge to a system of background "core" dyons

$$
\gamma_{h}=(p, 2 q) \quad \sum_{A \neq h} \gamma_{A}=\sum_{A \neq h}\left(m_{A}, 2 n_{A}\right)
$$

$$
\text { background dyons: } \begin{array}{ll}
F_{a}^{i}=i \zeta^{-1} \partial_{a} \phi^{i} & \operatorname{Re} \int_{S^{2}} F^{i}=4 \pi m^{i} \\
\left(F_{D}\right)_{a}^{i}=i \zeta^{-1} \partial_{a} \phi_{D}^{i} & \operatorname{Re} \int_{S^{2}} F_{D}^{i}=-4 \pi n^{i}
\end{array}
$$

central charge function

$$
q^{i} F_{a}^{i}+p^{i}\left(F_{D}\right)_{a}^{i}=i \zeta^{-1} \partial_{a}\left(q_{i} \phi^{i}+p^{i} \phi_{D}^{i}\right)
$$ of probe dyon:

$$
\equiv i \zeta^{-1} \partial_{a} \mathcal{Z}_{\gamma_{h}}(x)
$$

a probe charge to a system of background "core" dyons

$$
q^{i} F_{a}^{i}+p^{i} \tau_{i j} F_{a}^{j}=i \zeta^{-1} \partial_{a}\left(q_{i} \phi^{i}+p^{i} \phi_{D}^{i}\right) \equiv i \zeta^{-1} \partial_{a} \mathcal{Z}_{\gamma_{h}}(x)
$$

$$
\begin{aligned}
& F_{a}^{i}=i \zeta^{-1} \partial_{a} \phi^{i} \\
& F_{a}^{i} \equiv B_{a}^{i}+i E_{a}^{i}
\end{aligned} . \begin{aligned}
& \operatorname{Im}\left[\zeta^{-1} \mathcal{Z}_{\gamma_{h}}\right]=\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{h}}\right]-\sum_{A \neq h} \frac{\left\langle\gamma_{h}, \gamma_{A}\right\rangle / 2}{\left|\vec{x}-\vec{x}_{A}\right|} \\
& \operatorname{Re}\left[\zeta^{-1} \mathcal{Z}_{\gamma_{h}}\right]=\operatorname{Re}\left[\zeta^{-1} Z_{\gamma_{h}}\right]-\sum_{A \neq h} \frac{I_{A h}}{\left|\vec{x}-\vec{x}_{A}\right|}
\end{aligned}
$$

a probe charge to a system of background "core" dyons

$$
\mathcal{L}_{\text {probe }}=-\left|\mathcal{Z}_{h}\right| \sqrt{1-\dot{\vec{x}}^{2}}+\operatorname{Re}\left[\zeta^{-1} \mathcal{Z}_{h}\right]-\dot{\vec{x}} \cdot \vec{W}
$$

$$
\vec{\partial} \times \vec{W} \equiv \vec{\partial} \operatorname{Im}\left[\zeta^{-1} \mathcal{Z}_{h}\right]
$$

a probe charge to a system of background "core" dyons

$$
\begin{aligned}
\mathcal{L}_{\text {probe }} & =-\left|\mathcal{Z}_{h}\right| \sqrt{1-\dot{\vec{x}}^{2}}+\operatorname{Re}\left[\zeta^{-1} \mathcal{Z}_{h}\right]-\dot{\vec{x}} \cdot \vec{W} \\
& \simeq \frac{1}{2}\left|\mathcal{Z}_{h}\right| \dot{\vec{x}}^{2}-\left(\left|\mathcal{Z}_{h}\right|-\operatorname{Re}\left[\zeta^{-1} \mathcal{Z}_{h}\right]\right)-\dot{\vec{x}} \cdot \vec{W}
\end{aligned}
$$

$$
\vec{\partial} \times \vec{W} \equiv \vec{\partial} \operatorname{Im}\left[\zeta^{-1} \mathcal{Z}_{h}\right]
$$

a probe charge to a system of background "core" dyons

$$
\begin{aligned}
& \mathcal{L}_{\text {probe }}=-\left|\mathcal{Z}_{h}\right| \sqrt{1-\dot{\vec{x}}^{2}}+\operatorname{Re}\left[\zeta^{-1} \mathcal{Z}_{h}\right]-\dot{\vec{x}} \cdot \vec{W} \\
& \simeq \frac{1}{2}\left|\mathcal{Z}_{h}\right| \dot{\vec{x}}^{2}-\left(\left|\mathcal{Z}_{h}\right|-\operatorname{Re}\left[\zeta^{-1} \mathcal{Z}_{h}\right]\right)-\dot{\vec{x}} \cdot \vec{W} \\
& \simeq \frac{1}{2}\left|\mathcal{Z}_{h}\right| \dot{\vec{x}}^{2}-\frac{\left(\operatorname{Im}\left[\zeta^{-1} \mathcal{Z}_{h}\right]\right)^{2}}{2\left|\mathcal{Z}_{h}\right|}-\dot{\vec{x}} \cdot \vec{W} \\
& \qquad \vec{\partial} \times \vec{W} \equiv \vec{\partial} \operatorname{Im}\left[\zeta^{-1} \mathcal{Z}_{h}\right] \\
& \zeta^{-1} \mathcal{Z}_{h}=\left|\mathcal{Z}_{h}\right| e^{i \alpha}, \quad|\alpha| \ll 1
\end{aligned}
$$

wall-crossing is mostly a classical phenomena!

$$
V=\frac{\left(\operatorname{Im}\left[\zeta^{-1} \mathcal{Z}_{h}\right]\right)^{2}}{2\left|\mathcal{Z}_{h}\right|} \sim\left(\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{h}}\right]-\frac{\left\langle\gamma_{h}, \gamma_{A}\right\rangle / 2}{\left|\vec{x}_{h}-\vec{x}_{A}\right|}\right)^{2}
$$

we need to
I) elevate this to a $N=4$ supersymmetric quantum mechanics
2) make all dyons dynamical

$\mathrm{N}=4$ SUSY QM with 3 n bosons \& 4 n fermions ?

$4 n \mathrm{~N}=1$ supermultiplets

$$
\Phi^{A a}=x^{A a}-i \theta \psi^{A a} \quad \Lambda^{A}=i \lambda^{A}+i \theta b^{A} \quad A=1,2, \ldots, n
$$

position of A-th dyon
or $\mathrm{n} \mathrm{N}=4$ supermultiplet

$$
\hat{\Phi}^{A a}=-\frac{i}{4}\left(\epsilon \sigma^{a}\right)^{\alpha \beta} \Phi_{\alpha \beta}^{A} ; \quad \Phi_{\alpha \beta}^{A}=\left(D_{\alpha} \bar{D}_{\beta}+\bar{D}_{\beta} D_{\alpha}\right) V^{A}
$$

~ $\mathrm{D}=4 \mathrm{~N}=\mathrm{I}$ vector multiplet dimensionally reduced

$\mathrm{N}=4$ SUSY QM with 3 n bosons \& 4 n fermions ?

Kim+Park+P.Y.+Wang 201I

$$
\begin{aligned}
& \int d t \mathcal{L}_{\text {kinetic }}=\int d t \int d \theta^{2} d \bar{\theta}^{2} F\left(\hat{\Phi}^{A a}\right) \\
& \hat{\Phi}^{A a}=-\frac{i}{4}\left(\epsilon \sigma^{a}\right)^{\alpha \beta} \Phi_{\alpha \beta}^{A} ; \quad \Phi_{\alpha \beta}^{A}=\left(D_{\alpha} \bar{D}_{\beta}+\bar{D}_{\beta} D_{\alpha}\right) V^{A} \\
& \begin{array}{c}
\text { Smilga; Ivanov; } \\
\text { Papadopoulos; } \\
\text { circal 988-I }
\end{array} \\
& \int d t \mathcal{L}_{\text {potential }}=\int d t \int d \theta\left(i \mathcal{K}(\Phi)_{A} \Lambda^{A}-i W(\Phi)_{A a} D \Phi^{A a}\right) \\
& \Phi^{A a}=x^{A a}-i \theta \psi^{A a} \quad \Lambda^{A}=i \lambda^{A}+i \theta b^{A}
\end{aligned}
$$

$\mathrm{N}=4$ SUSY QM with 3 n bosons \& 4 n fermions ?

Kim+Park+P.Y.+Wang 20II
$\int d t \mathcal{L}_{\text {kinetic }}=\int d t \int d \theta^{2} d \bar{\theta}^{2} F\left(\hat{\Phi}^{A a}\right)$
is manifestly $\mathrm{N}=4$ supersymmetric
$\int d t \mathcal{L}_{\text {potential }}=\int d t \int d \theta\left(i \mathcal{K}(\Phi)_{A} \Lambda^{A}-i W(\Phi)_{A a} D \Phi^{A a}\right)$
is $\mathrm{N}=4$ supersymmetric if and only if $\vec{\partial}_{A} \cdot \vec{\partial}_{B} \mathcal{K}_{C}=0$

$$
\begin{array}{r}
\vec{\partial}_{A} \times \vec{\partial}_{B} \mathcal{K}_{C}=0 \\
\vec{\partial}_{A} \mathcal{K}_{B}=\frac{1}{2}\left(\vec{\partial}_{A} \times \vec{W}_{B}+\vec{\partial}_{B} \times \vec{W}_{A}\right)=\vec{\partial}_{A} \mathcal{K}_{B}
\end{array}
$$

real space $\mathrm{N}=4$ quantum mechanics for dyons

Kim+Park+P.Y.+Wang 20II

$$
\begin{gathered}
\int d t \mathcal{L}_{\text {kinetic }}=\int d t \int d \theta^{2} d \bar{\theta}^{2} F\left(\hat{\Phi}^{A a}\right) \\
\int d t \mathcal{L}_{\text {potential }}=\int d t \int d \theta\left(i \mathcal{K}(\Phi)_{A} \Lambda^{A}-i W(\Phi)_{A a} D \Phi^{A a}\right) \\
\mathcal{K}_{A}=\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{A}}\right]-\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle / 2}{\left|\vec{x}_{A}-\vec{x}_{B}\right|} \\
\vec{W}_{A}=\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \vec{W}_{\text {Dirac }}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right) \\
F\left(\vec{x}_{A}\right) \simeq \sum_{A}\left|Z_{A}\right|\left|\vec{x}_{A}\right|^{2}=\sum_{A} m_{A}\left|\vec{x}_{A}\right|^{2} \quad \text { asymptotically }
\end{gathered}
$$

reproduces Coulomb phase dynamics in Denef's quiver description
Denef 2002

$$
\begin{array}{r}
\int d t \mathcal{L}_{\text {potential }}=\int d t \int d \theta\left(i \mathcal{K}(\Phi)_{A} \Lambda^{A}-i W(\Phi)_{A a} D \Phi^{A a}\right) \\
\mathcal{K}_{A}=\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{A}}\right]-\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle / 2}{\left|\vec{x}_{A}-\vec{x}_{B}\right|} \\
\vec{W}_{A}=\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \vec{W}_{\text {Dirac }}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right) \\
\vec{\partial}_{A} \mathcal{K}_{B}=\frac{1}{2}\left(\vec{\partial}_{A} \times \vec{W}_{B}+\vec{\partial}_{B} \times \vec{W}_{A}\right)=\vec{\partial}_{A} \mathcal{K}_{B}
\end{array}
$$

and, thus, also derives Denef's distance formulae (for Black Holes) for Seiberg-Witten BPS dyons near marginal stability walls

$$
3 n \rightarrow 3+2(n-I) ?
$$

$$
3 n \rightarrow 3+2(n-I) ?
$$

$$
\left.\mathcal{F} \equiv \sum_{A} d W_{A}\right|_{\mathcal{K}_{A}=0}
$$

supersymmetric ground state dynamics reduces on $\mathcal{K}_{A}=0$ submanifold?
de Boer, El Showk, Messamah, van den Bleeken 2008

$$
3 n \rightarrow 3+2(n-1) ?
$$

$$
\left.\mathcal{F} \equiv \sum_{A} d W_{A}\right|_{\mathcal{K}_{A}=0}
$$

the simple answer is NO !

$3 n \rightarrow 3+2(n-I) ?$

only after sacrificing all but one supersymmetries !!!

$$
\vec{\partial}_{A}\left(\xi \cdot \mathcal{K}_{B}\right) \neq \frac{1}{2}\left(\vec{\partial}_{A} \times \vec{W}_{B}+\vec{\partial}_{B} \times \vec{W}_{A}\right)=\vec{\partial}_{A} \mathcal{K}_{B}
$$

$\mathcal{L}_{\text {deformed }}^{\text {for index only }}$

$$
=\int d \theta^{2} d \bar{\theta}^{2} F\left(\hat{\Phi}^{A a}\right)+\int d \theta\left(i \xi \cdot \mathcal{K}(\Phi)_{A} \Lambda^{A}-i W(\Phi)_{A a} D \Phi^{A a}\right)
$$

$$
\mathcal{K}_{A}=\operatorname{Im}\left[\zeta^{-1} Z_{\gamma_{A}}\right]-\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle / 2}{\left|\vec{x}_{A}-\vec{x}_{B}\right|} \quad \quad \vec{W}_{A}=\sum_{B \neq A} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \vec{W}_{D i r a c}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right)
$$

but this suffices for counting Witten index or its refined generalizations

$$
\begin{aligned}
\Omega & =-\frac{1}{2} \operatorname{tr}(-1)^{2 J_{3}}\left(2 J_{2}\right)^{2} \sim \operatorname{tr}(-1)^{F} e^{-\beta Q^{2}} \\
& =\text { \#Bosonic Ground States }- \text { \#Fermionic Ground States }
\end{aligned}
$$

since, for index computation, only one of the four supersymmetries is needed
counting problem reduces to a $\mathrm{N}=\mathrm{I}$ Dirac index of a nonlinear sigma model on the manifold $\mathcal{K}_{A}=0$

$$
\begin{gathered}
\text { 3n bosons }+4 \mathrm{n} \text { fermions } \rightarrow 2(\mathrm{n} \text {-I) bosons }+2(\mathrm{n} \text { - I) fermions } \\
\left.\mathcal{L}_{\text {deformed }}^{\text {for index only }}\right|_{\xi \rightarrow \infty} \rightarrow \mathcal{L}_{\text {index }} \\
\mathcal{L}_{\text {index }} \simeq \frac{1}{2} g_{\mu \nu} \dot{z}^{\mu} \dot{z}^{\nu}-\dot{x}^{\mu} \cdot \mathcal{A}_{\mu}+\frac{i}{2} g_{\mu \nu} \psi^{\mu}\left(\dot{\psi}^{\nu}+\dot{z}^{\alpha} \Gamma_{\alpha \beta}^{\nu} \psi^{\beta}\right)+i \mathcal{F}_{\mu \nu} \psi^{\mu} \psi^{\mu} \\
\left.\mathcal{F} \equiv \sum_{A} d W_{A}\right|_{\mathcal{K}_{A}=0}=d \mathcal{A}
\end{gathered}
$$

$3 n$ vector dynamics $\rightarrow 3+2(n-I)$ nonlinear sigma model

$$
\left.\mathcal{F} \equiv \sum_{A} d W_{A}\right|_{\mathcal{K}_{A}=0}
$$

$$
R^{3 n}
$$

$$
\mathcal{M}=\left\{\vec{x}^{A} \mid \mathcal{K}_{A}=0\right\}
$$

index theorem

$$
\begin{aligned}
I_{n}\left(\left\{\gamma_{A}\right\}\right) & =\operatorname{tr}\left[(-1)^{F} e^{-\beta H}\right]=\operatorname{tr}\left[(-1)^{F} e^{-\beta Q^{2}}\right] \\
& =\int_{\mathcal{M}=\left\{\vec{x}_{A} \mid \mathcal{K}_{A}=0\right\}} \operatorname{ch}(\mathcal{F}) \wedge \mathbf{A}(\mathcal{M}) \begin{array}{l}
\text { trivial for a complete } \\
\text { intersection } \\
\text { in flat ambient space }
\end{array} \\
& =\int_{\mathcal{M}=\left\{\vec{x}_{A} \mid \mathcal{K}_{A}=0\right\}} \operatorname{ch(\mathcal {F})} \begin{array}{ll}
\\
& =\frac{1}{(2 \pi)^{n-1}(n-1)!} \int_{\mathcal{M}_{n}} \mathcal{F}^{n-1} \\
\left.\mathcal{F} \equiv \sum_{A>B} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \mathcal{F}_{\text {Dirac }}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right)\right|_{\mathcal{K}_{A}=0}
\end{array}
\end{aligned}
$$

symmetry before \& after deformation

$$
\begin{aligned}
x^{a=1,2,3} & \leftarrow S U(2)_{J} \\
\psi^{\mu=1,2,3,4} & \leftarrow S O(4)=S U(2)_{J} \times S U(2)_{I} \\
\mathcal{M}=\left\{\vec{x}^{A} \mid \mathcal{K}_{A}=0\right\} & \\
\theta, \phi & \leftarrow S O(3)_{\mathcal{J}} \\
\psi^{\theta, \phi} & \leftarrow S O(3)_{\mathcal{J}}
\end{aligned}
$$

connecting to the $2^{\text {nd }}$ helicity trace / protected spin character
Kim+Park+P.Y.+Wang 201I

$$
\begin{gathered}
\Omega=-\frac{1}{2} \operatorname{tr}\left[(-1)^{2 J_{3}}\left(2 J_{3}\right)^{2} y^{2\left(J_{3}+I_{3}\right)}\right] \\
H=H_{\text {center of mass }} \otimes H_{\text {reduced }}
\end{gathered}
$$ $\Omega=\operatorname{tr}_{H_{\text {reduced }}}\left[(-1)^{2 L_{3}+2\left(S_{3}-I_{3}\right)}(-1)^{2 I_{3}} y^{2\left(J_{3}+I_{3}\right)}\right]$

deformation

$$
\Omega=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\rangle+n-1} \operatorname{tr}\left((-1)^{F} y^{2 \mathcal{J}_{3}}\right)
$$

protected
spin character
equivariant index
$2^{\text {nd }}$ helicity trace for BPS bound states from real space dynamics of dyons

$$
\begin{gathered}
\Omega=\Omega(y=1)=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\rangle+n-1} \operatorname{tr}\left((-1)^{F}\right) \\
=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\rangle+n-1} I_{n}\left(\left\{\gamma_{A}\right\}\right) \prod_{A} \Omega\left(\gamma_{A}\right) \\
I_{n}\left(\left\{\gamma_{A}\right\}\right)=\int_{\mathcal{M}=\left\{\vec{x}_{A} \mid \mathcal{K}_{A}=0\right\}} \operatorname{ch}(\mathcal{F})=\frac{1}{(2 \pi)^{n-1}(n-1)!} \int_{\mathcal{M}_{n}} \mathcal{F}^{n-1} \\
\left.\mathcal{F} \equiv \sum_{A>B} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \mathcal{F}_{\operatorname{Dirac}}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right)\right|_{\mathcal{K}_{A}=0}
\end{gathered}
$$

$2^{\text {nd }}$ helicity trace for BPS bound states from real space dynamics of distinguishable dyons

$$
\begin{gathered}
\Omega=\Omega(y=1)=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\rangle+n-1} \operatorname{tr}\left((-1)^{F}\right) \\
=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\rangle+n-1} I_{n}\left(\left\{\gamma_{A}\right\}\right) \prod_{A} \Omega\left(\gamma_{A}\right) \\
I_{n}\left(\left\{\gamma_{A}\right\}\right)=\int_{\mathcal{M}=\left\{\vec{x}_{A} \mid \mathcal{K}_{A}=0\right\}} \operatorname{ch}(\mathcal{F})=\frac{1}{(2 \pi)^{n-1}(n-1)!} \int_{\mathcal{M}_{n}} \mathcal{F}^{n-1} \\
\left.\mathcal{F} \equiv \sum_{A>B} \frac{\left\langle\gamma_{A}, \gamma_{B}\right\rangle}{2} \mathcal{F}_{\text {Dirac }}^{4 \pi}\left(\vec{x}_{A}-\vec{x}_{B}\right)\right|_{\mathcal{K}_{A}=0}
\end{gathered}
$$

but Bose/Fermi statistics from identical constituent particles is essential, for example, to solve $\mathrm{SU}(2) \rightarrow \mathrm{U}(\mathrm{I})$ problem this way

$$
D_{n}=(n+1) M+n \bar{D}
$$

incorporating Bose/Fermi statistics

$$
\operatorname{tr}\left[(-1)^{F} e^{-\beta Q^{2}} \mathcal{P}\right]
$$

$$
\mathcal{P}=\frac{1}{|\Gamma|} \sum_{\sigma \in \Gamma}(\pm 1)^{|\sigma|} \sigma
$$

free bulk divided by the permutation group + sum over fixed submanifolds
incorporating Bose/Fermi statistics

incorporating Bose/Fermi statistics

incorporating Bose/Fermi statistics

fixed manifold $\mathcal{N} \subset \mathcal{M}$ under $S(p) \subset \Gamma$

$$
\Gamma^{\prime}=\Gamma / S(p) \quad \mathcal{P}^{\prime}=\sum_{\sigma \in \Gamma^{\prime}}(\pm 1)^{|\sigma|} \sigma
$$

$$
\begin{aligned}
& \operatorname{tr}(-1)^{F} e^{-\beta H} \mathcal{P} \\
& \quad=\operatorname{tr}_{\mathcal{M} / \Gamma-\mathcal{N}}(-1)^{F} e^{-\beta H} \mathcal{P}+\Delta_{\mathcal{M}} \operatorname{tr}_{\mathcal{N} / \Gamma^{\prime}-\mathcal{N}^{\prime}}(-1)^{F} e^{-\beta H} \mathcal{P}^{\prime}+\cdots
\end{aligned}
$$

incorporating Bose/Fermi statistics

fixed manifold $\mathcal{N} \subset \mathcal{M}$ under $S(p) \subset \Gamma$

$$
\Delta_{\mathcal{N}}^{(\pm)}=\operatorname{tr}_{\mathcal{N}^{\perp}}\left[(-1)^{F^{\perp}} e^{-\beta H^{\perp}} \mathcal{P}_{S(p)}^{(\pm)}\right]
$$

= a multiplicative contribution from
the normal bundle over the fixed submanifold
= a universal numerical factor associated with separating identical particles from each other

incorporating Bose/Fermi statistics

fixed manifold $\mathcal{N} \subset \mathcal{M}$ under $S(p) \subset \Gamma$

$$
\begin{aligned}
\Delta_{\mathcal{N}}^{(\pm)} & =\operatorname{tr}_{\mathcal{N}^{\perp}}\left[(-1)^{F^{\perp}} e^{-\beta H^{\perp}} \mathcal{P}_{S(p)}^{(\pm)}\right] \\
& =\lim _{\beta \rightarrow 0} \frac{1}{p!} \sum_{\sigma \in S(p)} \operatorname{tr}_{R^{2(p-1)} ; n_{f}=2(p-1)}\left[(-1)^{F^{\perp}} e^{-\beta H^{\perp}} \times(\pm 1)^{|\sigma|} \sigma\right] \\
& =\lim _{\beta \rightarrow 0} \frac{1}{p!} \sum_{\sigma \in S(p)} \operatorname{tr}_{R^{2(p-1)} ; n_{f}=2(p-1)}\left[(-1)^{F^{\perp}} e^{\beta \partial^{2} / 2} \times(\pm 1)^{|\sigma|} \sigma\right]
\end{aligned}
$$

incorporating Bose/Fermi statistics for a pair

$$
\mathcal{P}_{2}^{(\pm)}: x \rightarrow-x, \psi \rightarrow-\psi
$$

$$
\left.\frac{\Delta_{\mathcal{N}}^{(\pm)}}{|\Omega|}\right|_{p=2} \leftarrow \lim _{\beta \rightarrow 0} \operatorname{tr}_{R^{d} ; n_{f}}\left[(-1)^{F^{\perp}} e^{\beta \partial^{2} / 2} \mathcal{P}_{2}^{(\pm)}\right] /|\Omega|
$$

$=\lim _{\beta \rightarrow 0} \int_{R^{d}} d^{d} x\langle-x| e^{\beta \partial^{2} / 2}|x\rangle \times\left(\pm 2^{n_{\text {fermion }} / 2-1}\right)$
$=\lim _{\beta \rightarrow 0} \frac{ \pm 2^{n_{\text {fermion }} / 2-1}}{(2 \pi \beta)^{d / 2}} \int_{R^{d}} d^{d} x e^{-(x+x)^{2} / 2 \beta}$
$=\lim _{\beta \rightarrow 0} \frac{ \pm 2^{n_{\text {fermion }} / 2-1}}{2^{d}} \rightarrow \frac{ \pm 1}{2^{2}}$

$$
\begin{array}{cccccc}
n_{f} & = & 2 & 4 & 8 & 16 \\
d & = & 2 & 5 & 9
\end{array}
$$

incorporating Bose/Fermi statistics

fixed manifold $\mathcal{N} \subset \mathcal{M}$ under $S(p) \subset \Gamma$

$$
\Delta_{\mathcal{N}}^{(\pm)}=\operatorname{tr}_{\mathcal{N} \perp}\left[(-1)^{F^{\perp}} e^{-\beta H^{\perp}} \mathcal{P}_{S(p)}^{(\pm)}\right]=\frac{\Omega}{p^{2}}
$$

P.Y. 1997 / Green+Gutperle 1997
/ Kim+Park+P.Y.+Wang 20II
incorporating Bose/Fermi statistics

$$
\sum_{A=1}^{n} \gamma_{A}=\cdots=\sum_{A^{\prime}=1}^{n^{\prime}} \gamma_{A^{\prime}}^{\prime}=\cdots=\sum_{A^{\prime \prime}=1}^{n^{\prime \prime}} \gamma_{A^{\prime \prime}}^{\prime \prime}=\cdots
$$

\rightarrow universal wall-crossing formulae from real space dynamics

$$
\begin{gathered}
\bar{\Omega}(\gamma)=\sum_{p \mid \gamma} \Omega(\gamma / p) / p^{2} \\
\sum_{A=1}^{n} \gamma_{A}=\cdots=\sum_{A^{\prime}=1}^{n^{\prime}} \gamma_{A^{\prime}}^{\prime}=\cdots=\sum_{A^{\prime \prime}=1}^{n^{\prime \prime}} \gamma_{A^{\prime \prime}}^{\prime \prime}=\cdots \\
\Omega^{-}\left(\sum \gamma_{A}\right)-\Omega^{+}\left(\sum \gamma_{A}\right)=(-1)^{\sum_{A>B}\left\langle\gamma_{A}, \gamma_{B}\right\}+n-1} \frac{\prod_{A} \bar{\Omega}^{+}\left(\gamma_{A}\right)}{|\Gamma|} \int_{\mathcal{M}} \operatorname{ch}(\mathcal{F}) \\
\vdots \\
+(-1)^{\sum_{A^{\prime}>B^{\prime}}\left\langle\gamma_{A^{\prime}}^{\prime}, \gamma_{B^{\prime}}^{\prime}\right\}+n^{\prime}-1} \frac{\prod_{A^{\prime}} \bar{\Omega}^{+}\left(\gamma_{A^{\prime}}^{\prime}\right)}{\left|\Gamma^{\prime}\right|} \int_{\mathcal{M}^{\prime}} c h\left(\mathcal{F}^{\prime}\right) \\
\vdots \\
\\
+(-1)^{\sum_{A^{\prime \prime}>B^{\prime \prime}}\left\langle\gamma_{A^{\prime \prime}}^{\prime \prime}, \gamma_{B^{\prime \prime}}^{\prime \prime}\right\}+n^{\prime \prime}-1} \frac{\prod_{A^{\prime \prime}} \bar{\Omega}^{+}\left(\gamma_{A^{\prime \prime}}^{\prime \prime}\right)}{\left|\Gamma^{\prime \prime}\right|} \int_{\mathcal{M}^{\prime \prime}} \operatorname{ch}\left(\mathcal{F}^{\prime \prime}\right)
\end{gathered}
$$

summary

- 3n-D real space dynamics for n Seiberg-Witten BPS dyons: arbitrarily accurate near marginal stability wall
- $3 n \rightarrow 2(n-I):$ index-preserving but unphysical
- $2^{\text {nd }}$ helicity trace (protected spin character) \leftarrow (equivariant) index
- rational invariants from permutation orbifolding
- "proves" Kontsevich-Soibelman (via Sen, 20II) as a physical statement
wall-crossing is by now a mature problem with diverse technologies and viewpoints that emerged over the last decade and half,
yet many aspects remain to be clarified and explored

