Bound States in the Mirror TBA

Gleb Arutyunov

Institute for Theoretical Physics Utrecht University

- Ground state TBA
- Excited states TBA
- Implementation of symmetries
- TBA for bound states

Frolov & G.A `II

Frolov, van Tongeren & G.A `II

Ground state TBA

String Energy E

String energy *E* is a conserved Noether charge corresponding to the SO(2) subgroup of the isometry (conformal) group SO(4, 2)

Charge J

J is a conserved Noether charge corresponding to one of the SO(2) subgroups of the isometry group SO(6)

Mirror Theory

Frolov and G.A. '07

One Euclidean theory – two Minkowski theories. One is related to the other by the double Wick rotation:

$$\tilde{\sigma} = -i\tau \,, \qquad \tilde{\tau} = i\sigma$$

The Hamiltonian \tilde{H} w.r.t. $\tilde{\tau}$ defines the *mirror theory*.

Ground state energy is related to the free energy of its mirror

$$E(L) = \lim_{R \to \infty} \frac{L}{R} F(L) = L\mathcal{F}$$

- J momentum carried by string along the equator of S⁵,
 L "length" (will be related to J)
- p momentum of a string particle
- \mathcal{E} energy of a string particle: $\mathcal{E} = \sqrt{1 + 4g^2 \sin^2 \frac{p}{2}}$
- \tilde{p} momentum of a mirror particle
- $\tilde{\mathcal{E}}$ energy of a mirror particle: $\tilde{\mathcal{E}} = 2 \operatorname{arcsinh} \left(\frac{1}{2g} \sqrt{1 + \tilde{p}^2} \right)$
- String S-matrix $S(p_1, p_2)$
- Mirror S-matrix $\tilde{S}(\tilde{p}_1, \tilde{p}_2)$

Bethe-Yang equations for the mirror model

Mirror Bethe-Yang equations for fundamental particles ($\alpha = 1, 2$)

$$1 = e^{i\widetilde{p}_{k}R} \prod_{\substack{l=1\\l\neq k}}^{K^{I}} S(\widetilde{p}_{k}, \widetilde{p}_{l}) \prod_{\alpha=1}^{2} \prod_{l=1}^{K^{II}_{(\alpha)}} \frac{x_{k}^{-} - y_{l}^{(\alpha)}}{x_{k}^{+} - y_{l}^{(\alpha)}} \sqrt{\frac{x_{k}^{+}}{x_{k}^{-}}}$$
$$-1 = \prod_{l=1}^{K^{I}} \frac{y_{k}^{(\alpha)} - x_{l}^{-}}{y_{k}^{(\alpha)} - x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}} \prod_{l=1}^{K^{III}_{(\alpha)}} \frac{y_{k}^{(\alpha)} - w_{l}^{(\alpha)} - \frac{i}{g}}{v_{k}^{(\alpha)} - w_{l}^{(\alpha)} + \frac{i}{g}}$$
$$1 = \prod_{l=1}^{K^{II}_{(\alpha)}} \frac{w_{k}^{(\alpha)} - v_{l}^{(\alpha)} + \frac{i}{g}}{w_{k}^{(\alpha)} - v_{l}^{(\alpha)} - \frac{i}{g}} \prod_{\substack{l=1\\l\neq k}}^{K^{III}_{(\alpha)}} \frac{w_{k}^{(\alpha)} - w_{l}^{(\alpha)} - \frac{2i}{g}}{w_{k}^{(\alpha)} - w_{l}^{(\alpha)} + \frac{2i}{g}}$$

 $psu(2|2) \oplus psu(2|2)$

follow from $\tilde{S}(\tilde{p}_1, \tilde{p}_2)$

Auxiliary roots $-w^{\alpha}$, y^{α} ; v = y + 1/y

$$(K_{-}^{\mathrm{III}}, K_{-}^{\mathrm{II}}, K^{\mathrm{I}}, K_{+}^{\mathrm{II}}, K_{+}^{\mathrm{III}})$$

Saturday, April 7, 2012

The spectrum of TBA particles

String hypothesis suggests the existence of nine types of TBA vacuum particles ($\alpha = 1, 2$):

- *Q*-particles (*Q*-particle bound states) carrying momentum $\tilde{p}_Q \implies Y_Q^{(\alpha)}(u)$
- $y^{\pm(\alpha)}$ -particles corresponding to fermionic Bethe roots $\implies Y_{\pm}^{(\alpha)}(u), |u| < 2$
- $M|vw^{(\alpha)}$ -strings $\implies Y^{(\alpha)}_{M|vw}(u)$
- $M|w^{(\alpha)}$ -strings $\implies Y^{(\alpha)}_{M|w}(u)$

$$\begin{split} \widetilde{p}^Q(u) &= g \, x(u - \frac{iQ}{g}) - g \, x(u + \frac{iQ}{g}) + iQ \,, \\ \widetilde{\mathcal{E}}^Q(u) &= \log \frac{x(u - \frac{iQ}{g})}{x(u + \frac{iQ}{g})} = 2 \operatorname{arcsinh} \Big(\frac{1}{2g} \sqrt{Q^2 + \widetilde{p}^2} \Big) \end{split}$$

Simplified TBA equations for the ground state

•
$$M|w$$
-strings: $\log Y_{M|w}^{(\alpha)} = \log(1 + Y_{M-1|w}^{(\alpha)})(1 + Y_{M+1|w}^{(\alpha)}) \star s + \delta_{M1} \log \frac{1 - \frac{1}{Y_{-}^{(\alpha)}}}{1 - \frac{1}{Y_{+}^{(\alpha)}}} \star s$

M|*vw*-strings:

$$\log Y_{M|vw}^{(\alpha)} = \log(1 + Y_{M-1|vw}^{(\alpha)})(1 + Y_{M+1|vw}^{(\alpha)}) \star s - \log(1 + Y_{M+1}) \star s + \delta_{M1} \log \frac{1 - Y_{-}^{(\alpha)}}{1 - Y_{+}^{(\alpha)}} \star s$$

• y-particles
$$\log \frac{\gamma_{+}^{(\alpha)}}{\gamma_{-}^{(\alpha)}} = \log(1+Y_Q) \star K_{Qy},$$

 $\log Y_{+}^{(\alpha)} Y_{-}^{(\alpha)} = \log(1+Y_Q) \star (-K_Q + 2K_{xv}^{Q1} \star s) + 2\log \frac{1+Y_{1}|_{vw}}{1+Y_{1}|_{w}} \star s$
• Q-particles for $Q \ge 2$ $\log Y_Q = \log \frac{\left(1 + \frac{1}{\gamma_{-}^{(1)}}\right)\left(1 + \frac{1}{\gamma_{Q-1}^{(2)}}\right)}{\left(1 + \frac{1}{\gamma_{Q-1}}\right)\left(1 + \frac{1}{\gamma_{Q+1}}\right)} \star s$
• $Q = 1$ -particle $\log Y_1 = \log \frac{\left(1 - \frac{1}{\gamma_{-}^{(1)}}\right)\left(1 - \frac{1}{\gamma_{-}^{(2)}}\right)}{1 + \frac{1}{Y_2}} \star s - \Delta(L) \star s, \quad s(u) = \frac{g}{4\cosh \frac{g\pi u}{2}}$
 $E(L) = -\frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} du \frac{d\tilde{p}^Q}{du} \log(1 + Y_Q)$

Excited states TBA

Large L solution of TBA

 $L \rightarrow \infty$: Bethe-Yang (all 1/L powers) + Lüscher corrections (leading e^{-mL} corrections)

(standing 1-particle states)

(general *N*-particle states)

Bajnok, Janik '08

Lüscher '86

$$Y_Q^o(v) = \Upsilon_Q(v) T_{Q,-1}(v) T_{Q,1}(v)$$

Transfer matrix

$$T_{Q,1}(u) = \operatorname{Tr}_Q \Big[S_{Q,1}(u, u_1) \dots S_{Q,N}(u, u_N) \Big]$$

$$\Upsilon_Q^+ \Upsilon_Q^- = \Upsilon_{Q-1} \Upsilon_{Q+1}, \quad \Upsilon_Q(v) \sim e^{-J \mathcal{E}_Q(v)}$$

$$Y_{1_*}^o(u_k) = -1, \qquad k = 1, \ldots, N$$

• All other Y-functions Y^o_{\pm} , $Y^o_{M|vw}$, $Y^o_{M|w}$ are found from the TBA and Y^o_Q

<u>Relation between the TBA length L and the charge J</u>

The asymptotic TBA equation for Y_1 is satisfied by the asymptotic solution provided

L=J+2

Contour deformation trick

TBA's for excited states differ only by a choice of the integration contour

Taking the contour back to the real mirror line produces extra contributions $-\log S(z_*, z)$ from $\log(1 + Y_1) \star K$, where $K(w, z) = \frac{1}{2\pi i} \frac{d}{dw} \log S(w, z)$

<u>General strategy</u>

Solve the BY equations for a fixed set of integers

 $J, \quad N = K^{\mathrm{I}}, \quad (K_{-}^{\mathrm{III}}, K_{-}^{\mathrm{II}}, K_{+}^{\mathrm{II}}, K_{+}^{\mathrm{III}})$

Pick up a solution. It is characterized by a definite set of *g*-dependent momenta.

Auxiliary roots are completely fixed by the momenta p_k and play no independent role in the description of the state

2 Compute asymptotic Y-functions and find zeroes and poles of 1 + Y and Y

3 Choose contours and engineer TBA equations for the state so that the asymptotic TBA equations obtained by dropping terms with $log(1 + Y_Q)$ are solved by the asymptotic Y-functions

Exact momenta p_k are found from the *exact Bethe equations* (quantization cond.)

 $Y^o_{1_*}(p_k) = -1 \implies Y_{1_*}(p_k) = -1$

derived by analytically continuing the excited state TBA equation for Y_1

<u>General facts about symmetries</u>

PSU(2, 2|4) acts on asymptotic solutions provided the level-matching is satisfied

- States can have roots $\nu^{(\alpha)} = y^{(\alpha)} + \frac{1}{v^{(\alpha)}}$ and $w^{(\alpha)}$ located at infinity
- Dynkin labels of a state are related to excitation numbers

States in the same multiplet must have the same anomalous dimension and canonical ones which might differ by a (half-)integer

$$E = J + \sum_{k=1}^{K^{\mathrm{I}}} \sqrt{1 + 4g^2 \sin^2 \frac{p_k}{2}}.$$

Putting g = 0 gives the canonical dimension $E = J + K^{I}$. Adding particles with zero momentum p = 0 ($u = \infty$) changes canonical dimension.

Superconformal primary has the lowest canonical dimension in the multiplet!

Treatment of symmetry on the asymptotic solution

Solutions of the Bethe ansatz equations $(\vec{u}, \vec{v}^{(\alpha)}, \vec{w}^{(\alpha)})$ solutions of the Bethe ansatz equations

- All other states in a multiplet are created by adding *irregular* roots
- BY equations for all members of a multiplet must be the same

$$1 = e^{iJp_k} \prod_{l \neq k}^{K^{\mathrm{I}}} S_{\mathfrak{sl}(2)}(u_k, u_l) \prod_{l=1}^{K_{-}^{\mathrm{II}}} \frac{x_k^- - y_l^{(-)}}{x_k^+ - y_l^{(-)}} \sqrt{\frac{x_k^+}{x_k^-}} \prod_{l=1}^{K_{+}^{\mathrm{II}}} \frac{x_k^- - y_l^{(+)}}{x_k^+ - y_l^{(+)}} \sqrt{\frac{x_k^+}{x_k^-}}$$

1) Adding root with p = 0 does not modify BY equations, as $x^+/x^- = 1$;

- 2) Adding root with y = 0 requires a shift $J \rightarrow J + \frac{1}{2}$;
- 3) Adding root with $y = \infty$ requires a shift $J \rightarrow J \frac{1}{2}$;
- 4) Adding irregular roots y or w does not influence auxiliary Bethe equations

Susy generators in the light-cone gauge

Susy generators of the light-cone string are divided into two groups

Kinematical generators : independent of x_{-} , but depend on $x^{+} = \tau$

Dynamical generators : depend on x_{-} , but independent of $x^{+} = \tau$

Since

$$rac{\mathrm{d} Q}{\mathrm{d} au} = rac{\partial Q}{\partial au} + \{\mathrm{H}, Q\}$$

dynamical generators commute with H = E - J, while kinematical generators do not

Kinematical Poincare supercharges

Charge	Weights	$\Delta K_{-}^{\mathrm{II}}$	$\Delta K_{+}^{\mathrm{II}}$	$\Delta K_{-}^{\mathrm{III}}$	$\Delta K_{+}^{\mathrm{III}}$
Q^3_{lpha}	$[0, -1, 1]_{(\pm \frac{1}{2}, 0)}$	$0_{+rac{1}{2}},2_{-rac{1}{2}}$	$1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$
Q^4_{lpha}	$[0,0,-1]_{(\pm \frac{1}{2},0)}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$1_{\pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$1_{\pm \frac{1}{2}}$
Q _{1à}	$[-1,0,0]_{(0,\pm\frac{1}{2})}$	$1_{\pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$1_{\pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$
Q _{2a}	$[1, -1, 0]_{(0, \pm \frac{1}{2})}$	$1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$

- Decrease J by -1/2 and increase K^{I} by 1, never decrease K^{II}_{α} and K^{III}_{α}
- Action with a supercharge adds either three or one irregular y-roots
- A single y-root is at ∞ , from three y-roots two at ∞ and one at 0

Dynamical Poincare supercharges

Charge	Weights	$\Delta K_{-}^{\mathrm{II}}$	ΔK^{II}_+	$\Delta K_{-}^{\mathrm{III}}$	$\Delta {\it K}_{+}^{ m III}$
Q^1_{lpha}	$[1,0,0]_{(\pm \frac{1}{2},0)}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 0_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$
Q_{α}^{2}	$[-1, 1, 0]_{(\pm \frac{1}{2}, 0)}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$
Q _{3a}	$[0, 1, -1]_{(0, \pm \frac{1}{2})}$	$0_{\pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$
Q _{4a}	$[0,0,1]_{(0,\pm\frac{1}{2})}$	$0_{\pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{\pm \frac{1}{2}}$	$-1_{+\frac{1}{2}},0_{-\frac{1}{2}}$

J and E are increased by 1/2, K^I is unchanged

Four charges (*red*) lower K^{II} by 1! These will decrease a number of (irregular) roots when acting on a superconformal primary to produce the regular state

$$E_{hws}=E_{reg}-2$$
, $J_{hws}=J_{reg}-2$.

Four *y*-roots at ∞ !

Relation between excitation numbers

$$K_{reg}^{I} = K_{hws}^{I}$$
, $K_{\alpha,reg}^{II} = K_{\alpha,hws}^{II} - 2$, $K_{\alpha,reg}^{III} = K_{\alpha,hws}^{III} - 1$

Typical multiplet of 2¹⁶ states

$$|\mathcal{O}\rangle = \prod \underbrace{(Q_{-\infty}^d)^{n_{\infty}^d}(Q_{+0}^d)^{n_0^d}}_{J \to +1/2} \underbrace{(Q_{+\infty}^k)^{n_{\infty}^k}(Q_{+2\infty,+0}^k)^{n_{\infty,0}^k}}_{J \to -1/2, \ K^{\mathrm{I}} \to +1} |\mathrm{hws}\rangle$$

• The hws has four *y*-roots at ∞

$$E_{hws} = E_{reg} - 2$$
, $J_{hws} = J_{reg} - 2$

J-charge

$$J = J_{hws} + \frac{1}{2}(n_{\infty}^{d} + n_{0}^{d} - n_{\infty}^{k} - n_{\infty,0}^{k})$$

Energy

$$E = E_{hws} + \frac{1}{2}(n_{\infty}^{d} + n_{0}^{d} + n_{\infty}^{k} + n_{\infty,0}^{k})$$

Number of irregular roots

$$\mathcal{K}^{\mathrm{II}}_{0} = \textit{n}^{\textit{d}}_{0} + \textit{n}^{\textit{k}}_{\infty,0}, \qquad \mathcal{K}^{\mathrm{II}}_{\infty} = 4 - \textit{n}^{\textit{d}}_{\infty} + \textit{n}^{\textit{k}}_{\infty} + 2\textit{n}^{\textit{k}}_{\infty,0}$$

From here

$$J = J_{reg} + \frac{1}{2}(\mathcal{K}_0^{\mathrm{II}} - \mathcal{K}_\infty^{\mathrm{II}})$$

Saturday, April 7, 2012

psu(2,2|4) symmetry is built in TBA

$$J = J_{reg} + \frac{1}{2}(\mathcal{K}_0^{\mathrm{II}} - \mathcal{K}_\infty^{\mathrm{II}}) \qquad e^{-\tilde{\mathcal{E}}_Q} \equiv \Omega$$

Expression for the asymptotic Y_Q is universal for the whole multiplet:

$$Y_Q^o = \Omega^J T_{Q,+1} T_{Q,-1} , \qquad Y_Q^{o,reg} = \Omega^{J_{reg}} T_{Q,+1}^{reg} T_{Q,-1}^{reg}$$

But

$$T_{Q,+1} T_{Q,-1} = \Omega^{\frac{1}{2}(\mathcal{K}_{\infty}^{\text{II}} - \mathcal{K}_{0}^{\text{II}})} T_{Q,+1}^{\text{reg}} T_{Q,-1}^{\text{reg}}$$

Accordingly, the Y_Q -functions of this state can be written as

$$Y_Q^o = \Omega^{J-J_{reg}} \Omega^{\frac{1}{2}(\mathcal{K}_\infty^{\mathrm{II}} - \mathcal{K}_0^{\mathrm{II}})} Y_Q^{o, reg} = Y_Q^{o, reg}$$

For all states in a multiplet Y_Q^o -functions and, therefore, all Y^o coincide! Y's are simply invariants of psu(2, 2|4)

Saturday, April 7, 2012

TBA length L

Kinematical charges decrease J, while dynamical increase. Thus,

$$J_{hws} - 4 \leq J \leq J_{hws} + 4 = J_{reg} + 2$$

On the other hand, in the TBA studies we found that

 $L = J_{reg} + 2$

L coincides with the maximal *J*-charge in a susy multiplet

Only for the vacuum $L = J_{reg}$, as the corresponding susy multiplet is atypical (short)

Excitations with complex momenta

Frolov, van Tongeren and G.A., '11

Motivations to study such excitations

- to elucidate new features of the mirror TBA
- to test the general strategy of constructing excited states

Feasible approach

- $\mathfrak{su}(2)$ sector contains particles with complex momenta, for *M* magnons L = J + M
- There are many three-particle solutions with

 $(k-1)/g < |\text{Im}(u)| < k/g, \quad k = 2, 3, ...$

• Explicitly consider the state L = 7, M = 3

Numerical solution of the BY equation for L=7 state

g	p	q	g	p	q
0.	2.3129	0.926075	0.5	2.24919	1.23789
0.1	2.3098	0.933177	0.51	2.24704	1.27083
0.2	2.30088	0.955744	0.52	2.2449	1.31517
0.3	2.28709	0.99838	0.53	2.24302	1.40691
0.4	2.26953	1.0737	0.5301	2.24303	1.41083
			0.5302	2.2431 - 0.00001i	1.41983 - 0.001i

BAE break down!

 Y_Q with $Q \ge 3$ have poles at $u_2 + \frac{i}{g}(Q-1)$, $u_3 - \frac{i}{g}(Q-1)$

Analytic structure of the exact solution

The functions Y_1 , Y_2 and Y_3 have poles inside the analyticity strip!

Around a pole

$$Y(u)=\frac{y(u)}{u-u_{\infty}}$$

- Within the analyticity strip y(u) is small and of the order g^{2L-1}
- There is a point u_{-1} such that $Y(u_{-1}) = -1$ implying

$$u_{-1} - u_{\infty} + y(u_{-1}) = 0$$

Expanding around u_{∞}

$$u_{-1} \approx u_{\infty} - y(u_{\infty}) = u_{\infty} - \operatorname{Res} Y(u_{\infty})$$

We conclude that u_{-1} is close to u_{∞} !

Very similar to SU(N) models! Kazakov & Leurent `10

Balog (unpublished)

$$Y_Q = \Upsilon_Q \frac{T_{Q,-1} T_{Q,1}}{T_{Q-1,0} T_{Q+1,0}}, \qquad 1 + Y_Q = \frac{T_{Q,0}^+ T_{Q,0}^-}{T_{Q-1,0} T_{Q+1,0}}$$

- Prefactor Υ_Q has poles at $u_2 + \frac{i}{g}(Q-1)$ and $u_2 + \frac{i}{g}(Q+1)$
- Asymptotically $T_{Q,0} = 1$
- For an exact solution $T_{Q,0} \neq 1$ and

$$T_{Q,0}(u_2+rac{i}{g}Q)=\infty, \quad T_{Q,0}(u_2^{(Q)}+rac{i}{g}Q)=0$$

This implies

$$Y_Q\left(u_2^{(Q\pm 1)} + \frac{i}{g}(Q\pm 1)\right) = \infty$$
$$1 + Y_Q\left(u_2^{(Q)} + \frac{i}{g}(Q\mp 1)\right) = 0$$

• In addition $1 + Y_1$ has zero at real u_1 which is in the string region

• *Q* = 1

$$\log S_1(u_3^{(2)--}, v) - \log S_1(u_3^{(1)--}, v) - \log S_1(u_2^{(1)}, v) - \log S_{1*}(u_1, v)$$

• *Q* = 2

+ log
$$S_2(u_2^{(1)+}, v)$$
 + log $S_2(u_3^{(3)---}, v)$
- log $S_2(u_2^{(2)+}, v)$ - log $S_2(u_3^{(2)---}, v)$

 S_Q satisfies the discrete Laplace equation

$$\mathcal{S}_{Q-1}(u,v)\mathcal{S}_{Q+1}(u,v)=\mathcal{S}_Q(u^-,v)\mathcal{S}_Q(u^+,v).$$

Then we take a sum over $Q \ge 3$

$$\sum_{Q=3}^{\infty} \log \frac{\mathcal{S}_Q(u_3^{(Q-1)} - \frac{i}{g}(Q-1), v) \mathcal{S}_Q(u_3^{(Q+1)} - \frac{i}{g}(Q+1), v)}{\mathcal{S}_Q(u_3^{(Q)} - \frac{i}{g}(Q-1), v) \mathcal{S}_Q(u_3^{(Q)} - \frac{i}{g}(Q+1), v)} = \log \frac{\mathcal{S}_3(u_3^{(2)--}, v)}{\mathcal{S}_2(u_3^{(3)---}, v)}.$$

Adding terms Q = 1, 2, one gets the driving terms from $log(1 + Y_Q) \star_{C_Q} \mathcal{K}_Q$

$$-\log S_{1_*}(u_1,v) - \log \frac{S_1(u_2^{(1)},v)}{S_1(u_3^{(1)},v)} + \log \frac{S_2(u_2^{(1)+},v)}{S_2(u_2^{(2)+},v)} \frac{S_2(u_3^{(2)-},v)}{S_2(u_3^{(1)-},v)}.$$

Compatibility of quantization conditions

$$Y_1(u_3^{(1)}) = -1 \iff Y_1(u_3^{(1)--}) = -1 \iff Y_{1*}(u_3^{(1)}) = -1$$

The exact Bethe equations representing these quantization conditions are compatible in a non-trivial manner which involves crossing symmetry

There are similar quantization conditions involving Y_2

$$Y_2(u_3^{(2)-}) = -1 \quad \Leftrightarrow \quad Y_2(u_3^{(2)---}) = -1$$

Simplified TBA equations for $Y_{M|w}$ and $Y_{M|vw}$

$$\log Y_{M|w} = \log(1 + Y_{M-1|w})(1 + Y_{M+1|w}) \star s$$

+ $\delta_{M1} \log \frac{1 - \frac{1}{Y_{-}}}{1 - \frac{1}{Y_{+}}} \star s - \log S(r_{M-1}^{-} - v)S(r_{M+1}^{-} - v)$

$$\begin{split} \log Y_{M|vw} &= -\log(1+Y_{M+1}) \star s + \log(1+Y_{M-1|vw})(1+Y_{M+1|vw}) \star s \\ &+ \delta_{M1} \log \frac{1-Y_{-}}{1-Y_{+}} \star s \\ &+ \delta_{M1} \Big(\log \frac{S(u_{2}^{(2)+}-v)}{S(u_{3}^{(2)-}-v)} - \log S(u_{1}^{-}-v)S(r_{0}^{-}-v) \Big) \end{split}$$

Simplified TBA equations for Y_{\pm}

$$\log \frac{Y_{+}}{Y_{-}} = \log(1+Y_{Q}) \star K_{Qy} - \sum_{i=1}^{3} \log S_{1_{*}y}(u_{i}^{(1)}, v) + \log \frac{S_{2y}(u_{2}^{(1)+}, v)}{S_{2y}(u_{2}^{(2)+}, v)} \frac{S_{2y}(u_{3}^{(2)-}, v)}{S_{2y}(u_{3}^{(1)-}, v)}$$

$$\begin{split} \log Y_{+}Y_{-} &= 2\log \frac{1+Y_{1|vw}}{1+Y_{1|w}} \star s - \log \left(1+Y_{Q}\right) \star K_{Q} + 2\log(1+Y_{Q}) \star K_{xv}^{Q1} \star s \\ &+ 2\log S(r_{1}^{-}-v) - 2\log S_{xv}^{1*1}(u_{1},v) \star s + \log S_{2}(u_{1}-v) \star s \\ &- 2\log \frac{S_{xv}^{11}(u_{2}^{(1)},v)}{S_{xv}^{11}(u_{3}^{(1)},v)} \star s + \log \frac{S_{1}(u_{2}^{(1)}-v)}{S_{1}(u_{3}^{(1)}-v)} \\ &- \log \frac{S_{2}(u_{2}^{(1)+}-v)}{S_{2}(u_{2}^{(2)+}-v)} \frac{S_{2}(u_{3}^{(2)-}-v)}{S_{2}(u_{3}^{(1)-}-v)} + 2\log \frac{S_{xv}^{21}(u_{2}^{(1)+},v)S_{xv}^{21}(u_{3}^{(2)-},v)}{S_{xv}^{21}(u_{3}^{(1)-},v)} \star s \end{split}$$

A generalization of our construction to a three-particle state with u_2 and u_3 lying in the kth strip

Four functions Y_{k-2}, \ldots, Y_{k+1} will have poles in the analyticity strip, with the poles of Y_{k-2} and Y_k being closest to the real line

The driving terms in the corresponding TBA equations will depend on $u_{2,3}^{(k-1)}$ and $u_{2,3}^{(k)}$ whose locations are determined by the corresponding exact Bethe equations for Y_{k-1} and Y_k

The energy

$$E = \sum_{i=1}^{3} \mathcal{E}(u_{i}^{(1)}) - \frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} du \frac{d\tilde{p}_{Q}}{du} \log(1 + Y_{Q}) \\ - i\tilde{p}_{k} \left(u_{2}^{(k-1)} + (k-1)\frac{i}{g} \right) + i\tilde{p}_{k} \left(u_{2}^{(k)} + (k-1)\frac{i}{g} \right) \\ - i\tilde{p}_{k} \left(u_{3}^{(k)} - (k-1)\frac{i}{g} \right) + i\tilde{p}_{k} \left(u_{3}^{(k-1)} - (k-1)\frac{i}{g} \right)$$

The fact that $1 + Y_1$ and $1 + Y_2$ functions have zeroes and poles in the analyticity strip in conjunction with the choice for the integration contours leads to the following energy formula

$$\begin{split} E &= \sum_{i=1}^{3} \mathcal{E}(u_{i}^{(1)}) - \frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} du \frac{d\tilde{p}_{Q}}{du} \log(1 + Y_{Q}) \\ &- i\tilde{p}_{2}(u_{2}^{(1)+}) + i\tilde{p}_{2}(u_{2}^{(2)+}) - i\tilde{p}_{2}(u_{3}^{(2)-}) + i\tilde{p}_{2}(u_{3}^{(1)-}) \,, \end{split}$$

The $g \rightarrow 0$ and J finite limit provides the leading wrapping correction

$$\Delta E^{\text{wrap}} = -\frac{1}{2\pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} du \frac{d\tilde{p}_Q}{du} Y_Q$$
$$-i \Big[\operatorname{Res}\Big(\frac{d\tilde{p}_2}{du}(u_2^+)Y_2(u_2^+)\Big) - \operatorname{Res}\Big(\frac{d\tilde{p}_2}{du}(u_3^-)Y_2(u_3^-)\Big) \Big].$$

Thank you!

Saturday, April 7, 2012