Bound States in the Mirror TBA

Gleb Arutyunov
Institute for Theoretical Physics
Utrecht University

- Ground state TBA
- Excited states TBA
- Implementation of symmetries
- TBA for bound states

Ground state TBA

String Energy E

String energy E is a conserved Noether charge corresponding to the $\mathrm{SO}(2)$ subgroup of the isometry (conformal) group $\mathrm{SO}(4,2)$

Charge J

J is a conserved Noether charge corresponding to one of the $\mathrm{SO}(2)$ subgroups of the isometry group $\mathrm{SO}(6)$

Mirror Theory

string of length $L=J$

- One Euclidean theory - two Minkowski theories. One is related to the other by the double Wick rotation:

$$
\tilde{\sigma}=-i \tau, \quad \tilde{\tau}=i \sigma
$$

The Hamiltonian \tilde{H} w.r.t. $\tilde{\tau}$ defines the mirror theory.

Ground state energy is related to the free energy of its mirror

$$
E(L)=\lim _{R \rightarrow \infty} \frac{L}{R} F(L)=L \mathcal{F}
$$

- J-momentum carried by string along the equator of S^{5}, L - "length" (will be related to J)
- p-momentum of a string particle
- \mathcal{E} - energy of a string particle: $\quad \mathcal{E}=\sqrt{1+4 g^{2} \sin ^{2} \frac{p}{2}}$
- \tilde{p}-momentum of a mirror particle
- $\tilde{\mathcal{E}}$ - energy of a mirror particle: $\tilde{\mathcal{E}}=2 \operatorname{arcsinh}\left(\frac{1}{2 g} \sqrt{1+\tilde{p}^{2}}\right)$
- String S-matrix $S\left(p_{1}, p_{2}\right)$
- Mirror S-matrix $\tilde{S}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)$

Bethe-Yang equations for the mirror model

Mirror Bethe-Yang equations for fundamental particles $(\alpha=1,2)$
Length of the mirror circle

$$
\begin{aligned}
1= & e^{i \widetilde{p}_{k} R} \prod_{\substack{l=1 \\
l \neq k}}^{K^{\mathrm{I}}} S\left(\tilde{p}_{k}, \tilde{p}_{l}\right) \prod_{\alpha=1}^{2} \prod_{l=1}^{K_{l(\alpha)}^{\mathrm{II}}} \frac{x_{k}^{-}-y_{l}^{(\alpha)}}{x_{k}^{+}-y_{l}^{(\alpha)}} \sqrt{\frac{x_{k}^{+}}{x_{k}^{-}}} \\
-1= & \prod_{l=1}^{K^{\mathrm{I}}} \frac{y_{k}^{(\alpha)}-x_{l}^{-}}{y_{k}^{(\alpha)}-x_{l}^{+}} \sqrt{\frac{x_{l}^{+}}{x_{l}^{-}}} \prod_{l=1}^{K_{(\alpha)}^{\mathrm{III}}} \frac{v_{k}^{(\alpha)}-w_{l}^{(\alpha)}-\frac{i}{g}}{v_{k}^{(\alpha)}-w_{l}^{(\alpha)}+\frac{i}{g}} \\
1= & \prod_{l=1}^{K_{l}^{\mathrm{II}}} \frac{w_{k}^{(\alpha)}-v_{l}^{(\alpha)}+\frac{i}{g}}{w_{k}^{(\alpha)}-v_{l}^{(\alpha)}-\frac{i}{g}} \prod_{l=1}^{K_{l=k}^{\mathrm{III}}} \frac{w_{k}^{(\alpha)}-w_{l}^{(\alpha)}-\frac{2 i}{g}}{w_{k}^{(\alpha)}-w_{l}^{(\alpha)}+\frac{2 i}{g}}
\end{aligned}
$$

follow from $\tilde{S}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)$
Auxiliary roots $-w^{\alpha}, y^{\alpha} ; \quad v=y+1 / y$

$$
\left(K_{-}^{\mathrm{III}}, K_{-}^{\mathrm{II}}, K^{\mathrm{I}}, K_{+}^{\mathrm{II}}, K_{+}^{\mathrm{III}}\right)
$$

The spectrum of TBA particles

String hypothesis suggests the existence of nine types of TBA vacuum particles ($\alpha=1,2$):

- Q-particles (Q-particle bound states) carrying momentum $\tilde{p}_{Q} \Longrightarrow Y_{Q}^{(\alpha)}(u)$
- $y^{ \pm(\alpha)}$-particles corresponding to fermionic Bethe roots $\Longrightarrow Y_{ \pm}^{(\alpha)}(u), \quad|u|<2$
- $M \mid v w^{(\alpha)}$-strings $\Longrightarrow Y_{M \mid v w^{(\alpha)}}^{(u)}$
- $M \mid w^{(\alpha)}$-strings $\Longrightarrow Y_{M \mid w}^{(\alpha)}(u)$

$$
\begin{aligned}
& \widetilde{p}^{Q}(u)=g x\left(u-\frac{i Q}{g}\right)-g x\left(u+\frac{i Q}{g}\right)+i Q, \\
& \widetilde{\mathcal{E}}^{Q}(u)=\log \frac{x\left(u-\frac{i Q}{g}\right)}{x\left(u+\frac{i Q}{g}\right)}=2 \operatorname{arcsinh}\left(\frac{1}{2 g} \sqrt{Q^{2}+\widetilde{p}^{2}}\right)
\end{aligned}
$$

Simplified TBA equations for the ground state

- $M \mid$-strings: $\quad \log Y_{M \mid W}^{(\alpha)}=\log \left(1+Y_{M-1 \mid w}^{(\alpha)}\right)\left(1+Y_{M+1 \mid w}^{(\alpha)}\right) \star s+\delta_{M 1} \log \frac{1-\frac{1}{Y_{-}^{(\alpha)}}}{1-\frac{1}{Y_{+}^{(\alpha)}}} \hat{\star} s$
- $M \mid v w$-strings:
$\log Y_{M \mid v w}^{(\alpha)}=\log \left(1+Y_{M-1 \mid v w}^{(\alpha)}\right)\left(1+Y_{M+1 \mid v w}^{(\alpha)}\right) \star s-\log \left(1+Y_{M+1}\right) \star s+\delta_{M 1} \log \frac{1-Y_{-}^{(\alpha)}}{1-Y_{+}^{(\alpha)}} \hat{\star} s$
- y-particles $\log \frac{Y_{+}^{(\alpha)}}{Y_{-}^{(\alpha)}}=\log \left(1+Y_{Q}\right) \star K_{Q y}$,

$$
\log Y_{+}^{(\alpha)} Y_{-}^{(\alpha)}=\log \left(1+Y_{Q}\right) \star\left(-K_{Q}+2 K_{x v}^{Q 1} \star s\right)+2 \log \frac{1+Y_{1 \mid v w}}{1+Y_{1 \mid w}} \star s
$$

- Q-particles for $Q \geq 2 \quad\left(1+\frac{1}{Y_{Q-1 \mid v w}^{(1)}}\right)\left(1+\frac{1}{Y_{Q-1 \mid v w}^{(2)}}\right) \quad$ Most complicated
- Q-particles for $Q \geq 2 \quad \log Y_{Q}=\log \frac{Q-1 \mid v w}{\left(1+\frac{1}{Y_{Q-1}}\right)\left(1+\frac{1}{Y_{Q+1}}\right)} \star s$ piece -- it depends on TBA length L and on

$$
\left(1-\frac{1}{Y^{(1)}}\right)\left(1-\frac{1}{Y^{(2)}}\right)
$$

$$
E(L)=-\frac{1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} u \frac{d \widetilde{p}^{Q}}{d u} \log \left(1+Y_{Q}\right)
$$

Excited states TBA

Large L solution of TBA

$L \rightarrow \infty$: Bethe-Yang (all $1 / L$ powers) + Lüscher corrections (leading $e^{-m L}$ corrections)
(standing 1-particle states)
(general N-particle states)

$$
Y_{Q}^{O}(v)=\Upsilon_{Q}(v) T_{Q,-1}(v) T_{Q, 1}(v)
$$

- Transfer matrix

$$
T_{Q, 1}(u)=\operatorname{Tr}_{Q}\left[S_{Q, 1}\left(u, u_{1}\right) \ldots S_{Q, N}\left(u, u_{N}\right)\right]
$$

- The prefactor

$$
\Upsilon_{Q}^{+} \Upsilon_{Q}^{-}=\Upsilon_{Q-1} \Upsilon_{Q+1}, \quad \Upsilon_{Q}(v) \sim e^{-J \widetilde{\mathcal{E}}_{Q}(v)}
$$

- Bethe-Yang equations are equivalent to

$$
Y_{1_{*}}^{o}\left(u_{k}\right)=-1, \quad k=1, \ldots, N
$$

- All other Y-functions $Y_{ \pm}^{o}, Y_{M \mid v w}^{o}, Y_{M \mid w}^{o}$ are found from the TBA and Y_{Q}^{o}

Relation between the TBA length L and the charge J

The asymptotic TBA equation for Y_{1} is satisfied by the asymptotic solution provided
L=J+2

Contour deformation trick

Exact Bethe equations: quantization conditions for rapidities replacing asymptotic Bethe-Yang equations

- TBA's for excited states differ only by a choice of the integration contour
- Taking the contour back to the real mirror line produces extra contributions $-\log S\left(z_{*}, z\right)$ from $\log \left(1+Y_{1}\right) \star K$, where $K(w, z)=\frac{1}{2 \pi i} \frac{d}{d w} \log S(w, z)$

General strategy

(1) Solve the BY equations for a fixed set of integers

$$
J, \quad N=K^{\mathrm{I}}, \quad\left(K_{-}^{\mathrm{III}}, K_{-}^{\mathrm{II}}, K_{+}^{\mathrm{II}}, K_{+}^{\mathrm{III}}\right)
$$

Pick up a solution. It is characterized by a definite set of g-dependent momenta.
Auxiliary roots are completely fixed by the momenta p_{k} and play no independent role in the description of the state
(2) Compute asymptotic Y-functions and find zeroes and poles of $1+Y$ and Y
(3) Choose contours and engineer TBA equations for the state so that the asymptotic TBA equations obtained by dropping terms with $\log \left(1+Y_{Q}\right)$ are solved by the asymptotic Y -functions
(4) Exact momenta p_{k} are found from the exact Bethe equations (quantization cond.)

$$
Y_{1_{*}}^{0}\left(p_{k}\right)=-1 \quad \Longrightarrow \quad Y_{1_{*}}\left(p_{k}\right)=-1
$$

derived by analytically continuing the excited state TBA equation for Y_{1}

General facts about symmetries

- $\operatorname{PSU}(2,2 \mid 4)$ acts on asymptotic solutions provided the level-matching is satisfied
- States can have roots $\nu^{(\alpha)}=y^{(\alpha)}+\frac{1}{y^{(\alpha)}}$ and $w^{(\alpha)}$ located at infinity
- Dynkin labels of a state are related to excitation numbers

$$
\begin{array}{ll}
q_{1}=K_{-}^{\mathrm{II}}-2 K_{-}^{\mathrm{III}} & s_{1}=K^{\mathrm{I}}-K_{-}^{\mathrm{II}} \\
p=J-\frac{1}{2}\left(K_{-}^{\mathrm{II}}+K_{+}^{\mathrm{II}}\right)+K_{-}^{\mathrm{III}}+K_{+}^{\mathrm{III}} & s_{2}=K^{\mathrm{I}}-K_{+}^{\mathrm{II}} \\
q_{2}=K_{+}^{\mathrm{II}}-2 K_{+}^{\mathrm{II}} &
\end{array}
$$

- States in the same multiplet must have the same anomalous dimension and canonical ones which might differ by a (half-)integer

$$
E=J+\sum_{k=1}^{K^{1}} \sqrt{1+4 g^{2} \sin ^{2} \frac{p_{k}}{2}} .
$$

Putting $g=0$ gives the canonical dimension $E=J+K^{\mathrm{I}}$. Adding particles with zero momentum $p=0(u=\infty)$ changes canonical dimension.

- Superconformal primary has the lowest canonical dimension in the multiplet!

Treatment of symmetry on the asymptotic solution

- Every multiplet has a unique regular representative ($\vec{u}, \vec{\nu}^{(\alpha)}, \vec{w}^{(\alpha)}$) among the solutions of the Bethe ansatz equations
- All other states in a multiplet are created by adding irregular roots
- BY equations for all members of a multiplet must be the same

$$
1=e^{i J p_{k}} \prod_{l \neq k}^{k^{\mathrm{I}}} S_{\mathfrak{s l}(2)}\left(u_{k}, u_{l}\right) \prod_{l=1}^{k_{-}^{\mathrm{II}}} \frac{x_{k}^{-}-y_{l}^{(-)}}{x_{k}^{+}-y_{l}^{(-)}} \sqrt{\frac{x_{k}^{+}}{x_{k}^{-}}} \prod_{l=1}^{k_{+}^{\mathrm{II}}} \frac{x_{k}^{-}-y_{l}^{(+)}}{x_{k}^{+}-y_{l}^{(+)}} \sqrt{\frac{x_{k}^{+}}{x_{k}^{-}}}
$$

1) Adding root with $p=0$ does not modify BY equations, as $x^{+} / x^{-}=1$;
2) Adding root with $y=0$ requires a shift $J \rightarrow J+\frac{1}{2}$;
3) Adding root with $y=\infty$ requires a shift $J \rightarrow J-\frac{1}{2}$;
4) Adding irregular roots y or w does not influence auxiliary Bethe equations

Susy generators in the light-cone gauge

Susy generators of the light-cone string are divided into two groups
(1) Kinematical generators: independent of x_{-}, but depend on $x^{+}=\tau$
(2) Dynamical generators: depend on x_{-}, but independent of $x^{+}=\tau$

Since

$$
\frac{d Q}{d \tau}=\frac{\partial Q}{\partial \tau}+\{\mathrm{H}, Q\}
$$

dynamical generators commute with $\mathrm{H}=E-J$, while kinematical generators do not

Kinematical Poincare supercharges

Charge	Weights	$\Delta K_{-}^{\text {II }}$	$\Delta K_{+}^{\text {II }}$	$\Delta K_{-}^{\text {III }}$	$\Delta K_{+}^{\text {III }}$
Q_{α}^{3}	$[0,-1,1]_{\left(\pm \frac{1}{2}, 0\right)}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$
Q_{α}^{4}	$[0,0,-1]_{\left(\pm \frac{1}{2}, 0\right)}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$1_{ \pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$1_{ \pm \frac{1}{2}}$
$\bar{Q}_{1 \dot{a}}$	$[-1,0,0]_{\left(0, \pm \frac{1}{2}\right)}$	$1_{ \pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$1_{ \pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$
$\bar{Q}_{2 \dot{a}}$	$[1,-1,0]_{\left(0, \pm \frac{1}{2}\right)}$	$1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{+\frac{1}{2}}, 2_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$

- Decrease J by $-1 / 2$ and increase K^{I} by 1 , never decrease K_{α}^{II} and $K_{\alpha}^{\text {III }}$
- Action with a supercharge adds either three or one irregular y-roots
- A single y-root is at ∞, from three y-roots two at ∞ and one at 0

Dynamical Poincare supercharges

Charge	Weights	$\Delta K_{-}^{\text {II }}$	$\Delta K_{+}^{\text {II }}$	$\Delta K_{-}^{\text {III }}$	$\Delta K_{+}^{\text {III }}$
Q_{α}^{1}	$[1,0,0]_{\left(\pm \frac{1}{2}, 0\right)}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 0_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$
Q_{α}^{2}	$[-1,1,0]_{\left(\pm \frac{1}{2}, 0\right)}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$
$\bar{Q}_{3 \dot{a}}$	$[0,1,-1]_{\left(0, \pm \frac{1}{2}\right)}$	$0_{ \pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$	$0_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$
$\bar{Q}_{4 \dot{a}}$	$[0,0,1]_{\left(0, \pm \frac{1}{2}\right)}$	$0_{ \pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 1_{-\frac{1}{2}}$	$0_{ \pm \frac{1}{2}}$	$-1_{+\frac{1}{2}}, 0_{-\frac{1}{2}}$

- J and E are increased by $1 / 2, K^{\mathrm{I}}$ is unchanged
- Four charges (red) lower $K^{\text {II }}$ by 1 ! These will decrease a number of (irregular) roots when acting on a superconformal primary to produce the regular state

$$
E_{h w s}=E_{r e g}-2, \quad J_{h w s}=J_{r e g}-2 .
$$

Four y-roots at ∞ !

- Relation between excitation numbers

$$
K_{r e g}^{\mathrm{I}}=K_{h w s}^{\mathrm{I}}, \quad K_{\alpha, \text { reg }}^{\mathrm{II}}=K_{\alpha, h w s}^{\mathrm{II}}-2, \quad K_{\alpha, \text { reg }}^{\mathrm{III}}=K_{\alpha, h w s}^{\mathrm{III}}-1
$$

Typical multiplet of 2^{16} states

$$
|\mathcal{O}\rangle=\prod \underbrace{\left(Q_{-\infty}^{d}\right)^{n_{\infty}^{d}}\left(Q_{+0}^{d}\right)^{n_{0}^{d}}}_{J \rightarrow+1 / 2} \underbrace{\left(Q_{+\infty}^{k}\right)^{n_{\infty}^{k}}\left(Q_{+2 \infty,+0}^{k}\right)^{n_{\infty}^{k}, 0}}_{J \rightarrow-1 / 2, k^{\mathrm{I}} \rightarrow+1}|\mathrm{hws}\rangle
$$

- The hws has four y-roots at ∞

$$
E_{h w s}=E_{r e g}-2, \quad J_{h w s}=J_{\text {reg }}-2
$$

- J-charge

$$
J=J_{h w s}+\frac{1}{2}\left(n_{\infty}^{d}+n_{0}^{d}-n_{\infty}^{k}-n_{\infty, 0}^{k}\right)
$$

- Energy

$$
E=E_{h w s}+\frac{1}{2}\left(n_{\infty}^{d}+n_{0}^{d}+n_{\infty}^{k}+n_{\infty, 0}^{k}\right)
$$

- Number of irregular roots

$$
\mathcal{K}_{0}^{\mathrm{II}}=n_{0}^{d}+n_{\infty, 0}^{k}, \quad \mathcal{K}_{\infty}^{\mathrm{II}}=4-n_{\infty}^{d}+n_{\infty}^{k}+2 n_{\infty, 0}^{k}
$$

From here

$$
J=J_{\text {reg }}+\frac{1}{2}\left(\mathcal{K}_{0}^{\mathrm{II}}-\mathcal{K}_{\infty}^{\mathrm{II}}\right)
$$

psu(2,2|4) symmetry is built in TBA

$$
J=J_{\text {reg }}+\frac{1}{2}\left(\mathcal{K}_{0}^{\mathrm{II}}-\mathcal{K}_{\infty}^{\mathrm{II}}\right) \quad e^{-\tilde{\varepsilon}_{Q}} \equiv \Omega
$$

Expression for the asymptotic Y_{Q} is universal for the whole multiplet:

$$
Y_{Q}^{o}=\Omega^{J} T_{Q,+1} T_{Q,-1}, \quad Y_{Q}^{o, \text { reg }}=\Omega^{J_{\text {reg }}} T_{Q,+1}^{\text {reg }} T_{Q,-1}^{\text {reg }}
$$

But

$$
T_{Q,+1} T_{Q,-1}=\Omega^{\frac{1}{2}\left(\mathcal{K}_{\infty}^{\mathrm{II}}-\mathcal{K}_{0}^{\mathrm{II}}\right)} T_{Q,+1}^{r e g} T_{Q,-1}^{r e g}
$$

Accordingly, the Y_{Q}-functions of this state can be written as

$$
Y_{Q}^{o}=\Omega^{J-J_{\text {reg }}} \Omega^{\frac{1}{2}\left(\mathcal{K}_{\infty}^{\mathrm{II}}-\mathcal{K}_{0}^{\mathrm{II}}\right)} Y_{Q}^{0, \text { reg }}=Y_{Q}^{0, \text { reg }}
$$

For all states in a multiplet Y_{Q}^{0}-functions and, therefore, all Y^{0} coincide! $Y^{\prime} s$ are simply invariants of $p s u(2,2 \mid 4)$

TBA length L

Kinematical charges decrease J, while dynamical increase. Thus,

$$
J_{h w s}-4 \leq J \leq J_{h w s}+4=J_{\text {reg }}+2
$$

On the other hand, in the TBA studies we found that

$$
L=J_{\text {reg }}+2
$$

L coincides with the maximal J-charge in a susy multiplet
Only for the vacuum $L=J_{\text {reg }}$, as the corresponding susy multiplet is atypical (short)

Excitations

with complex

 momentaFrolov, van Tongeren and G.A., '11

Motivations to study such excitations

- to elucidate new features of the mirror TBA
- to test the general strategy of constructing excited states

Feasible approach

- $\mathfrak{s u}(2)$ sector contains particles with complex momenta, for M magnons $L=J+M$
- There are many three-particle solutions with

$$
(k-1) / g<|\operatorname{Im}(u)|<k / g, \quad k=2,3, \ldots
$$

- Explicitly consider the state $L=7, M=3$

Numerical solution of the BY equation for L=7 state

g	p	q	g	p	q
0.	2.3129	0.926075	0.5	2.24919	1.23789
0.1	2.3098	0.933177	0.51	2.24704	1.27083
0.2	2.30088	0.955744	0.52	2.2449	1.31517
0.3	2.28709	0.99838	0.53	2.24302	1.40691
0.4	2.26953	1.0737	0.5301	2.24303	1.41083
			0.5302	$2.2431-0.00001 i$	$1.41983-0.001 i$

BAE break down!

Relevant roots/poles of the asymptotic Y's on the mirror u-plane

Y_{Q} with $Q \geq 3$ have poles at $u_{2}+\frac{i}{g}(Q-1), u_{3}-\frac{i}{g}(Q-1)$

Analytic structure of the exact solution

The functions Y_{1}, Y_{2} and Y_{3} have poles inside the analyticity strip!

- Around a pole

$$
Y(u)=\frac{y(u)}{u-u_{\infty}}
$$

- Within the analyticity strip $y(u)$ is small and of the order $g^{2 L-1}$
- There is a point u_{-1} such that $Y\left(u_{-1}\right)=-1$ implying

$$
u_{-1}-u_{\infty}+y\left(u_{-1}\right)=0
$$

Expanding around u_{∞}

$$
u_{-1} \approx u_{\infty}-y\left(u_{\infty}\right)=u_{\infty}-\operatorname{Res} Y\left(u_{\infty}\right)
$$

We conclude that u_{-1} is close to u_{∞} !

$$
Y_{Q}=\Upsilon_{Q} \frac{T_{Q,-1} T_{Q, 1}}{T_{Q-1,0} T_{Q+1,0}}, \quad 1+Y_{Q}=\frac{T_{Q, 0}^{+} T_{Q, 0}^{-}}{T_{Q-1,0} T_{Q+1,0}}
$$

- Prefactor Υ_{Q} has poles at $u_{2}+\frac{i}{g}(Q-1)$ and $u_{2}+\frac{i}{g}(Q+1)$
- Asymptotically $T_{Q, 0}=1$
- For an exact solution $T_{Q, 0} \neq 1$ and

$$
T_{Q, 0}\left(u_{2}+\frac{i}{g} Q\right)=\infty, \quad T_{Q, 0}\left(u_{2}^{(Q)}+\frac{i}{g} Q\right)=0
$$

This implies

$$
\begin{aligned}
& Y_{Q}\left(u_{2}^{(Q \pm 1)}+\frac{i}{g}(Q \pm 1)\right)=\infty \\
& 1+Y_{Q}\left(u_{2}^{(Q)}+\frac{i}{g}(Q \mp 1)\right)=0
\end{aligned}
$$

- In addition $1+Y_{1}$ has zero at real u_{1} which is in the string region
- $Q=1$

$$
\log \mathcal{S}_{1}\left(u_{3}^{(2)--}, v\right)-\log \mathcal{S}_{1}\left(u_{3}^{(1)--}, v\right)-\log \mathcal{S}_{1}\left(u_{2}^{(1)}, v\right)-\log \mathcal{S}_{1_{*}}\left(u_{1}, v\right)
$$

- $Q=2$

$$
\begin{aligned}
& +\log \mathcal{S}_{2}\left(u_{2}^{(1)+}, v\right)+\log \mathcal{S}_{2}\left(u_{3}^{(3)---}, v\right) \\
& -\log \mathcal{S}_{2}\left(u_{2}^{(2)+}, v\right)-\log \mathcal{S}_{2}\left(u_{3}^{(2)---}, v\right)
\end{aligned}
$$

\mathcal{S}_{Q} satisfies the discrete Laplace equation

$$
\mathcal{S}_{Q-1}(u, v) \mathcal{S}_{Q+1}(u, v)=\mathcal{S}_{Q}\left(u^{-}, v\right) \mathcal{S}_{Q}\left(u^{+}, v\right) .
$$

Then we take a sum over $Q \geq 3$

$$
\sum_{Q=3}^{\infty} \log \frac{\mathcal{S}_{Q}\left(u_{3}^{(Q-1)}-\frac{i}{g}(Q-1), v\right) \mathcal{S}_{Q}\left(u_{3}^{(Q+1)}-\frac{i}{g}(Q+1), v\right)}{\mathcal{S}_{Q}\left(u_{3}^{(Q)}-\frac{i}{g}(Q-1), v\right) \mathcal{S}_{Q}\left(u_{3}^{(Q)}-\frac{i}{g}(Q+1), v\right)}=\log \frac{\mathcal{S}_{3}\left(u_{3}^{(2)--}, v\right)}{\mathcal{S}_{2}\left(u_{3}^{(3)---}, v\right)}
$$

Adding terms $Q=1,2$, one gets the driving terms from $\log \left(1+Y_{Q}\right){ }^{*} C_{Q} \mathcal{K}_{Q}$

$$
-\log \mathcal{S}_{1_{*}}\left(u_{1}, v\right)-\log \frac{\mathcal{S}_{1}\left(u_{2}^{(1)}, v\right)}{\mathcal{S}_{1}\left(u_{3}^{(1)}, v\right)}+\log \frac{\mathcal{S}_{2}\left(u_{2}^{(1)+}, v\right)}{\mathcal{S}_{2}\left(u_{2}^{(2)+}, v\right)} \frac{\mathcal{S}_{2}\left(u_{3}^{(2)-}, v\right)}{\mathcal{S}_{2}\left(u_{3}^{(1)-}, v\right)}
$$

Compatibility of quantization conditions

$$
Y_{1}\left(u_{3}^{(1)}\right)=-1 \Leftrightarrow Y_{1}\left(u_{3}^{(1)--}\right)=-1 \quad \Leftrightarrow \quad Y_{1 *}\left(u_{3}^{(1)}\right)=-1
$$

The exact Bethe equations representing these quantization conditions are compatible in a non-trivial manner which involves crossing symmetry

There are similar quantization conditions involving Y_{2}

$$
Y_{2}\left(u_{3}^{(2)-}\right)=-1 \quad \Leftrightarrow \quad Y_{2}\left(u_{3}^{(2)----}\right)=-1
$$

Simplified TBA equations for $Y_{M \mid w}$ and $Y_{M \mid v w}$

$$
\begin{aligned}
\log Y_{M \mid w} & =\log \left(1+Y_{M-1 \mid w}\right)\left(1+Y_{M+1 \mid w}\right) \star s \\
& +\delta_{M 1} \log \frac{1-\frac{1}{Y_{-}}}{1-\frac{1}{Y_{+}}} \hat{\star} s-\log S\left(r_{M-1}^{-}-v\right) S\left(r_{M+1}^{-}-v\right)
\end{aligned}
$$

$$
\begin{aligned}
\log Y_{M \mid v w}= & -\log \left(1+Y_{M+1}\right) \star s+\log \left(1+Y_{M-1 \mid v w}\right)\left(1+Y_{M+1 \mid v w}\right) \star s \\
& +\delta_{M 1} \log \frac{1-Y_{-}}{1-Y_{+}} \hat{} s \\
& +\delta_{M 1}\left(\log \frac{S\left(u_{2}^{(2)+}-v\right)}{S\left(u_{3}^{(2)-}-v\right)}-\log S\left(u_{1}^{-}-v\right) S\left(r_{0}^{-}-v\right)\right)
\end{aligned}
$$

Simplified TBA equations for $Y_{ \pm}$

$\log \frac{Y_{+}}{Y_{-}}=\log \left(1+Y_{Q}\right) \star K_{Q y}-\sum_{i=1}^{3} \log S_{1+y}\left(u_{i}^{(1)}, v\right)+\log \frac{S_{2 y}\left(u_{2}^{(1)+}, v\right)}{S_{2 y}\left(u_{2}^{(2)+}, v\right)} \frac{S_{2 y}\left(u_{3}^{(2)-}, v\right)}{S_{2 y}\left(u_{3}^{(1)-}, v\right)}$

$$
\begin{aligned}
\log Y_{+} Y_{-}= & 2 \log \frac{1+Y_{1 \mid v w}}{1+Y_{1 \mid w}} \star s-\log \left(1+Y_{Q}\right) \star K_{Q}+2 \log \left(1+Y_{Q}\right) \star K_{x v}^{Q 1} \star s \\
& +2 \log S\left(r_{1}^{-}-v\right)-2 \log S_{x v}^{1+1}\left(u_{1}, v\right) \star s+\log S_{2}\left(u_{1}-v\right) \star s \\
& -2 \log \frac{S_{x v}^{11}\left(u_{2}^{(1)}, v\right)}{S_{x v}^{11}\left(u_{3}^{(1)}, v\right)} \star s+\log \frac{S_{1}\left(u_{2}^{(1)}-v\right)}{S_{1}\left(u_{3}^{(1)}-v\right)} \\
& -\log \frac{S_{2}\left(u_{2}^{(1)+}-v\right)}{S_{2}\left(u_{2}^{(2)+}-v\right)} \frac{S_{2}\left(u_{3}^{(2)-}-v\right)}{S_{2}\left(u_{3}^{(1)-}-v\right)}+2 \log \frac{S_{x v}^{21}\left(u_{2}^{(1)+}, v\right) S_{x v}^{21}\left(u_{3}^{(2)-}, v\right)}{S_{x v}^{21}\left(u_{2}^{(2)+}, v\right) S_{x v}^{21}\left(u_{3}^{(1)-}, v\right)} \star s
\end{aligned}
$$

A generalization of our construction to a three-particle state with u_{2} and u_{3} lying in the k th strip

Four functions Y_{k-2}, \ldots, Y_{k+1} will have poles in the analyticity strip, with the poles of Y_{k-2} and Y_{k} being closest to the real line

The driving terms in the corresponding TBA equations will depend on $u_{2,3}^{(k-1)}$ and $u_{2,3}^{(k)}$ whose locations are determined by the corresponding exact Bethe equations for Y_{k-1} and Y_{k}

The energy

$$
\begin{aligned}
E=\sum_{i=1}^{3} \mathcal{E}\left(u_{i}^{(1)}\right)-\frac{1}{2 \pi} & \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d u \frac{d \tilde{p}_{Q}}{d u} \log \left(1+Y_{Q}\right) \\
-i \tilde{p}_{k}\left(u_{2}^{(k-1)}\right. & \left.+(k-1) \frac{i}{g}\right)+i \tilde{p}_{k}\left(u_{2}^{(k)}+(k-1) \frac{i}{g}\right) \\
& -i \tilde{p}_{k}\left(u_{3}^{(k)}-(k-1) \frac{i}{g}\right)+i \tilde{p}_{k}\left(u_{3}^{(k-1)}-(k-1) \frac{i}{g}\right)
\end{aligned}
$$

The fact that $1+Y_{1}$ and $1+Y_{2}$ functions have zeroes and poles in the analyticity strip in conjunction with the choice for the integration contours leads to the following energy formula

$$
\begin{aligned}
E= & \sum_{i=1}^{3} \mathcal{E}\left(u_{i}^{(1)}\right)-\frac{1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d u \frac{d \tilde{p}_{Q}}{d u} \log \left(1+Y_{Q}\right) \\
& -i \tilde{p}_{2}\left(u_{2}^{(1)+}\right)+i \tilde{p}_{2}\left(u_{2}^{(2)+}\right)-i \tilde{p}_{2}\left(u_{3}^{(2)-}\right)+i \tilde{p}_{2}\left(u_{3}^{(1)-}\right),
\end{aligned}
$$

The $g \rightarrow 0$ and J finite limit provides the leading wrapping correction

$$
\begin{aligned}
\Delta E^{\mathrm{wrap}}= & -\frac{1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d u \frac{d \tilde{p}_{Q}}{d u} Y_{Q} \\
& -i\left[\operatorname{Res}\left(\frac{d \tilde{p}_{2}}{d u}\left(u_{2}^{+}\right) Y_{2}\left(u_{2}^{+}\right)\right)-\operatorname{Res}\left(\frac{d \tilde{p}_{2}}{d u}\left(u_{3}^{-}\right) Y_{2}\left(u_{3}^{-}\right)\right)\right] .
\end{aligned}
$$

Fate of the bound state?

$Y_{2}(\mathrm{u})$ at $\mathrm{g}=0.5$

