COUNTING IN 4,5,6 DIMENSIONS

Kimyeong Lee KIAS

Progress in Quantum Field Theory and String Theory Osaka City University April, 2012

- Count degrees of freedom on 6d (2,0) SCFT in the Coulomb phase: M5
 Stefano Bolognesi, K.L.
- Index of instantons in SYM on R¹⁺⁴ (Coulomb and symmetric phase): D4
 Hee-Cheol Kim, Seok Kim, Eunkyung Koh, K.L., Sungjay Lee
- Index of SYM on S³ x S¹ with `t Hooft operator and S-duality: D3
 Dongmin Gang, Eunkyung Koh, K.L.

6d (2,0) Superconformal field theories

- * simple-laced A,D,E types of theories
 - * A_{N-1} on N M5 branes, D_N on 2N M5 branes+ OM5
 - * Type IIB on $C^2/Z_N \rightarrow A$, C^2 / dihedral $\rightarrow D$,

C²/ tetra, octahedral, icosahedral \rightarrow E [Witten96]

- * Fields: $B_{\mu\nu}$, ϕ_I , ψ_A : self-dual H=dB, *H=H on single M5
 - * Tensionless selfdual strings in the nonabelian SCFT
 - * (2,0) supersymmetry + SO(5)_R symmetry

6d (2,0) SCFT (formalism)

- * It is not easy to write down explicitly this quantum theory which does not have any weak coupling regime.
 - * If one is successful, one would have, say, the local field theory for both electric and magnetic objects in 4-dim after compactification. This is not likely.
- With dimensionful coupling, 5d SYM is naively not expected to UV complete. There is a recent proposal that 5d maximal SYM is sufficient to define the (2,0) theory on R¹⁺⁴ x S¹. [Douglas; Lambert, Papageorgakis, Schmidt-Sommerfeld]
 - * Instantons in 5d SYM are the Kaluza-Klein mode. [Seiberg] (See the second part.)
 - * Instantons are dipole-configuration and belong to the adjoint representation of dual group.
 - * the perturbative effect + non perturbative effect may complete the theory.
 - * The role of magnetic monopole string is not clear.

6d (2,0) SCFT (d.o.f.)

- * Degrees of freedom on N M5 branes:
 - * Extremal black hole solutions : N³ [Klebanov, Tseytlin]
 - * Weyl anomaly : N³ [Henningson, Skenderis]
 - * Anomaly from tangent and normal bundle of M5 branes [Witten: Harvey, Minasian, Moore: Yi: Intriligator]
- * Anomaly polynomial

$$I_8[G] = r_G I_8[1] + \frac{1}{24} c_G p_2(NW)$$

- * rank r_G , dim d_G ,
- * Coxeter number $h_G = (d_G r_G)/r_G$ (=> $d_{G=} (h_G + 1)r_G$)
- * anomaly coefficient CG=dGhG

6d (2,0) SCFT

- * For $A_{N-1}=SU(N)$, $r_G=N-1$, $d_G=N^2-1$, $h_G=N$, $c_G=N(N^2-1)$
 - * for large N, $c_G \sim N^3$
 - * Pant diagram?
 - * Dyonic Instantons?
 - * Instanton Partons?
 - * Junctions?
- * Anomaly Coefficient c_G=h_Gd_G

Gr	oup	r_G	d_G	h_G	$c_G/3$
$A_{N-1} =$	= SU(N)	N-1	$N^{2} - 1$	N	$\frac{1}{3}N(N^2-1)$
$D_N = b$	SO(2N)	N	N(2N - 1)	2(N-1)	$\frac{2}{3}N(2N-1)(N-1)$
1	Σ_6	6	78	12	312
	57	7	133	18	798
1	E_8	8	248	30	2480

Table I: r_G , d_G , h_G and $c_G/3$ for simple-laced groups ADE

5d SYM (d.o.f.)

- * Assuming 5d SYM captures the essence of the (2,0) theory, one would ask how N³ degrees of freedom is realized in 5d theory. Let us look for the spectrum.
- * In the symmetric phase
 - * 1/2 BPS elementary particles has N²-1 dof. (adjoint of SU(N))
 - * 1/2 BPS instanton has N dof. (4N zero modes, N instanton partons?)
- * In the Coulomb phase,
 - * 1/2 BPS monopole strings have $(N^2-N)/2$ dof. = anti-mono strings
 - * 1/4 BPS dyonic instantons have.....(The second part of this talk...)
- * 1/4 BPS monopole strings with wave: $\Gamma^{1235} \epsilon = \epsilon$, $\Gamma^{04} \epsilon = \pm \epsilon$

$$F_{12} = D_3\phi_5, \ F_{23} = D_1\phi_5, \ F_{31} = D_2\phi_5$$

 $F_{0i} - F_{4i} = 0, \ D_0\phi_5 - D_4\phi_5 = 0$

5d SYM (Monopole String Junctions)

- * Monopole strings can form 1/4 BPS junctions
 - * Lock SO(4)_{rot} with SO(4) of SO(5)_{R:} A_a, Φ_a (a=1,2,3,4)
 - * 1/16 BPS equation (dyonic webs of junctions) [Kapustin,Witten: Yee,KL]

$$F_{ab} = \epsilon_{abcd} D_c \Phi_d - i[\Phi_a, \Phi_b] , D_a \Phi_a = 0$$

$$F_{12} + F_{34} + F_{56} + F_{78} = 0$$

$$F_{13} + F_{42} + F_{57} + F_{86} = 0$$

$$F_{14} + F_{23} + F_{76} + F_{85} = 0$$

$$F_{14} + F_{23} + F_{76} + F_{85} = 0$$

$$F_{15} + F_{62} + F_{73} + F_{48} = 0$$

$$F_{16} + F_{25} + F_{47} + F_{38} = 0$$

$$F_{17} + F_{35} + F_{64} + F_{82} = 0$$

* 1/4 BPS junctions on 3 D4 branes: lock 34 & 78 plane:

$$\Gamma^{1238}\epsilon = \epsilon, \Gamma^{1247}\epsilon = \pm\epsilon, \ \phi_1 = \phi_2 = 0,$$

$$F_{12} = D_3\phi_4 - D_4\phi_3, F_{23} = D_1\phi_4, F_{31} = D_2\phi_4$$

$$F_{41} = D_2\phi_3, F_{24} = D_1\phi_3, F_{43} = -i[\phi_4, \phi_3], D_3\phi_3 + D_4\phi_4 = 0$$

* mutually susy & tension balance:

 $F_{18} + F_{27} + F_{63} + F_{54} = 0$

6d (2,0) SCFT (d.o.f.)

- * in the Coulomb phase of G-type (G=A,D,E simple-laced)
 - * 1/2 BPS massless (2,0) tensor multiplets: r_G
 - * 1/2 BPS selfdual strings = anti-strings: $(d_G-r_G)/2 \equiv r_Gh_G/2$
- * 1/4 BPS massless waves on selfdual strings & anti-objects: d_G-r_G = r_Gh_G
- * 1/4 BPS junctions and anti-junctions: counting?
- * 1/4 BPS objects in A_{N-1} case : roots $\alpha = e_i e_j$
 - * waves on string: $A = 2 \times N(N-1)/2 = N(N-1) = d_G r_G$
 - * junctions and anti-junctions: three selfdual strings for roots: e_i-e_j, e_j-e_k, e_k-e_i
 - * B=2 x N(N-2)(N-2)/6=N(N-1)(N-2)/6

* total:

$$A + B = \frac{1}{3}N(N^2 - 1) = \frac{1}{3}r_{A_{N-1}}d_{A_{N-1}} = \frac{1}{3}c_{A_{N-1}}$$

not N^3

6d (2,0) SCFT (D_N & E_{6,7,8} types)

- * $D_N \text{ roots} : \{ e_i \pm e_j \} (i,j=1,...N, i \neq j)$
 - * A= 4*N(N-1)/2= 2N(N-1)
 - * B= 8*N(N-1)(N-2)/6= 4N(N-1)(N-2)/3
 - * $A+B=2N(N-1)(2N-1)/3 = C_{DN}/3$

Periodic Table of (2,0) Theories?

High temperature in the Coulomb phase

- * Start with a generic Coulomb phase with string tension **u**
 - * For the free string, there is a Hegadorn temperature

$$T_H \sim \sqrt{u} \qquad E = T_H S$$

* Imagine the heating the local region beyond the Hegardorn temperature.

$$T >> T_{Hegadorn} = \sqrt{u}$$

* High energy is dominated by the webs of junctions in 5-dim space

Junctions as fundamental objects

- Junctions are more fundamental than selfdual strings as junction+ anti-junction can form a selfdual string after a partial annihilation.
- * Junctions are like atoms on M5 branes
- via AGT relation, 2-d Toda central charge has N³ growth, which is related to N³ on M5 branes. Better understanding of Toda model is needed.
- * Excitation of Junctions
- * In the second talk, we have something to say about the degenerated junctions where all the strings are parallel.

2nd topic: Index of Instantons in 5d SYM

- * Calculate the instanton index with all chemical potentials turned on.
- * index of dyonic instantons in the Coulomb phase

S-dual of monopole strings with momentum up on further circle compactification

* index of instantons in the symmetric phase

nonrelativistic superconformal index of DLCD of (2,0) theories.

- * References:
 - * [Nekrasov(02); Nekrasov,Okoukov(03); Pestun; Okuda,Pestun(10); Dorey.Hollowood,Khoze,Mattis(02); Bruzzo,Fucito,Morales,Tanzini(03); Iqbal,Kozcaz,Shbabir(10)]
 - * [Kinney,Maldacena,Minwalla,Raju(07); Dolan,Osborn(03)]
 - * [Aharony,Berkooz,Seiberg (98)]

5d Maximal SYM on D4

- * Rotational symmetry: $SO(4)_{rot} = SU(2)_{1L} \times SU(2)_{1R}$
- * Instantons are KK modes for (2,0) SCFT on R¹⁺⁴ x S¹
 - * instantons are massive tensor multiplet with spin (1,0), (1/2,0), (0,0)
 - * anti-instantons are similar with spin (0,1), (0,1/2), (0,0)
- * Here we study the dyonic instanton index on $R^4 \times S^1$
- * Here we have something new to say from it.
 - * unique threshold bound state: support the 5d SYM being (2,0) theory
 - * S-duality tells something about monopole strings with momentum
 - * it tells something about the degenerate parallel monopole string junctions
 - * it tells something about the DLCQ index of (2,0) theory in the symmetric phase

Instanton and anti-instanton pair can annihilate with orbital angular momentum

On D4 branes in Coulomb Phase

* F1-D0-D4 or dyonic instantons preserve 4 SUSY :

Index of Instantons from the D0-dynamics (ADHM)

Index for BPS states with nonzero instantons ¥ Q

$$= Q^{+}_{+} \qquad \begin{array}{c} SU(2)_{2R} \\ SU(2)_{1R} \end{array} \right\} \Rightarrow SU(2)_{R}$$

adjoint hyper flavor

$$I_k(\mu^i, \gamma_1, \gamma_2, \gamma_3) = \operatorname{Tr}_k \left[(-1)^F e^{-\beta Q^2} e^{-\mu^i \Pi_i} e^{-i\gamma_1(2J_{1L}) - i\gamma_2(2J_{2L}) - i\gamma_R(2J_R)} \right]$$

 μ_i : chemical potential for $U(1)^N \subset U(N)_{color}$

- $\gamma_{1}, \gamma_{2}, \gamma_{R}$: chemical potential for $SU(2)_{1L}, SU(2)_{2L}, SU(2)_{R}$
- *
- calculate the index by the localization: $I(q, \mu^i, \gamma_{1,2,3}) = \sum_{k=0}^{\infty} q^k I_k$ 5d *N=2** instanton partition function on R⁴ x S¹: t ~ t+ β ¥
- In $\beta \rightarrow 0$ and small chemical potential limit, the index becomes 4d Nekrasov ¥ instanton partition function :

*
$$a_{i} = \frac{\mu_{i}}{2} - \epsilon_{1} = i \frac{\gamma_{1} - \gamma_{R}}{2} \quad \epsilon_{2} = i \frac{\gamma_{1} + \gamma_{R}}{2}, \quad m = i \frac{\gamma_{2}}{2} \qquad q = e^{2\pi i \tau}$$
instanton fugacity
Scalar Vev
Omega deformation parameter
Adj hypermultiplet mass

►

►

D0-dynamics & ADHM formalsm

- k D0 dynamics on N D4: dim. reduction of 10d SYM with U(k) gauge group and N fundamental hypermultiplets.
- * turn on the scalar expectation value $\Phi_5 = (v_1, v_2, \dots, v_N) + FI$ term
- * change of variables for hyper scalars so that there is no time-dependence.
- * Choose the twisting

$$Q = \frac{1}{\sqrt{2}} (Q_{\dot{+}}^{\dot{+}} + Q_{\dot{-}}^{\dot{-}})$$

 $\phi = -i(A_\tau + i\varphi_5)$

- * Euclidean time with topological and cohomological setting + chemical potentials
- * In the limit $\beta \rightarrow 0$, ζ and $\omega \rightarrow \infty$, the path integral comes from 1-loop around the saddle points $[\phi, B_1] = \frac{i(\gamma_R - \gamma_1)}{\beta} B_1, \ [\phi, B_2] = \frac{i(\gamma_R + \gamma_1)}{\beta} B_2,$ $[B_1, B_2] + \bar{x}^{-} x_{+} = 0, \ [B_1^{\dagger}, B_1] + [B_2^{\dagger}, B_2] + \bar{x}^{+} x_{+} - \bar{x}^{-} x_{-} = \zeta$ $x_{\pm} \phi - \frac{\mu \pm i \gamma_R}{\beta} x_{\pm} = 0$
- * N-colored Young diagram:

N-colored Young diagram & index

*
$$\sum_{i=1}^{N} k_i = k, \ k_i = \# \text{of boxes in the } i - \text{th Young diagram}$$

* Evaluate the Gaussian integral and obtain the instanton index

$$I_{\{Y_1,Y_2,\cdots,Y_N\}} = \prod_{i,j=1}^N \prod_{s \in Y_i} \frac{\sinh \frac{E_{ij} - i(\gamma_2 + \gamma_R)}{2} \sinh \frac{E_{ij} + i(\gamma_2 - \gamma_R)}{2}}{\sinh \frac{E_{ij}}{2} \sinh \frac{E_{ij} - 2i\gamma_R}{2}}$$

$$E_{ij} = \mu_i - \mu_j + i(\gamma_1 - \gamma_R)h_i(s) + i(\gamma_1 + \gamma_R)(v_j(s) + 1)$$

* The index for the instanton

$$I = \sum_{k=0}^{\infty} q^k \sum_{k_i} \sum_{Y_i(k_i)} I_{\{Y_1, Y_2, \dots Y_N\}}$$

U(1) instantons

- * D0's on a single D4
- As instantons are KK modes of (2,0) theory, one expects a unique threshold bound state for each instanton number k.
- * U(1) index for k=1

$$I_{cm} = \frac{\sin\left(\frac{\gamma_1 + \gamma_2}{2}\right)\sin\left(\frac{\gamma_1 - \gamma_2}{2}\right)}{\sin\left(\frac{\gamma_1 + \gamma_R}{2}\right)\sin\left(\frac{\gamma_1 - \gamma_R}{2}\right)}$$

	$SU(2)_{1L}$	$SU(2)_{1R}$	$SU(2)_{2L}$	$SU(2)_{2R}$
B_2	3	1	1	1
ϕ_I	1	1	2	2
	1	1	1	1
λ	2	1	2	1
	2	1	1	2

* U(1) index [Iqbal-Kozcaz-Shabbir 10]

$$I_{U(1)}(q, e^{\gamma_i}) = PE[\frac{q}{1-q}I_{cm}(e^{\gamma_i})], \text{Plythethytic exponential}$$

* Expand the single particle index in q

$$\sum_{k=0}^{\infty} q^k I_{cm}$$
 unique threshold bound state

Dyonic Instantons in the Coulomb phase

* Compute the degeneracy of wrapped selfdual strings with momentum.

 $Index = \mathbf{PI}[I_{cm}z_{sp}(q,\mu,\gamma)]$

* expand in z_{sp} in instanton number and electric charge;

$$q, x = e^{-(\mu_1 - \mu_2)}$$

* SU(2): x^1 or 1-W boson+ n instantons

$$\prod_{n=1}^{\infty} \frac{(1-q^n e^{i(\gamma_2+\gamma_R)})(1-q^n e^{i(\gamma_2-\gamma_R)})(1-q^n e^{i(-\gamma_2+\gamma_R)})(1-q^n e^{i(-\gamma_2-\gamma_R)})}{(1-q^n e^{i(\gamma_1+\gamma_R)})(1-q^n e^{i(\gamma_1-\gamma_R)})(1-q^n e^{i(-\gamma_1+\gamma_R)})(1-q^n e^{i(-\gamma_1-\gamma_R)})}$$

* Simplification: $z_{sp}(\gamma_1=\gamma_R=0,\gamma_2=\pi)$

$$\begin{aligned} x^2 &: 0 + 16q + 288q^2 + 2880q^3 + 21056q^4 + 125280q^5 + \dots = q \frac{d}{dq} \left[\prod_{n=1}^{\infty} \frac{(1+q^n)^8}{(1-q^n)^8} \right] \\ x^3 &: 0 + 24q + 1272q^2 + 26952q^3 + 360696q^4 + 3605520q^5 + \dots \\ x^4 &: 0 + 32q + 4160q^2 + 169600q^3 + 3842176q^4 + 60216000q^5 + \dots \\ x^5 &: 0 + 40q + 11080q^2 + 809760q^3 + 29471560q^4 + 692554440q^5 + \dots \end{aligned}$$

Find the S-duality calculation: Study of multiple wrapped monopole strings + momentum

¥

Dyonic Instantons in U(N) gauge theory

* 1+1 dim dynamics of monopole strings with momentum are need to produced above results in S-dual version.

Superconformal index

- * To get the index in symmetric phase, integrate over $\mu_i = i a_i$ with Haar measure
- * DLCQ on null circle: Nonrelativistic superconformal symmetry
 - * P₋ on the null circle = instanton number

- [Aharony-Berkooz-Seiberg 97]
- * Superalgebra: $2i\{Q,S\} = iD \mp (4J_{2R} + 2J_{1R}) \rightarrow iD \ge \pm (4J_{2R} + 2J_{1R})$
- * Nonrelativistic superconformal index

$$I_{SC} = \text{Tr}\left[(-1)^F e^{-\beta \{\hat{Q}, \hat{S}\}} e^{-2i\gamma_R J_R} e^{-2i\gamma_1 J_{1L} - 2i\gamma_2 J_{2L}} e^{-i\alpha_i \Pi_i} \right]$$

- * In the limit $\beta \rightarrow 0$, this superconformal index becomes our index.
- * For single instanton with $t = e^{-i\gamma_R}$

$$I_{k=1} = \frac{e^{i\gamma_2} + e^{-i\gamma_2} - e^{i\gamma_1} - e^{-i\gamma_1}}{(1 - te^{i\gamma_1})(1 - te^{-i\gamma_1})} \left[t + \sum_{n=1}^{N-1} (e^{in\gamma_2} + e^{-in\gamma_2})t^{n+1} - \chi_{\frac{N-2}{2}}(\gamma_2)t^{N+1} \right]$$

* Large N $I_{N \to \infty, k=1} = \frac{e^{i\gamma_2} + e^{-i\gamma_2} - e^{i\gamma_1} - e^{-i\gamma_1}}{(1 - te^{i\gamma_1})(1 - te^{-i\gamma_1})} \frac{t - t^3}{(1 - te^{i\gamma_2})(1 - te^{-i\gamma_2})}$

AdS7 x S4 calculation confirm it.

4d N=2 SYM on $S^3 \times S^1$ with `t Hooft operators

- * Index on $S^3 \times S^1$ [Romelsberger; Kinney, Maldacena, Minwalla, Raju]
- * the singular BPS Dirac solutions with nonabelian magnetic charge [`tHooft, E.Weinberg,Kapustin,...]
- * include magnetic bubbling (or massless monopoles) [Kapustin,Witten:Weinberg]
- * Confirm S-duality: (on S⁴, [Gomis,Okuda,Pestun])
- * 2d-4d relation [Dimofte,Gaiotto,Gukov;Ito,Okuda,Taki]

't Hooft operator on $S^3 \times S^1$ in *N*=4 SYM

$$ds_{S^3}^2 = d\chi^2 + \sin^2\chi (d\theta^2 + \sin^2\theta d\varphi^2)$$

- * SO(4)_{rot} x SU(4)_R
- * Fields $A_{\mu}, X^{AB} (X^{AB} = \frac{1}{4} \epsilon^{ABCD} (X^{CD})^{\dagger}), \psi^{A}, (A = 1, 2, 3, 4 \text{ of } SU(4))$
- * Superconformal:

$$Q^{\alpha A}, \ \bar{Q}^{\dot{\alpha}}_A, \ S^{\alpha}_A, \ \bar{S}^{\dot{\alpha} A}$$

 $\alpha \in (\mathbf{2}, 0), \dot{\alpha} \in (0, \mathbf{2}) \text{ of } SU(2)_L \times SU(2)_R = SO(4)_{rot}$

* 1/2 BPS Wilson and 't Hooft lines:

$$W = \operatorname{Tr}_{R} \exp i \int dt (A_{0} - \phi_{9})$$
$$H : F_{ij} = \frac{B}{4} \epsilon_{ijk} \frac{x_{k}}{|x|^{3}}, \ \phi_{9} = \frac{1}{2} \frac{B}{|x|}$$
$$H : F = -\frac{B}{2} \sin \theta d\theta \wedge d\varphi$$
$$X_{12} = X_{34}^{\dagger} = \frac{1}{2} (\phi_{6} + i\phi_{9}) = \frac{iB}{4} \sin \chi$$

$$X^{12} = (X^{34})^{\dagger} = i\phi_9/2$$

* Preserved supersymmetry: 1/2BPS, choose one supercharge

$$Q = Q^{\alpha=1,A=1} + \bar{Q}_{A=2}^{\dot{\alpha}=1} \qquad \text{Locking } SU(2)_R = SU(2)_R$$

Index with Line operators

- * Supersymmetry $Q = Q^{\alpha=1.A=1} + \bar{Q}_{A=2}^{\dot{\alpha}}$ $\Delta = \{Q, Q^{\dagger}\} = \epsilon (j_L + j_R) r_1$
 - * U(1) charge : $r_1 = {
 m diag}(1,-1,0,0), \ \ A=1,2,3,4$
 - * commuting charge: $[Q, \epsilon + (j_L + j_R)] = 0$
- * Index:

Index_{$$\mathcal{H}_L$$} $(x, \eta_a) = \operatorname{Tr}_{\mathcal{H}_L}(-1)^F x^{\epsilon + j_L + j_R} \prod_a \eta_a^{h_a}$

- * Chemical potential: N=4 $r_2 = diag(0,0,1,-1)$
- * trace over the BPS states with $\Delta = \varepsilon (j_L + j_R) r_1 = 0$
- * Euclidean Path Integral

BPS Fluctuations around `t Hooft line

- * Classical corrections vanishes with boundary terms.
- * 1-loop: harmonic analysis around 't Hooft line: $F = -\frac{B}{2}\sin\theta d\theta \wedge d\varphi$,
- * taken into account A₀ along S¹

* X₁₃, X₁₄:
$$M_{q_{\alpha}}^{2} = -\partial_{t}^{2} - \nabla_{S^{3}} + 1 + \frac{q^{2}}{\sin^{2} \chi}, \ (q_{\alpha} = \alpha(B)/2),$$

	ϵ	$j_L + j_R$	r_1	r_2	$e^{i\lambda}$
$\begin{bmatrix} X_{n,J,m}^{13,\alpha} \\ \mathbf{v}^{14,\alpha} \end{bmatrix}$	n+1	m	1	1	$e^{i\alpha(\lambda)}$
$X_{n,J,m}^{14,\alpha}$	n+1	m	1	-1	$e^{i\alpha(\lambda)}$

 $F = -\frac{B}{2}\sin\theta d\theta \wedge d\varphi ,$ $X_{12} := X_{34}^{\dagger} = \frac{1}{2}(X_6 + iX_9) = \frac{B}{4\sin\chi}$

$$J = |q|, |q| + 1, \dots, |m| \le J, n = J, J + 1, \dots$$

- * BPS $\Delta = 0$ for m=J, n=J=|q|, |q|+1,... and index: $x^{2J+1}=x^{2|q|+1}, x^{2|q|+3},...$
- * index with chemical potential η for R-charge r_2 and chemical potential for the gauge group

$$I_{sp;\mathcal{L}_{1}}(e^{i\lambda_{i}}, x, \eta) = (\eta + \eta^{-1}) \sum_{\alpha} \sum_{n = |q_{\alpha}|} x^{2n+1} e^{i\alpha(\lambda)} = (\eta + \eta^{-1}) \sum_{\alpha} \frac{x \cdot x^{|\alpha(B)|} e^{i\alpha(\lambda)}}{1 - x^{2}}$$

 $\{e^{i\lambda_i}\}|_{i=1,\dots,\operatorname{rank}(G)}$ for Cartan algebra basis $\{H_i\}$

Fermionic Fluctuations around `t Hooft line

* on
$$\Psi^1$$
, Ψ^2 $M_q = \begin{pmatrix} i D_q & q/\sin \chi \\ q/\sin \chi & -i D_q \end{pmatrix}$

	ϵ	$j_L + j_R$	r_1	r_2	$e^{i\lambda}$
$\psi_{n,J,m}^{lpha;\pm,\kappa}$	n+1	m	1	0	$e^{i\alpha(\lambda)}$

$$J = |q| - \frac{1}{2} \text{ (exist for } |q| \neq 0\text{)}, |q| + \frac{1}{2}, |q| + \frac{3}{2}, |m| \leq J, \ n = J, J + 1...$$

* BPS $\Delta = 0$ for

- * m=J, n=J=|q| -1/2 with κ =1 : index -x^{2J+1}=x^{2|q|}
- * m=J, n=J=|q| +1/2, |q|+3/2,... with κ =1, 2 : index -x^{2J+1}=-x^{2|q|+2}, -x^{2|q|+4},...
- * index from ψ^1 , ψ^2

$$\begin{split} I_{sp;\mathcal{L}_2}(e^{i\lambda_i}, x, \eta) &= \sum_{\alpha} \Big[\sum_{J=|q_{\alpha}|+\frac{1}{2}}^{\infty} (-2x^{2J+1}e^{i\alpha(\lambda)}) - (1-\delta_{q_{\alpha},0})x^{2|q_{\alpha}|}e^{i\alpha(\lambda)} \Big] \\ &= \sum_{\alpha} \Big(\frac{-2x^2 \cdot x^{|\alpha(B)|}}{1-x^2} - (1-\delta_{\alpha(B),0})x^{|\alpha(B)|} \Big) e^{i\alpha(\lambda)} \; . \end{split}$$

* Index from ψ^3 , ψ^4 and A_i, X₁₂ : no bps fluctuations and contributions

Index for N=4 theory

- * single particle index $\tilde{I}_{sp}(e^{i\lambda_i}, x, \eta) = \sum_{i=1}^4 I_{sp;\mathcal{L}_i}$ $= \sum_{\alpha} \left(\frac{(\eta + \eta^{-1})x \cdot x^{|\alpha(B)|}}{1 - x^2} - \frac{2x^2 \cdot x^{|\alpha(B)|}}{1 - x^2} \right) e^{i\alpha(\lambda)} - \sum_{\alpha(B) \neq 0} e^{i\alpha(\lambda)} x^{|\alpha(B)|} .$
- * multi particle index: Plethystic exponetial (P.E): P.E[f(x)]=exp[$\Sigma_{n=1} f(x^n)/n$]

$$I_{ ext{multi}}(e^{i\lambda_i},x,\eta)= ext{P.E}[ilde{I}_{sp}(e^{i\lambda_i},x,\eta)]$$

- * the Haar measure for the unbroken gauge group $G_B = \{g: g \in G \text{ and } [g,B]=0\}$
- * index for N=4 theory

$$\begin{split} I_B^{1-loop}(x,\eta) &= \int [dU]_B Z_B^{1-loop}(e^{i\lambda_i},x,\eta) \ , \ \text{where} \\ [dU]_B &\equiv \frac{1}{\text{sym}(B)} \Big(\prod_{i=1}^{\text{rank}(G)} \frac{d\lambda_i}{2\pi} \Big) \prod_{\alpha \neq 0} (1 - e^{i\alpha(\lambda)} x^{|\alpha(B)|}) \ , \ \text{and} \\ Z_B^{1-loop}(e^{i\lambda_i},x,\eta) &:= \text{P.E}[I_{sp}(e^{i\lambda_i},x,\eta)] \ , \ \text{with} \\ I_{sp}(e^{i\lambda_i},x,\eta) &= \sum_{\alpha=1}^{\dim(G)} \Big(\frac{(\eta + \eta^{-1})x \cdot x^{|\alpha(B)|}}{1 - x^2} - \frac{2x^2 \cdot x^{|\alpha(B)|}}{1 - x^2} \Big) e^{i\alpha(\lambda)} \end{split}$$

scalar of N=2 adjoint hypermultiplet gluino of N=2 vector multiplet

N=4 U(2) S-duality check

- * Wilson line index with out magnetic charge (at the stationary point $\Phi=0$) es) $I_{\mathcal{N}=4;B=0}(x) = \int [dU] \chi_R(e^{i\lambda}) \chi_R(e^{-i\lambda}) \exp\left(\sum_{\alpha} \sum_{n=1}^{\infty} \frac{1}{n} \frac{2x^n}{1+x^n} e^{in\alpha(\lambda)}\right)$
- * fundamental and anti-fundamental at north and south pole (η =1)

* `t Hooft operator with magnetic charge B=(1,0)

$$I_{B=(1,0)}^{U(2)}(x) = \int_{0}^{2\pi} \frac{d\lambda_{1}d\lambda_{2}}{(2\pi)^{2}} (1 - xe^{i(\lambda_{1} - \lambda_{2})})(1 - xe^{-i(\lambda_{1} - \lambda_{2})})$$
$$\times P.E\left[\frac{2x}{1 + x}(2 + xe^{i(\lambda_{1} - \lambda_{2})} + xe^{-i(\lambda_{1} - \lambda_{2})})\right]$$

* expansion in x

$$\begin{split} I^{U(2)}_{R=A_1} &= I^{U(2)}_{B=(1,0)} \\ &= 1 + 2(\eta + \eta^{-1})x + (1 + 3\eta^2 + 3\eta^{-2})x^2 + 4(\eta^3 + \eta^{-3})x^3 + (1 + 5\eta^4 + 5\eta^{-4})x^4 \\ &\quad + (6\eta^{-5} + 2\eta^{-1} + 2\eta + 6\eta^5)x^5 + (7\eta^{-6} + \eta^{-2} - 1 + \eta^2 + 7\eta^6)x^6 + \dots, \end{split}$$

N=2 Index

* Hypermultiplets in the representation R_i : scalars, weight $\rho \in R_i$

$$\sum_{\alpha} \frac{(\eta + \eta^{-1})x \cdot x^{|\alpha(B)|}}{1 - x^2} e^{i\alpha(\lambda)} \ \to \ \sum_{i} \sum_{\rho \in R_i} \frac{x \cdot x^{|\rho(B)|}}{1 - x^2} (e^{i\rho(\lambda)} \prod_a \eta_a^{h_{i,a}} + e^{-i\rho(\lambda)} \prod_a \eta_a^{-h_{i,a}}) \ .$$

* index for the `t Hooft line

$$\begin{split} I_B^{1-loop}(x,\eta_a) &= \int [dU]_B Z_B^{1-loop}(e^{i\lambda_i},x,\eta_a) \text{ , where} \\ Z_B^{1-loop}(x,\eta_a,e^{i\lambda_i}) &= \mathrm{P.E}[I_{sp}(e^{i\lambda_i},x,\eta)] \text{ , } I_{sp} = I_{sp}^{vec} + I_{sp}^{hyper} \text{ with} \\ I_{sp}^{vec} &= -2\sum_{\alpha} \frac{x^2 \cdot x^{|\alpha(B)|}}{1-x^2} e^{i\alpha(\lambda)} \text{ and} \\ I_{sp}^{hyper} &= \sum_i \sum_{\rho \in P_i} \frac{x \cdot x^{|\rho(B)|}}{1-x^2} (e^{i\rho(\lambda)} \prod_a \eta_a^{h_{i,a}} + e^{-i\rho(\lambda)} \prod_a \eta_a^{-h_{i,a}}) \text{ .} \end{split}$$

* Wilson line

$$I_R = \int [dU]_{B=0} \chi_R(e^{i\lambda}) \chi_{ar R}(e^{i\lambda}) Z^{1-loop}_{B=0}(e^{i\lambda_i},x,\eta_a) \;.$$

Minuscule Representation

- * All weights are related by Weyl reflections: the corresponding B cannot be screened and there is no magnetic bubbling.
- * Totally anti-symmetric representation in U(N)
- * Index for Wilson lines.

$$I_{R=A_{k}}^{U(N)}(x,\eta) = \frac{1}{N!} \int \prod_{i=1}^{N} \left(\frac{d\lambda_{i}}{2\pi}\right) \left(\prod_{i\neq j} \left(1 - e^{i(\lambda_{i} - \lambda_{j})}\right)\right) P.E\left[\frac{(\eta + \eta^{-1})x - 2x^{2}}{1 - x^{2}} \sum_{i,j=1}^{N} e^{i(\lambda_{i} - \lambda_{j})}\right] \\ \times \prod_{\pm} \left(\sum_{1 \le i_{1} < i_{2} \dots < i_{k} \le N} e^{\pm i(\lambda_{i_{1}} + \lambda_{i_{2}} + \dots + \lambda_{i_{k}})}\right).$$
(4.1)

* Index for `t Hooft lines

$$I_{B=(1^{k},0^{N-k})}^{U(N)}(x,\eta) = \frac{1}{k!(N-k)!} \int \prod_{i=1}^{N} (\frac{d\lambda_{i}}{2\pi}) \times \prod_{(i\neq j)=1}^{k} (1-e^{i(\lambda_{i}-\lambda_{j})}) \prod_{i=1}^{k} (1-e^{i(\lambda_{i}-\lambda_{j})}) \prod_{i=1}^{k} \prod_{j=k+1}^{N} \prod_{\pm} (1-xe^{\pm i(\lambda_{i}-\lambda_{j})}) \times P.E\left[\frac{(\eta+\eta^{-1})x-2x^{2}}{1-x^{2}}\left((\sum_{i,j=1}^{k}+\sum_{i,j=k+1}^{N})e^{i(\lambda_{i}-\lambda_{j})} + \sum_{i=1}^{k}\sum_{j=k+1}^{N}\sum_{\pm} e^{\pm i(\lambda_{i}-\lambda_{j})}x\right)\right].$$
(4.2)

* Example: B=(1,1,0,0) of U(4)

$$\begin{split} I_{R=A_2}^{U(4)} &= I_{B=(1,1,0,0)}^{U(4)} \\ &= 1 + 2(\eta + \eta^{-1}) + (3 + 5\eta^{-2} + 5\eta^2)x^2 + (8\eta^{-3} + 6\eta^{-1} + 6\eta + 8\eta^3)x^3 \\ &+ (14\eta^{-4} + 7\eta^{-2} + 10 + 7\eta^2 + 14\eta^8)x^4 + 10(2\eta^{-5} + \eta^{-3} + \eta^{-1} + \eta + \eta^3 + 2\eta^5)x^5 + \dots, \end{split}$$

* With unbroken gauge group, nonabelian monopole can be screened by massless monopoles: $B \rightarrow \nu$

- * Contributions from massless monopoles
- One could assign the `t Hooft operator of magnetic charge B to the representation of the magnetic group ^LG, regarding B as the highest weight.
- * But it is not clear how all weights of given magnetic group are realized.
- * Also global color problem in the presence of nonabelian magnetic charge

Index with bubbling

* On S3, massless monopoles and anti-monopoles can be created and shield singular and singular anti-monopoles at north and south poles.

$$\int [dU]_{B} Z_{B}^{1-loop}(x,e^{i\lambda}) \qquad \int [dU]_{v} Z_{mono}^{S^{3}}(B,v;x,e^{i\lambda}) Z_{v}^{1-loop}(x,e^{i\lambda})$$

* Final result

$$I_B(x,\eta_a) = \sum_{v \in \operatorname{Rep}(B)} \int [dU]_v Z_{mono}^{S^3}(B,v;e^{i\lambda_i},x,\eta_a) Z_v^{1-loop}(e^{i\lambda_i},x,\eta_a)$$

 $Z_{mono}^{S^3}(B,B;x,e^{i\lambda}) = 1$ (no screening effect)

Magnetic bubbling index

* How to calculate $Z^{S^3}_{mono}(B,\nu;x,e^{i\lambda})$

- * Note that
 - * bubbling happens at two poles
 - * locally, $S^3 \sim R^3$ near two poles
- * Guess

$$Z_{mono}^{S^{3}}(B,v) = Z_{mono}^{S}(B,v) Z_{mono}^{N}(B,v) \qquad \qquad Z_{mono}^{(N,S)}(B;v) = Z_{mono}^{\mathbb{R}^{3}}(B,v)$$

- * Recently it has been calculated for U(N): [Gomis,Okuda,Pestun;Ito,Okuda,Taki]
 - * relating singular and massless monopoles to instantons [Kronheimer]
 - * complicated sum over colored Young diagrams
 - * S^4 , $R^3 \times S^1$, $S^3 \times S^1$ are all different.

Magnetic bubbling index

* final index

$$I_B(x) = \sum_{v \le B} \int [dU]_v Z_{mono}^{S^3}(B, v; x, e^{i\lambda}) Z_v^{1-loop}(x, e^{i\lambda})$$

where

$$\begin{bmatrix} dU \end{bmatrix}_{B} = \frac{1}{|weyl(G_{B})|} \left(\prod_{i=1}^{rank(G)} \frac{d\lambda_{i}}{2\pi} \right) \prod_{\alpha \neq 0} (1 - x^{|\alpha(B)|} e^{i\alpha(\lambda)})$$
$$Z_{B}^{1-loop}(e^{i\lambda_{i}}, x) \coloneqq \exp\left[\sum_{\alpha} \sum_{n=1}^{\infty} \frac{1}{n} \frac{2x^{n} x^{n|\alpha(B)|}}{1 + x^{n}} e^{in\alpha(\lambda)}\right]$$
$$Z_{B}^{S^{3}} = (Z_{mono}^{\mathbb{R}^{3}})^{2}$$

* Meaning of $v \leq B$:

G	\leftrightarrow	LG
magnetic charge B		highest weight ^L R
v ≤ B		descendants

* example

$$U(2) \qquad \leftrightarrow \qquad U(2)$$

$$v = (1,0),(0,1) \qquad (e_1,e_2) \text{ of } \square$$

$$v = (2,0),(0,2),(1,1) \qquad (2e_1,2e_2,e_1+e_2) \text{ of } \square \square$$

index with bubbling (N=4 case)

* B=(2,0), v=(1,1) in U(2)

$$Z^{S^3;U(2)}_{mono}(B,v) = \big[\frac{1-2x^2+x^4+(\eta^{-1}+\eta)(x+x^3)-2x^2(e^{-i(\lambda_1-\lambda_2)}+e^{i(\lambda_1-\lambda_2)})}{(1-e^{-i(\lambda_1-\lambda_2)}x^2)(1-e^{i(\lambda_1-\lambda_2)}x^2)}\big]^2 ,$$

* index with bubbling

$$\begin{split} I_{B=(2,0)}^{U(2)}(x,\eta) &= \int_{0}^{2\pi} \frac{d\lambda_{1} d\lambda_{2}}{(2\pi)^{2}} (1 - e^{i(\lambda_{1} - \lambda_{2})} x^{2}) (1 - e^{-i(\lambda_{1} - \lambda_{2})} x^{2}) \\ &\qquad \times \mathrm{P.E} \big[\frac{(\eta + \eta^{-1}) x - 2x^{2}}{1 - x^{2}} (2 + e^{i(\lambda_{1} - \lambda_{2})} x^{2} + e^{-i(\lambda_{1} - \lambda_{2})} x^{2}) \big] \\ &\qquad + \frac{1}{2} \int_{0}^{2\pi} \frac{d\lambda_{1} d\lambda_{2}}{(2\pi)^{2}} Z_{mono}^{S^{3}; U(2)}(B, v) (1 - e^{i(\lambda_{1} - \lambda_{2})}) (1 - e^{-i(\lambda_{1} - \lambda_{2})}) \\ &\qquad \times \mathrm{P.E} \big[\frac{(\eta + \eta^{-1}) x - 2x^{2}}{1 - x^{2}} (2 + e^{i(\lambda_{1} - \lambda_{2})} + e^{-i(\lambda_{1} - \lambda_{2})}) \big] \;. \end{split}$$

* index for Wilson line

$$I_{R=(1,0)^{2}}^{U(2)} = \frac{1}{2} \int_{0}^{2\pi} \frac{d\lambda_{1} d\lambda_{2}}{(2\pi)^{2}} (1 - e^{i(\lambda_{1} - \lambda_{2})}) (1 - e^{-i(\lambda_{1} - \lambda_{2})}) (e^{i\lambda_{1}} + e^{i\lambda_{2}})^{2} (e^{-i\lambda_{1}} + e^{-i\lambda_{2}})^{2} \\ \times \mathrm{P.E} \Big[\frac{(\eta + \eta^{-1})x - 2x^{2}}{1 - x^{2}} (2 + e^{i(\lambda_{1} - \lambda_{2})} + e^{-i(\lambda_{1} - \lambda_{2})}) \Big] .$$
(4.39)

* expansion in x:

$$\begin{split} I_{B=(2,0)}^{U(2)}(x,\eta) &= I_{R=(1,0)^2}^{U(2)}(x,\eta) \\ &= 2 + 5(\eta + \eta^{-1})x + (4 + 8\eta^2 + 8\eta^{-2})x^2 + (11\eta^3 + \eta^{-1} + \eta + 11\eta^{-3})x^3 \\ &+ (4 + 14\eta^{-4} + 14\eta^4)x^4 + (17\eta^{-5} + 6\eta^{-1} + 6\eta + 17\eta^5)x^5 + \dots \end{split}$$

N=4 SU(2) gauge group

- * SU(2) magnetic charge: B=(p,-p)/2,
- * bubbling v= (v,-v)/2 and (B,v)=(p,v), v = p- even integer
- * SU(2) bubbling index

$$\begin{split} Z_{mono}^{N;SU(2)}(2,0) &= \frac{(1-2x^2+x^4)+(\eta^{-1}+\eta)(x+x^3)-2x^2(e^{-2i\lambda}+e^{2i\lambda})}{(1-e^{-2i\lambda}x^2)(1-e^{2i\lambda}x^2)}\\ Z_{mono}^{N;SU(2)}(3,1) &= \frac{2(1-x^2-x^4+x^6)+(\eta^{-1}+\eta)(x+x^3+x^5)-3x^3(e^{-2i\lambda}+e^{2i\lambda})}{(1-e^{-2i\lambda}x^3)(1-e^{2i\lambda}x^3)}. \end{split}$$

* S-duality

$$\begin{split} I_{B=\text{diag}(1,-1)}^{SU(2)}(x,\eta) &= I_{R=(1,0)^2}^{SU(2)}(x,\eta) \\ &= 2 + 3(\eta^{-1} + \eta)x + 3(\eta^{-2} + \eta^2)x^2 + (3\eta^{-3} - 2\eta^{-1} - 2\eta + 3\eta^3)x^3 \\ &+ (3\eta^{-4} - \eta^{-2} + 2 - \eta^2 + 3\eta^4)x^4 + (3\eta^{-5} + \eta^{-1} + \eta + 3\eta^5)x^5 + \dots, \\ I_{B=\text{diag}(\frac{3}{2},-\frac{3}{2})}^{SU(2)}(x,\eta) &= I_{R=(1,0)^3}^{SU(2)}(x,\eta) \\ &= 5 + 9(\eta^{-1} + \eta)x + (10\eta^{-2} + 1 + 10\eta^2)x^2 + (10\eta^{-3} - 5\eta^{-1} - 5\eta + 10\eta^3)x^3 \\ &+ (10\eta^{-4} - 4\eta^{-2} + 6 - 4\eta^2 + 10\eta^4)x^4 + (10\eta^{-5} - \eta^{-3} + 3\eta^{-1} + 3\eta - \eta^3 + 10\eta^5)x^5 \dots . \end{split}$$

S-duality in N=2 SU(2) with 4 flavors

- * minimal magnetic charge B=(2,-2)/2 is not miniscule.
- * bubbling can be obtained by 2d-4d correspondence [iso,okuda,taki]

$$Z_{mono}^{N;SU(2),N_f=4}(2,0) = -\frac{(x^2 + \prod_i \eta_i)}{x \prod \eta_i^{1/2}} + \sum_{s=\pm 1} \frac{\prod_{i=1} (xe^{is\lambda} - \eta_i)}{x(1 - e^{2is\lambda})(1 - x^2e^{2is\lambda}) \prod_i \eta_i^{1/2}}$$

* index for the `t Hooft line with B=(2,-2)/2

$$\begin{split} I_{B=(1,-1)}^{SU(2);N_{f}=4}(x,\eta_{i}) &= \int \frac{d\lambda}{2\pi} (1-e^{2i\lambda}x^{2})(1-e^{-2i\lambda}x^{2}) \\ &\times \mathrm{P.E}\Big[\frac{x(e^{i\lambda}x+e^{-i\lambda}x)}{1-x^{2}}\sum_{i}(\eta_{i}+\eta_{i}^{-1}) - \frac{2x^{2}}{1-x^{2}}(e^{2i\lambda}x^{2}+e^{-2i\lambda}x^{2}+1)\Big] \\ &+ \frac{1}{2}\int \frac{d\lambda}{2\pi}(1-e^{2i\lambda})(1-e^{-2i\lambda})\Big(Z_{mono}^{N;SU(2),N_{f}=4}(2,0)\Big)^{2} \\ &\times \mathrm{P.E}\Big[\frac{x(e^{i\lambda}+e^{-i\lambda})}{1-x^{2}}\sum_{i}(\eta_{i}+\eta_{i}^{-1}) - \frac{2x^{2}}{1-x^{2}}(e^{2i\lambda}+e^{-2i\lambda}+1)\Big] \;. \end{split}$$

* index for minimal Wilson line

$$\begin{split} I_{R=2}^{SU(2);N_f=4}(x,\eta_i) &= \frac{1}{2} \int \frac{d\lambda}{2\pi} (1-e^{2i\lambda})(1-e^{-2i\lambda})(e^{i\lambda}+e^{-i\lambda})^2 \\ &\times \mathrm{P.E}\Big[\frac{x(e^{i\lambda}+e^{-i\lambda})}{1-x^2} \sum_i (\eta_i+\eta_i^{-1}) - \frac{2x^2}{1-x^2}(e^{2i\lambda}+e^{-2i\lambda}+1)\Big] \end{split}$$

S-duality SU(2) with 4 flavors

* turn off the chemical potential: $\eta_i=1$

$$\begin{split} I_{B=(1,-1)}^{SU(2);N_f=4}(x,\eta_i)|_{\eta_i=1} &= I_{R=2}^{SU(2);N_f=4}(x,\eta_i)|_{\eta_i=1} \\ &= 1 + 62x^2 + 896x^4 + 7868x^6 + 51856x^8 + 281836x^{10} + 1328923x^{12} \\ &+ 5611146x^{14} + 21671145x^{16} + 77725908x^{18} + 261809269x^{20} + \dots \end{split}$$

* With chemical potential:

$$\begin{split} I_{B=(1,-1)}^{SU(2);N_f=4}(x,\eta_i) &= I_{R=2}^{SU(2);N_f=4}(x,\tilde{\eta}_i) \ , \ \text{where} \\ \tilde{\eta}_1 &= \sqrt{\eta_1 \eta_2 \eta_3 \eta_4} \ , \ \tilde{\eta}_2 &= \frac{\sqrt{\eta_1 \eta_2}}{\sqrt{\eta_3 \eta_4}} \ , \ \tilde{\eta}_3 &= \frac{\sqrt{\eta_2 \eta_4}}{\sqrt{\eta_1 \eta_3}} \ , \ \tilde{\eta}_4 &= \frac{\sqrt{\eta_1 \eta_4}}{\sqrt{\eta_2 \eta_3}} \ . \end{split}$$

* Half-Index and Verlinde Loop Operators:....

Concluding Remarks

- * For the N3 d.o.f. on M5 branes, we need to explore further. Maybe the understanding of the central charge in Toda model (via AGT) may help.
- * For the instanton calculations, there are more information to be extracted.
 - * Study of magnetic monopole strings and confirmation of the instanton calculation
 - * Some hints about N3 has appeared.
 - * Further exploration along DLCQ of (2,0) is necessary.
- For 4d-index with `t Hooft operators, the magnetic bubbling and Verlinde operators are related and need further study.
- * Obviously there are more counting in 4,5,6 dim.