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Spectral problem Gauge-string duality conjecture Towards the solution – the mirror TBA Some explicit results Conclusions

Anti-de Sitter space
Maximally symmetric space of constant negative curvature

X 2
0 + X 2

5 − X 2
1 − X 2

2 − X 2
3 − X 2

4 = R2, R = 1

String energy E is a conserved Noether charge corresponding to the
SO(2) subgroup of the isometry (conformal) group SO(4, 2)

String Energy E 
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J

J is a conserved Noether charge corresponding to one of the
SO(2) subgroups of the isometry group SO(6)

Charge J 
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Introduction Gauge theories – integrable spins Gauge theories – integrable strings Towards the solution

TBA and mirror theory
(inspired by Yang+Yang ’69, Zamolodchikov ’90)

Frolov and G.A. ’07

 "mirror string"
   of length

string of
length =JL

R

One Euclidean theory – two Minkowski theories. One is related to the other by
the double Wick rotation:

σ̃ = −iτ , τ̃ = iσ

The Hamiltonian H̃ w.r.t. τ̃ defines the mirror theory .

Mirror Theory

Mirror Theory

Introduction Gauge theories – integrable spins Gauge theories – integrable strings Towards the solution

TBA and mirror theory

string part . func. Z (R, L) ≡
X

n

�ψn|e−HR |ψn� =
X

n

e
−EnR

mirror part . func. eZ (L, R) ≡
X

n

� eψn|e−
eHL| eψn�

Z (R, L) = eZ (L, R)

When R →∞ one gets log Z (R, L) ∼ −RE(L), where E(L) is the ground state
energy

log eZ (R, L) = −LF (L), where F (L) is the free energy of the mirror theory at the
temperature T = 1/L

Ground state energy is related to the free energy of its mirror

E(L) = lim
R→∞

L

R
F (L) = LF

Free energy per unit length F is found from the Bethe ansatz for the mirror model
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Mirror TBA Bound states

Basic ingredients

J – momentum carried by string along the equator of S5,
L – “length” (will be related to J)

p – momentum of a string particle

E – energy of a string particle: E =
�

1 + 4g2 sin2 p
2

p̃ – momentum of a mirror particle

Ẽ – energy of a mirror particle: Ẽ = 2 arcsinh
�

1
2g

�
1 + p̃2

�

String S-matrix S(p1, p2)

Mirror S-matrix S̃(p̃1, p̃2)
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Bethe-Yang equations for the mirror model

Mirror TBA PSU(2, 2|4)-symmetry Conclusions

BYE of the mirror model

Mirror Bethe-Yang equations for fundamental particles (α = 1, 2)

1 = ei�pk R
K I�

l=1
l �=k

S(p̃k , p̃l )
2�

α=1

K II
(α)�

l=1

x−
k − y (α)

l

x+
k − y (α)

l

���� x+
k

x−
k

−1 =
K I�

l=1

y (α)
k − x−

l

y (α)
k − x+

l

���� x+
l

x−
l

K III
(α)�

l=1

v (α)
k − w (α)

l − i
g

v (α)
k − w (α)

l + i
g

1 =

K II
(α)�

l=1

w (α)
k − v (α)

l + i
g

w (α)
k − v (α)

l − i
g

K III
(α)�

l=1
l �=k

w (α)
k − w (α)

l − 2i
g

w (α)
k − w (α)

l + 2i
g

follow from S̃(p̃1, p̃2)

Auxiliary roots – wα, yα; v = y + 1/y

2N y-roots if one uses the sl(2) grading. The asymptotic Y-functions are independent

of the grading because as we show in appendix 4.2 the transfer matrices in the sl(2)

and su(2) grading can be obtained one from another by a duality transformation, and

therefore, they are just equal on the solutions of the corresponding auxiliary Bethe

equations. Thus, it would be unclear why one should have some extra equations for

the auxiliary roots if one uses the su(2) grading.

To summarize, a physical state is completely characterized by a set of momenta

of particles it is made of, and a set of auxiliary roots numbers KII
α and KIII

α , while the

auxiliary roots are definite functions of the momenta. As a result, the eigenvalues of

transfer matrices and Y-functions are also determined by the values of the momenta,

and the location of the auxiliary roots is not reflected in their analytic properties.

3. Implementation of the PSU(2, 2|4) symmetry

Here we discuss the issue of the PSU(2, 2|4) symmetry in the mirror TBA approach.

We start with the asymptotic Bethe Ansatz equations in the sl(2) grading [41]. The

main Bethe equations have the form

1 = eiJpk
KI�

l �=k

Ssl(2)(uk, ul)

KII
−�

l=1

x−
k − y(−)

l

x+
k − y(−)

l

�
x+
k

x−
k

KII
+�

l=1

x−
k − y(+)

l

x+
k − y(+)

l

�
x+
k

x−
k

. (3.1)

These equations are supplied with auxiliary Bethe equations for the roots y(α) and

w(α)
, α = ±,

KI�

i=1

y(α)k − x−
i

y(α)k − x+
i

�
x+
i

x−
i

=

KIII
α�

i=1

w(α)
i − ν(α)

k − i
g

w(α)
i − ν(α)

k +
i
g

, (3.2)

KII
α�

i=1

w(α)
k − ν(α)

i +
i
g

w(α)
k − ν(α)

i − i
g

= −
KIII

α�

i=1

w(α)
k − w(α)

i +
2i
g

w(α)
k − w(α)

i − 2i
g

. (3.3)

Here we introduced a concise notation ν(α)
k = y(α)k +

1

y(α)
k

. Solutions are therefore

characterized by the following five excitation numbers

(KIII
− , KII

− , K
I, KII

+ , K
III
+ ) .

The number KI
is a number of momentum-carrying particles, while KII

α and KIII
α

give the weights of four SU(2) subgroups which represent a manifest symmetry of the

string sigma model in the light-cone gauge. The SU(4) weights [q1, p, q2] and the spins

[s1, s2] of the corresponding excited state are

q1 = KII
− − 2KIII

− s1 = KI −KII
−

p = J − 1
2(K

II
− +KII

+) +KIII
− +KIII

+ s2 = KI −KII
+

q2 = KII
+ − 2KIII

+

(3.4)

– 11 –

Length of the mirror circle

psu(2|2)⊕ psu(2|2)
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The spectrum of TBA particles
Mirror TBA PSU(2, 2|4)-symmetry Conclusions

The spectrum of TBA particles

String hypothesis suggests the existence of
nine types of TBA vacuum particles (α = 1, 2):

Q-particles (Q-particle bound states) carrying momentum p̃Q =⇒ Y (α)
Q (u)

y±(α)-particles corresponding to fermionic Bethe roots =⇒ Y (α)
± (u), |u| < 2

M|vw (α)-strings =⇒ Y (α)
M|vw (u)

M|w (α)-strings =⇒ Y (α)
M|w (u)

The function x(u) obviously satisfies the condition

x(u) +
1

x(u)
= u,

and also the following relations

x(−u) = −
1

x(u)
, (x(u))∗ =

1

x(u∗)
.

The variables xQ±(u) used in [36] are expressed through x(u) as follows

xQ+(u) = x(u +
iQ

g
) , xQ−(u) = x(u −

iQ

g
) , (6.2)

where the parameter g is the string tension, and it is related to the ’t Hooft coupling
λ of the dual gauge theory as g =

√
λ

2π .

The momentum p̃Q, and the energy ẼQ of a mirror Q-particle are expressed in

terms of x(u) as follows

p̃Q(u) = g x(u −
iQ

g
) − g x(u +

iQ

g
) + iQ , (6.3)

ẼQ(u) = log
x(u − iQ

g )

x(u + iQ
g )

= 2 arcsinh
( 1

2g

√
Q2 + p̃2

)
, (6.4)

and the momentum is real, and the energy is positive for real values of u. They
satisfy the relations

p̃(−u) = −p̃(u) , (p̃(u))∗ = p̃(u∗) , Ẽ(−u) = Ẽ(u) , (Ẽ(u))∗ = Ẽ(u∗) .

6.2 Kernels

Let us introduce the following kernels

K(u, v) =
1

2πi

√
4 − v2

√
4 − u2

1

u − v
, (6.5)

and (c.f. [19])

KM(u) =
1

2πi

d

du
log

(u − iM
g

u + iM
g

)
=

1

π

gM

M2 + g2u2
, −∞ ≤ M ≤ ∞ . (6.6)

The Fourier transform of the kernel is

K̂M(ω) =

∫ ∞

−∞
du eiωuKM(u) = sign(M) e−|Mω|/g , (6.7)

– 21 –
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Simplified TBA equations for the ground state

Frolov & G.A.  `09 

Mirror TBA PSU(2, 2|4)-symmetry Conclusions

M|w-strings: log Y (α)
M|w = log(1 + Y (α)

M−1|w )(1 + Y (α)
M+1|w ) � s + δM1 log

1− 1
Y (α)
−

1− 1
Y (α)
+

�̂ s

M|vw-strings:

log Y (α)
M|vw = log(1 + Y (α)

M−1|vw )(1 + Y (α)
M+1|vw ) � s − log(1 + YM+1) � s + δM1 log

1 − Y (α)
−

1 − Y (α)
+

�̂ s

y -particles log
Y (α)
+

Y (α)
−

= log(1 + YQ) � KQy ,

log Y (α)
+ Y (α)

− = log
�
1 + YQ

�
� (−KQ + 2K Q1

xv � s) + 2 log
1+Y1|vw
1+Y1|w

� s

Q-particles for Q ≥ 2 log YQ = log

�
1+ 1

Y (1)
Q−1|vw

��
1+ 1

Y (2)
Q−1|vw

�

(1+ 1
YQ−1

)(1+ 1
YQ+1

)
� s

Q = 1-particle log Y1 = log

�
1− 1

Y (1)
−

��
1− 1

Y (2)
−

�

1+ 1
Y2

� s − ∆(L) �̌ s , s(u) = g
4 cosh gπu

2

E(L) = −
1

2π

∞�

Q=1

� ∞

−∞
du

d�pQ

du
log(1 + YQ)

Most complicated 
piece -- it depends on 
TBA length L and on 
the dressing phase
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Mirror TBA Bound states

IV. Excited states TBA
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Mirror TBA Bound states

Large L solution of TBA

L → ∞: Bethe-Yang (all 1/L powers) + Lüscher corrections (leading e−mL corrections)

(standing 1-particle states) Lüscher ’86

(general N-particle states) Bajnok, Janik ’08

Y o
Q(v) = ΥQ(v)TQ,−1(v)TQ,1(v)

Transfer matrix

TQ,1(u) = TrQ

�
SQ,1(u, u1) . . .SQ,N(u, uN)

�

The prefactor

Υ+
Q Υ−

Q = ΥQ−1ΥQ+1 , ΥQ(v) ∼ e−J �EQ(v)

Bethe-Yang equations are equivalent to

Y o
1∗ (uk ) = −1 , k = 1, . . . ,N

All other Y-functions Y o
±, Y o

M|vw , Y o
M|w are found from the TBA and Y o

Q

Large L solution of TBA
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Mirror TBA Bound states

Relation between TBA length L and charge J

The asymptotic TBA equation for Y1 is satisfied by the
asymptotic solution provided

L=J+2

Relation between the TBA length L and the charge J
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Mirror TBA Bound states

P. Dorey, Tateo ’96; Bazhanov, Lukyanov, Zamolodchikov ’96; NLIE

- !"# - #"% #"% !"#

- !

!

$

&

'

Y (z    ) = -11 *k

Integration contour

TBA’s for excited states differ only by a choice of the integration contour

Taking the contour back to the real mirror line produces extra contributions
− log S(z∗, z) from log(1 + Y1) � K , where K (w , z) = 1

2πi
d

dw log S(w , z)

Contour deformation trick

Exact Bethe equations: quantization 
conditions for rapidities replacing
asymptotic Bethe-Yang equations  
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Mirror TBA Bound states

General strategy

1 Solve the BY equations for a fixed set of integers

J , N = K I , (K III
− , K II

−, K II
+, K III

+ )

Pick up a solution. It is characterized by a definite set of g-dependent momenta.

Auxiliary roots are completely fixed by the momenta pk and play no independent
role in the description of the state

2 Compute asymptotic Y-functions and find zeroes and poles of 1 + Y and Y

3 Choose contours and engineer TBA equations for the state so that the
asymptotic TBA equations obtained by dropping terms with log(1 + YQ) are
solved by the asymptotic Y-functions

4 Exact momenta pk are found from the exact Bethe equations (quantization cond.)

Y o
1∗ (pk ) = −1 =⇒ Y1∗ (pk ) = −1

derived by analytically continuing the excited state TBA equation for Y1

General strategy
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Mirror TBA On the asymptotic solution Excited states TBA PSU(2, 2|4)-symmetry and TBA Conclusions

General facts

PSU(2, 2|4) acts on asymptotic solutions provided the level-matching is satisfied

States can have roots ν(α) = y (α) + 1

y(α) and w (α) located at infinity

Dynkin labels of a state are related to excitation numbers

q1 = K II
− − 2K III

− s1 = K I − K II
−

p = J − 1

2
(K II

− + K II
+) + K III

− + K III
+ s2 = K I − K II

+
q2 = K II

+ − 2K III
+

States in the same multiplet must have the same anomalous dimension and

canonical ones which might differ by a (half-)integer

E = J +
K I�

k=1

�
1 + 4g2 sin

2 pk

2
.

Putting g = 0 gives the canonical dimension E = J + K I. Adding particles with

zero momentum p = 0 (u = ∞) changes canonical dimension.

Superconformal primary has the lowest canonical dimension in the multiplet!

General facts about symmetries 
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Mirror TBA On the asymptotic solution Excited states TBA PSU(2, 2|4)-symmetry and TBA Conclusions

Treatment of PSU(2, 2|4) on an asymptotic solution

Every multiplet has a unique regular representative (�u, �ν(α), �w (α)) among the

solutions of the Bethe ansatz equations

All other states in a multiplet are created by adding irregular roots

BY equations for all members of a multiplet must be the same

1 = eiJpk

K I�

l �=k

Ssl(2)(uk , ul )

K II
−�

l=1

x−
k − y (−)

l

x+
k − y (−)

l

���� x+
k

x−
k

K II
+�

l=1

x−
k − y (+)

l

x+
k − y (+)

l

���� x+
k

x−
k

1) Adding root with p = 0 does not modify BY equations, as x+/x− = 1;

2) Adding root with y = 0 requires a shift J → J + 1

2
;

3) Adding root with y = ∞ requires a shift J → J − 1

2
;

4) Adding irregular roots y or w does not influence auxiliary Bethe equations

Treatment of symmetry on the asymptotic solution
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Mirror TBA On the asymptotic solution Excited states TBA PSU(2, 2|4)-symmetry and TBA Conclusions

Weights of a superconformal primary

Susy generators of the light-cone string are divided into two groups

1 Kinematical generators : independent of x−, but depend on x+ = τ

2 Dynamical generators : depend on x−, but independent of x+ = τ

Since
dQ
dτ

=
∂Q
∂τ

+ {H,Q}

dynamical generators commute with H = E − J, while kinematical generators do not

Susy generators in the light-cone gauge
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Mirror TBA On the asymptotic solution Excited states TBA PSU(2, 2|4)-symmetry and TBA Conclusions

Kinematical Poincaré supercharges

Charge Weights ∆K II
− ∆K II

+ ∆K III
− ∆K III

+

Q3
α [0,−1, 1](± 1

2
,0) 0+ 1

2

, 2− 1

2

1+ 1

2

, 1− 1

2

0+ 1

2

, 1− 1

2

0± 1

2

Q4
α [0, 0,−1](± 1

2
,0) 0+ 1

2

, 2− 1

2

1± 1

2

0+ 1

2

, 1− 1

2

1± 1

2

Q̄1ȧ [−1, 0, 0](0,± 1

2
) 1± 1

2

0+ 1

2

, 2− 1

2

1± 1

2

0+ 1

2

, 1− 1

2

Q̄2ȧ [1,−1, 0](0,± 1

2
) 1+ 1

2

, 1− 1

2

0+ 1

2

, 2− 1

2

0± 1

2

0+ 1

2

, 1− 1

2

Decrease J by −1/2 and increase K I by 1, never decrease K II
α and K III

α

Action with a supercharge adds either three or one irregular y -roots

A single y -root is at ∞, from three y-roots two at ∞ and one at 0

Kinematical Poincare supercharges

Saturday, April 7, 2012



Mirror TBA On the asymptotic solution Excited states TBA PSU(2, 2|4)-symmetry and TBA Conclusions

Dynamical Poincaré supercharges

Charge Weights ∆K II
− ∆K II

+ ∆K III
− ∆K III

+

Q1
α [1, 0, 0](± 1

2
,0) −1+ 1

2

, 1− 1

2

0± 1

2

−1+ 1

2

, 0− 1

2

0± 1

2

Q2
α [−1, 1, 0](± 1

2
,0) −1+ 1

2

, 1− 1

2

0± 1

2

0+ 1

2

, 1− 1

2

0± 1

2

Q̄3ȧ [0, 1,−1](0,± 1

2
) 0± 1

2

−1+ 1

2

, 1− 1

2

0± 1

2

0+ 1

2

, 1− 1

2

Q̄4ȧ [0, 0, 1](0,± 1

2
) 0± 1

2

−1+ 1

2

, 1− 1

2

0± 1

2

−1+ 1

2

, 0− 1

2

J and E are increased by 1/2, K I is unchanged

Four charges (red) lower K II by 1! These will decrease a number of (irregular)

roots when acting on a superconformal primary to produce the regular state

Ehws = Ereg − 2 , Jhws = Jreg − 2 .

Four y -roots at ∞!

Relation between excitation numbers

K I
reg = K I

hws , K II
α,reg = K II

α,hws − 2 , K III
α,reg = K III

α,hws − 1

Dynamical Poincare supercharges
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Mirror TBA PSU(2, 2|4)-symmetry Conclusions

A state in a multiplet

Typical multiplet of 216 states

|O� =
�

(Qd
−∞)nd

∞ (Qd
+0)

nd
0

� �� �
J→+1/2

(Qk
+∞)nk

∞ (Qk
+2∞,+0)

nk
∞,0

� �� �
J→−1/2, K I→+1

|hws�

The hws has four y -roots at ∞

Ehws = Ereg − 2 , Jhws = Jreg − 2

J-charge

J = Jhws +
1
2
(nd

∞ + nd
0 − nk

∞ − nk
∞,0)

Energy

E = Ehws +
1
2
(nd

∞ + nd
0 + nk

∞ + nk
∞,0)

Number of irregular roots

K
II
0 = nd

0 + nk
∞,0 , KII

∞ = 4 − nd
∞ + nk

∞ + 2nk
∞,0

From here

J = Jreg + 1
2 (K

II
0 −K

II
∞)
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Mirror TBA PSU(2, 2|4)-symmetry Conclusions

PSU(2, 2|4)-symmetry is built in TBA

J = Jreg + 1
2 (K

II
0 −KII

∞) e−ẼQ ≡ Ω

Expression for the asymptotic YQ is universal for the whole multiplet:

Y o
Q = ΩJ TQ,+1TQ,−1 , Y o,reg

Q = ΩJreg T reg
Q,+1T reg

Q,−1

But

TQ,+1TQ,−1 = Ω
1
2 (KII

∞−KII
0 )T reg

Q,+1T reg
Q,−1

Accordingly, the YQ-functions of this state can be written as

Y o
Q = ΩJ−JregΩ

1
2 (KII

∞−KII
0 )Y o,reg

Q = Y o,reg
Q

For all states in a multiplet Y o
Q-functions and, therefore, all Y o coincide!

Y �s are simply invariants of psu(2, 2|4)

psu(2,2|4) symmetry is built in TBA
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Mirror TBA PSU(2, 2|4)-symmetry Conclusions

TBA length L

Kinematical charges decrease J, while dynamical increase. Thus,

Jhws − 4 ≤ J ≤ Jhws + 4 = Jreg + 2

On the other hand, in the TBA studies we found that

L = Jreg + 2

L coincides with the maximal J-charge in a susy multiplet

Only for the vacuum L = Jreg , as the corresponding susy multiplet is atypical (short)

TBA length L
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Mirror TBA Bound states

V. Excitations
with complex

momenta

Frolov, van Tongeren and G.A., ’11

Mirror TBA Bound states

V. Excitations
with complex

momenta

Frolov, van Tongeren and G.A., ’11
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Mirror TBA Bound states

Motivations to study such excitations

– to elucidate new features of the mirror TBA

– to test the general strategy of constructing excited states

Feasible approach

su(2) sector contains particles with complex momenta,
for M magnons L = J + M

There are many three-particle solutions with

(k − 1)/g < |Im(u)| < k/g , k = 2, 3, . . .

Explicitly consider the state L = 7, M = 3
Saturday, April 7, 2012



Mirror TBA PSU(2, 2|4)-symmetry Conclusions

00

uu

2! i
g2! i
g!2! i

g!2! i
g

physical

strip
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g p q g p q

0. 2.3129 0.926075 0.5 2.24919 1.23789
0.1 2.3098 0.933177 0.51 2.24704 1.27083
0.2 2.30088 0.955744 0.52 2.2449 1.31517
0.3 2.28709 0.99838 0.53 2.24302 1.40691
0.4 2.26953 1.0737 0.5301 2.24303 1.41083

0.5302 2.2431− 0.00001i 1.41983− 0.001i

Table 1. Numerical solution of the BY equations for the L = 7 state.

characterized not only by L and n but also by the positive integer k which indicates the

strips the complex roots u2 and u3 are located in for small values of g. Solving the BY

equations (2.1) for increasing values of g, we observe that for all solutions the complex roots

move towards the boundaries of the analyticity strip, i.e. the lines |Im(u)| = 1/g. They

cannot however cross them because the S-matrix has a pole if Im(u3) = −Im(u2) = 1/g.

As a result, as soon as the coupling constant exceeds a critical value, u1 becomes complex

and u2 and u3 are repelled from the lines Im(u) = ∓1/g. In addition the asymptotic energy

of such a state becomes complex clearly demonstrating a breakdown of the BY equations.

In the next sections we discuss one example of the states of this type with L = 7, n = 2

and k = 2 in full detail, and we present the necessary results for the L = 40, n = 2, k = 3

case in appendix A.4. Most of our considerations can be generalized to any L, n and k.

3 The L = 7, n = 2, k = 2 state and Y-functions

The L = 7, n = 2, k = 2 state

An AdS5 × S5 superstring excited state with complex roots located in the second strip

1/g < |Im(u)| < 2/g can be thought of as a finite-size analog of a scattering state of a

fundamental particle and a two-particle bound state, because complex roots of such a state

approximately satisfy the bound state condition u3 − u2 = 2i/g. We will only consider the

simplest state of this type with n = 2 and L = 7 but our consideration can be applied to

any state with k = 2.5

We solved the BY equations (2.3) numerically6 for 0 ≤ g ≤ 0.5 with step size 0.1, for

0.5 < g ≤ 0.53 with step size 0.01, and finally for g = 0.5301 and g = 0.5302. In table 1

we show the results for p and q.

We see from the table that p and q become complex at g = 0.5302, and the BY

equations cannot be used anymore. In fact the BY equations can probably not even be

trusted at g = 0.5301 because the momentum at this coupling is greater than its value

at g = 0.53, while the momentum has been steadily decreasing up to g = 0.53. To

5 For L = 7 we found only one such state with n = 2 and no state with n ≥ 4. For large values of L, n

should be increased to find solutions with k = 2.
6The equations can be solved only numerically even at g = 0.

– 8 –

Numerical solution of the BY equation for L=7 state

p1 = p

p2 = −p

2
+ iq

p3 = −p

2
− iq

real

Re(q) > 0

BAE break down!
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Relevant roots/poles of the asymptotic Y’s on the mirror u-plane

u1�u1�

u1u1

u1�u1�

u2u2

u2�u2�

u2��u2��

u3��u3��

u3�u3�

u3u3

r0 ... r�r0 ... r�

r0�... r��r0�... r��

Y2��Y2��

Y2��Y2��

Y1�Y3��Y1�Y3��

Y1�Y3��Y1�Y3��

Y1 vw�0Y1 vw�0

Y���Y���

Y1 vw �r0��0Y1 vw �r0��0

YM vw �rM����1YM vw �rM����1
Y� �r0���1Y� �r0���1

�2 2

�i�g

i�g

YQ with Q ≥ 3 have poles at u2 +
i
g (Q − 1) , u3 − i

g (Q − 1)

Relevant roots/poles of the asymptotic Y’s on the mirror u-plane
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Analytic structure of the exact solution

The functions Y1, Y2 and Y3 have poles inside the analyticity strip!

Around a pole

Y (u) = y(u)
u − u∞

Within the analyticity strip y(u) is small and of the order g2L−1

There is a point u−1 such that Y (u−1) = −1 implying

u−1 − u∞ + y(u−1) = 0

Expanding around u∞

u−1 ≈ u∞ − y(u∞) = u∞ − Res Y (u∞)

We conclude that u−1 is close to u∞!

Analytic structure of the exact solution

Very similar to SU(N) models!
Kazakov & Leurent  `10

Balog (unpublished )
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YQ = ΥQ
TQ,−1 TQ,1

TQ−1,0TQ+1,0
, 1 + YQ =

T+
Q,0 T−

Q,0

TQ−1,0TQ+1,0

Prefactor ΥQ has poles at u2 + i
g (Q − 1) and u2 + i

g (Q + 1)

Asymptotically TQ,0 = 1

For an exact solution TQ,0 �= 1 and

TQ,0(u2 +
i
g

Q) = ∞ , TQ,0(u
(Q)
2 +

i
g

Q) = 0

This implies

YQ

�
u(Q±1)

2 +
i
g
(Q ± 1)

�
= ∞

1 + YQ

�
u(Q)

2 +
i
g
(Q ∓ 1)

�
= 0

In addition 1 + Y1 has zero at real u1 which is in the string region
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• Q = 1

logS1(u
(2)−−
3 , v)− logS1(u

(1)−−
3 , v)− logS1(u

(1)
2 , v)− logS1∗ (u1, v)

• Q = 2

+ logS2(u
(1)+
2 , v) + logS2(u

(3)−−−
3 , v)

− logS2(u
(2)+
2 , v)− logS2(u

(2)−−−
3 , v)

SQ satisfies the discrete Laplace equation

SQ−1(u, v)SQ+1(u, v) = SQ(u−, v)SQ(u+, v) .

Then we take a sum over Q ≥ 3

∞�

Q=3

log
SQ(u(Q−1)

3 − i
g (Q − 1), v)SQ(u(Q+1)

3 − i
g (Q + 1), v)

SQ(u(Q)
3 − i

g (Q − 1), v)SQ(u(Q)
3 − i

g (Q + 1), v)
= log

S3(u
(2)−−
3 , v)

S2(u
(3)−−−
3 , v)

.

Adding terms Q = 1, 2, one gets the driving terms from log(1 + YQ) �CQ
KQ

− logS1∗ (u1, v)− log
S1(u

(1)
2 , v)

S1(u
(1)
3 , v)

+ log
S2(u

(1)+
2 , v)

S2(u
(2)+
2 , v)

S2(u
(2)−
3 , v)

S2(u
(1)−
3 , v)

.
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Compatibility of quantization conditions

Y1(u(1)
3 ) = −1 ⇔ Y1(u(1)−−

3 ) = −1 ⇔ Y1∗(u(1)
3 ) = −1

The exact Bethe equations representing these quantization conditions are
compatible in a non-trivial manner which involves crossing symmetry

There are similar quantization conditions involving Y2

Y2(u(2)−
3 ) = −1 ⇔ Y2(u(2)−−−

3 ) = −1
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Simplified equations for YM|w and YM|vw functions

log YM|w = log(1 + YM−1|w )(1 + YM+1|w ) � s

+ δM1 log
1 − 1

Y−

1 − 1
Y+

�̂ s− log S(r−M−1 − v)S(r−M+1 − v)

log YM|vw =− log(1 + YM+1) � s + log(1 + YM−1|vw )(1 + YM+1|vw ) � s

+ δM1 log 1 − Y−

1 − Y+
�̂ s

+δM1

�
log

S(u(2)+
2 − v)

S(u(2)−
3 − v)

− log S(u−
1 − v)S(r−0 − v)

�

Simplified TBA equations for

The location of roots right (purple) and left (red) w-strings wj = qM+1−2jνj in the complex

plane for k =
16
3 , i.e. for q = e

3πi
16 . In total there are eight strings, two of them are left.

Note that any of the strings has its first root w1 located in the upper-half-plane The longest

string is the left one with M = 11 and it winds twice around the circle.

log YM |w = �M |w

Q(z, µ) = det(L(z)− µ) =
�

k

(−µ)N−kQk(z)

AdS3 × S
3 × T

4/K3

1 Questions to the seminar in Hamburg

1. What is the Frobenius (quantum) group?

A quasi-triangular Hopf algebra which is a deformation of the commutative Hopf algebra

of functions of a Frobenius Lie group. A Frobenius Lie group is a Lie group with the

Lie algebra being a Frobenius Lie algebra. Frobenius Lie algebra is a Lie algebra which

admits on its vector space a non-degenerate two-cocycle.

2. What is the Heisenberg Double?

Introduced by Semenov-Tian-Shansky around 90’s (exactly in 1992).

L = − 1

2
(iψ̄ρα∂αψ − i∂αψ̄ρ

αψ) + ψ̄ψ

− 1

4
�αβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ

5ψ) +
1

8
�αβ(ψ̄ψ)2∂αψ̄ρ

5∂βψ

YM |w

YM |vw

4

and

The location of roots right (purple) and left (red) w-strings wj = qM+1−2jνj in the complex

plane for k =
16
3 , i.e. for q = e

3πi
16 . In total there are eight strings, two of them are left.

Note that any of the strings has its first root w1 located in the upper-half-plane The longest

string is the left one with M = 11 and it winds twice around the circle.

log YM |w = �M |w

Q(z, µ) = det(L(z)− µ) =
�

k

(−µ)N−kQk(z)

AdS3 × S
3 × T

4/K3

1 Questions to the seminar in Hamburg

1. What is the Frobenius (quantum) group?

A quasi-triangular Hopf algebra which is a deformation of the commutative Hopf algebra

of functions of a Frobenius Lie group. A Frobenius Lie group is a Lie group with the

Lie algebra being a Frobenius Lie algebra. Frobenius Lie algebra is a Lie algebra which

admits on its vector space a non-degenerate two-cocycle.

2. What is the Heisenberg Double?

Introduced by Semenov-Tian-Shansky around 90’s (exactly in 1992).

L = − 1

2
(iψ̄ρα∂αψ − i∂αψ̄ρ

αψ) + ψ̄ψ

− 1

4
�αβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ

5ψ) +
1

8
�αβ(ψ̄ψ)2∂αψ̄ρ

5∂βψ

YM |w

YM |vw

4
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Simplified equations for Y± functions

log Y+

Y−
= log(1 + YQ) � KQy−

3�

i=1

log S1∗y (u(1)
i , v) + log

S2y (u(1)+
2 , v)

S2y (u(2)+
2 , v)

S2y (u(2)−
3 , v)

S2y (u(1)−
3 , v)

log Y+Y− = 2 log
1 + Y1|vw

1 + Y1|w
� s − log (1 + YQ) � KQ + 2 log(1 + YQ) � K Q1

xv � s

+2 log S(r−1 − v)− 2 log S1∗1
xv (u1, v) � s + log S2(u1 − v) � s

−2 log
S11

xv (u
(1)
2 , v)

S11
xv (u

(1)
3 , v)

� s + log
S1(u(1)

2 − v)
S1(u(1)

3 − v)

− log
S2(u(1)+

2 − v)
S2(u(2)+

2 − v)
S2(u(2)−

3 − v)
S2(u(1)−

3 − v)
+ 2 log

S21
xv (u

(1)+
2 , v)S21

xv (u
(2)−
3 , v)

S21
xv (u

(2)+
2 , v)S21

xv (u
(1)−
3 , v)

� s

Simplified TBA equations for

The location of roots right (purple) and left (red) w-strings wj = qM+1−2jνj in the complex

plane for k =
16
3 , i.e. for q = e

3πi
16 . In total there are eight strings, two of them are left.

Note that any of the strings has its first root w1 located in the upper-half-plane The longest

string is the left one with M = 11 and it winds twice around the circle.

log YM |w = �M |w

Q(z, µ) = det(L(z)− µ) =
�

k

(−µ)N−kQk(z)

AdS3 × S
3 × T

4/K3

1 Questions to the seminar in Hamburg

1. What is the Frobenius (quantum) group?

A quasi-triangular Hopf algebra which is a deformation of the commutative Hopf algebra

of functions of a Frobenius Lie group. A Frobenius Lie group is a Lie group with the

Lie algebra being a Frobenius Lie algebra. Frobenius Lie algebra is a Lie algebra which

admits on its vector space a non-degenerate two-cocycle.

2. What is the Heisenberg Double?

Introduced by Semenov-Tian-Shansky around 90’s (exactly in 1992).

L = − 1

2
(iψ̄ρα∂αψ − i∂αψ̄ρ

αψ) + ψ̄ψ

− 1

4
�αβ(ψ̄∂αψ ψ̄ρ5∂βψ − ∂αψ̄ψ ∂βψ̄ρ

5ψ) +
1

8
�αβ(ψ̄ψ)2∂αψ̄ρ

5∂βψ

YM |w

YM |vw

Y±

4
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A generalization of our construction to a three-particle state with u2 and u3

lying in the k th strip

Four functions Yk−2, . . . ,Yk+1 will have poles in the analyticity strip, with the
poles of Yk−2 and Yk being closest to the real line

The driving terms in the corresponding TBA equations will depend on u(k−1)
2,3

and u(k)
2,3 whose locations are determined by the corresponding exact Bethe

equations for Yk−1 and Yk

The energy

E =
3�

i=1

E(u(1)
i )− 1

2π

∞�

Q=1

� ∞

−∞
du dp̃Q

du
log(1 + YQ)

− i p̃k

�
u(k−1)

2 + (k − 1) i
g

�
+ i p̃k

�
u(k)

2 + (k − 1) i
g

�

− i p̃k

�
u(k)

3 − (k − 1) i
g

�
+ i p̃k

�
u(k−1)

3 − (k − 1) i
g

�
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The fact that 1 + Y1 and 1 + Y2 functions have zeroes and poles in the
analyticity strip in conjunction with the choice for the integration contours
leads to the following energy formula

E =
3�

i=1

E(u(1)
i )− 1

2π

∞�

Q=1

� ∞

−∞
du dp̃Q

du
log(1 + YQ)

− i p̃2(u(1)+
2 ) + i p̃2(u(2)+

2 )− i p̃2(u(2)−
3 ) + i p̃2(u(1)−

3 ) ,

The g → 0 and J finite limit provides the leading wrapping correction

∆Ewrap =− 1
2π

∞�

Q=1

� ∞

−∞
du dp̃Q

du
YQ

− i
�

Res
�dp̃2

du
(u+

2 )Y2(u+
2 )

�
− Res

�dp̃2

du
(u−

3 )Y2(u−
3 )

��
.
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Figure 4. The asymptotic Y1- and Y3-functions on the real mirror line at g = 0.5.

�3 �2 �1 1 2
u

2.� 10�7
4.� 10�7
6.� 10�7
8.� 10�7
1.� 10�6
Y2�u� at g�0.5

�2.095 �2.090 �2.085 �2.080
u

0.01
0.02
0.03
0.04
0.05

Y2�u� at g�0.5

Figure 5. The asymptotic Y2-function on the real mirror line at g = 0.5.

7 Conclusions

In this paper we have developed a description of string excited states with complex momenta

in the framework of the mirror Thermodynamic Bethe Ansatz. For suitably small g the

asymptotic solution is reliable and the corresponding TBA equations can be constructed

by applying the contour deformation trick. However, as soon as g exceeds a certain critical

value, the description of a state through the BY equations breaks down as its energy

becomes complex. In our main example of the L = 7 three-particle state this happens for

g � 0.53. Therefore, it is important to understand how the TBA equations may cure this

problem, and what happens to the state at large values of coupling. The answers to these

questions do not appear to be straightforward, requiring analysis of the coupled system of

TBA and exact Bethe equations. However, the following scenario seems quite plausible;

due to the TBA corrections to the BY equations the motion of the complex Bethe roots

towards the boundaries of the analyticity strip slows down so that they actually freeze

as g → ∞. Indeed, for g = 0.5 which is close to the problematic value of 0.53 the

asymptotic YQ-functions are very small, see figure 4 and 5, and they approximate the

exact Y-functions with very high precision. At the same time the exact positions of the
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