Counting in 4,5,6 DIMENSIONS

Kimyeong Lee KIAS

Progress in Quantum Field Theory and String Theory Osaka City University April, 2012

Outline

* Count degrees of freedom on $6 \mathrm{~d}(2,0)$ SCFT in the Coulomb phase: M5 Stefano Bolognesi, K.L.
* Index of instantons in SYM on R^{1+4} (Coulomb and symmetric phase): D4 Hee-Cheol Kim, Seok Kim, Eunkyung Koh, K.L., Sungjay Lee
* Index of SYM on $S^{3} x S^{1}$ with t Hooft operator and S-duality: D3 Dongmin Gang, Eunkyung Koh, K.L.

6d $(2,0)$ Superconformal field theories

* simple-laced A,D,E types of theories
* $\quad A_{N-1}$ on N M5 branes, D_{N} on 2N M5 branes+ OM5
* Type IIB on $\quad \mathrm{C}^{2} / \mathrm{Z}_{\mathrm{N}} \rightarrow \mathrm{A}, \quad \mathrm{C}^{2} /$ dihedral $\rightarrow \mathrm{D}$,
C^{2} / tetra, octahedral, icosahedral $\rightarrow E \quad[$ Witten96]
* Fields: $\mathrm{B}_{\mu v}, \varphi_{\mathrm{l}}, \Psi_{\mathrm{A}}$: self-dual $\mathrm{H}=\mathrm{dB}$, *H=H on single M5
* Tensionless selfdual strings in the nonabelian SCFT
* $(2,0)$ supersymmetry $+\mathrm{SO}(5)_{\mathrm{R}}$ symmetry

6d $(2,0)$ SCFT (formalism)

* It is not easy to write down explicitly this quantum theory which does not have any weak coupling regime.
* If one is successful, one would have, say, the local field theory for both electric and magnetic objects in 4-dim after compactification. This is not likely.
* With dimensionful coupling, 5d SYM is naively not expected to UV complete. There is a recent proposal that 5 d maximal SYM is sufficient to define the $(2,0)$ theory on $R^{1+4} \times S^{1}$. [Douglas; Lambert,Papageorgakis,SchmidtSommerfeld]
* Instantons in 5d SYM are the Kaluza-Klein mode. [Seiberg] (See the second part.)
* Instantons are dipole-configuration and belong to the adjoint representation of dual group.
* the perturbative effect + non perturbative effect may complete the theory.
* The role of magnetic monopole string is not clear.

6d $(2,0)$ SCFT (d.o.f.)

* Degrees of freedom on N M5 branes:
* Extremal black hole solutions : N^{3} [Klebanov,Tseytlin]
* Weyl anomaly : N^{3} [Henningson,Skenderis]
* Anomaly from tangent and normal bundle of M5 branes [Witten: Harvey,Minasian,Moore:Yi: Intriligator]
* Anomaly polynomial

$$
I_{8}[G]=r_{G} I_{8}[1]+\frac{1}{24} c_{G} p_{2}(N W)
$$

* rank $\mathrm{r}_{\mathrm{G}}, \operatorname{dim} \mathrm{d}_{\mathrm{G}}$,
* Coxeter number $\mathrm{h}_{\mathrm{G}}=\left(\mathrm{d}_{\mathrm{G}}-\mathrm{r}_{\mathrm{G}}\right) / \mathrm{r}_{\mathrm{G}} \quad\left(\quad=>\mathrm{d}_{\mathrm{G}}=\left(\mathrm{h}_{\mathrm{G}}+1\right) \mathrm{r}_{\mathrm{G}} \quad\right)$
* anomaly coefficient $\mathrm{CG}_{\mathrm{G}}=\mathrm{d}_{\mathrm{G}}$

6d (2,0) SCFT

* For $A_{N-1}=S U(N), r_{G}=N-1, d_{G}=N^{2}-1, h_{G}=N, c_{G}=N\left(N^{2}-1\right)$
* for large $\mathrm{N}, \mathrm{c}_{\mathrm{G}} \sim \mathrm{N}^{3}$
* Pant diagram?
* Dyonic Instantons?
* Instanton Partons?

* Junctions?
* Anomaly Coefficient $\mathrm{CG}_{\mathrm{G}}=\mathrm{h}_{\mathrm{G}} \mathrm{d}_{\mathrm{G}}$

Group	r_{G}	d_{G}	h_{G}	$c_{G} / 3$
$A_{N-1}=S U(N)$	$N-1$	$N^{2}-1$	N	$\frac{1}{3} N\left(N^{2}-1\right)$
$D_{N}=S O(2 N)$	N	$N(2 N-1)$	$2(N-1)$	$\frac{2}{3} N(2 N-1)(N-1)$
E_{6}	6	78	12	312
E_{7}	7	133	18	798
E_{8}	8	248	30	2480

Table I: r_{G}, d_{G}, h_{G} and $c_{G} / 3$ for simple-laced groups $A D E$

5d SYM (d.o.f.)

* Assuming 5d SYM captures the essence of the $(2,0)$ theory, one would ask how N^{3} degrees of freedom is realized in 5d theory. Let us look for the spectrum.
* In the symmetric phase
* $1 / 2$ BPS elementary particles has $\mathrm{N}^{2}-1$ dof. (adjoint of $\mathrm{SU}(\mathrm{N})$)
* $\quad 1 / 2 \mathrm{BPS}$ instanton has N dof. (4 N zero modes, N instanton partons?)
* In the Coulomb phase,
* $1 / 2 \mathrm{BPS}$ monopole strings have $\left(\mathrm{N}^{2}-\mathrm{N}\right) / 2$ dof. $=$ anti-mono strings
* $1 / 4$ BPS dyonic instantons have......(The second part of this talk...)
* 1/4 BPS monopole strings with wave: $\Gamma^{1235} \varepsilon=\varepsilon, \Gamma^{04} \varepsilon= \pm \varepsilon$

$$
\begin{aligned}
F_{12}= & D_{3} \phi_{5}, F_{23}=D_{1} \phi_{5}, F_{31}=D_{2} \phi_{5} \\
& F_{0 i}-F_{4 i}=0, D_{0} \phi_{5}-D_{4} \phi_{5}=0
\end{aligned}
$$

5d SYM (Monopole String Junctions)

* Monopole strings can form 1/4 BPS junctions
* Lock SO(4)rot with $\mathrm{SO}(4)$ of $\mathrm{SO}(5)_{\mathrm{R}}: \mathrm{A}_{\mathrm{a}}, \Phi_{\mathrm{a}}(\mathrm{a}=1,2,3,4)$
* 1/16 BPS equation (dyonic webs of junctions) [Kapustin,Witten: Yee,KL]

$$
\begin{gathered}
F_{a b}=\epsilon_{a b c d} D_{c} \Phi_{d}-i\left[\Phi_{a}, \Phi_{b}\right], D_{a} \Phi_{a}=0 \\
D_{a}^{2} \Phi_{5}-\left[\Phi_{a},\left[\Phi_{a}, \Phi_{5}\right]=0\right. \\
\end{gathered} \begin{aligned}
& F_{12}+F_{34}+F_{56}+F_{78}=0 \\
& F_{13}+F_{42}+F_{57}+F_{86}=0 \\
& F_{14}+F_{23}+7_{76}+F_{55}=0 \\
& F_{15}+F_{62}+F_{73}+F_{48}=0 \\
& F_{16}+F_{25}+F_{47}+F_{38}=0 \\
& F_{17}+F_{35}+F_{64}+F_{82}=0 \\
& F_{18}+F_{27}+F_{63}+F_{54}=0
\end{aligned}
$$

* 1/4 BPS junctions on 3 D4 branes: lock $34 \& 78$ plane:

$$
\begin{array}{r}
\Gamma^{1238} \epsilon=\epsilon, \Gamma^{1247} \epsilon= \pm \epsilon, \phi_{1}=\phi_{2}=0, \\
F_{12}=D_{3} \phi_{4}-D_{4} \phi_{3}, F_{23}=D_{1} \phi_{4}, F_{31}=D_{2} \phi_{4} \\
F_{41}=D_{2} \phi_{3}, F_{24}=D_{1} \phi_{3}, F_{43}=-i\left[\phi_{4}, \phi_{3}\right], D_{3} \phi_{3}+D_{4} \phi_{4}=0
\end{array}
$$

* mutually susy \& tension balance:

6d $(2,0)$ SCFT (d.o.f.)

* in the Coulomb phase of G-type (G=A,D,E simple-laced)
* $\quad 1 / 2$ BPS massless $(2,0)$ tensor multiplets: rg

* $1 / 2 \mathrm{BPS}$ selfdual strings $=$ anti-strings: $\left(\mathrm{d}_{\mathrm{G}}-\mathrm{r}_{\mathrm{G}}\right) / 2 \equiv \mathrm{rGh}_{\mathrm{G}} / 2$
* $1 / 4$ BPS massless waves on selfdual strings \& anti-objects: $d_{G}-r_{G}=r_{G} h_{G}$
* 1/4 BPS junctions and anti-junctions: counting?
* 1/4 BPS objects in A_{N-1} case : roots $\alpha=e_{i}-e_{j}$
* waves on string: $A=2 \times N(N-1) / 2=N(N-1)=d_{G}-r_{G}$

* junctions and anti-junctions: three selfdual strings for roots: $\mathrm{e}_{\mathrm{i}}-\mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}-\mathrm{e}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}-\mathrm{e}_{\mathrm{i}}$
* $\mathrm{B}=2 \times \mathrm{N}(\mathrm{N}-2)(\mathrm{N}-2) / 6=\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) / 6$
* total:

$$
A+B=\frac{1}{3} N\left(N^{2}-1\right)=\frac{1}{3} r_{A_{N-1}} d_{A_{N-1}}=\frac{1}{3} c_{A_{N-1}}
$$

6d (2,0) SCFT (DN \& E $\mathrm{E}_{6,7,8}$ types)

* $\quad D_{N}$ roots: $\left\{e_{i} \pm e_{j}\right\}(i, j=1, \ldots N, i \neq j)$
* $A=4^{*} \mathrm{~N}(\mathrm{~N}-1) / 2=2 \mathrm{~N}(\mathrm{~N}-1)$
* $B=8 * N(N-1)(N-2) / 6=4 N(N-1)(N-2) / 3$
* $\mathrm{A}+\mathrm{B}=2 \mathrm{~N}(\mathrm{~N}-1)(2 \mathrm{~N}-1) / 3=\mathrm{C}_{\mathrm{DN}} / 3$

$\mathrm{E}_{6,7,8}$

Periodic Table of $(2,0)$ Theories?

High temperature in the Coulomb phase

* Start with a generic Coulomb phase with string tension u
* For the free string, there is a Hegadorn temperature

$$
T_{H} \sim \sqrt{u} \quad E=T_{H} S
$$

* Imagine the heating the local region beyond the Hegardorn temperature.

$$
T \gg T_{\text {Hegadorn }}=\sqrt{u}
$$

* High energy is dominated by the webs of junctions in 5-dim space

Junctions as fundamental objects

* Junctions are more fundamental than selfdual strings as junction+ anti-junction can form a selfdual string after a partial annihilation.
* Junctions are like atoms on M5 branes
* via AGT relation, 2-d Toda central charge has N^{3} growth, which is related to N^{3} on M5 branes. Better understanding of Toda model is needed.
* Excitation of Junctions
* In the second talk, we have something to say about the degenerated junctions where all the strings are parallel.

2nd topic: Index of Instantons in 5d SYM

* Calculate the instanton index with all chemical potentials turned on.
* index of dyonic instantons in the Coulomb phase

S-dual of monopole strings with momentum up on further circle compactification

* index of instantons in the symmetric phase nonrelativistic superconformal index of DLCD of $(2,0)$ theories.
* References:
* [Nekrasov(02); Nekrasov,Okoukov(03); Pestun; Okuda,Pestun(10); Dorey.Hollowood,Khoze,Mattis(02); Bruzzo,Fucito,Morales,Tanzini(03); Iqbal,Kozcaz,Shbabir(10)]
* [Kinney,Maldacena,Minwalla,Raju(07); Dolan,Osborn(03)]
* [Aharony,Berkooz,Seiberg (98)]

5d Maximal SYM on D4

* Rotational symmetry: $\mathrm{SO}(4)_{\text {rot }}=\mathrm{SU}(2)_{1 \mathrm{~L}} \times \mathrm{SU}(2)_{1 \mathrm{R}}$
* Instantons are KK modes for $(2,0)$ SCFT on $\mathrm{R}^{1+4} \mathrm{x} \mathrm{S}^{1}$
* instantons are massive tensor multiplet with spin $(1,0),(1 / 2,0),(0,0)$
* anti-instantons are similar with spin (0,1), ($0,1 / 2$), (0,0) Instanton and anti-instanton pair can annihilate with
* Here we study the dyonic instanton index on $R^{4} \times S^{1} \quad$ orbital angular momentum
* Here we have something new to say from it.
* unique threshold bound state: support the 5d SYM being $(2,0)$ theory
* S-duality tells something about monopole strings with momentum
* it tells something about the degenerate parallel monopole string junctions
* it tells something about the DLCQ index of $(2,0)$ theory in the symmetric phase

On D4 branes in Coulomb Phase

* On D4s in Coulomb phase the symmetry:

* D0-D4 or instantons preserve 8 SUSY :
$S U(2)_{2 L} \times S U(2)_{2 R} \subset S O(4)_{2}$

$$
\bar{Q}_{\dot{\alpha}}^{i} \Rightarrow \bar{Q}_{\dot{\alpha}}^{\downarrow}, \bar{Q}_{\dot{\alpha}}^{\downarrow} \stackrel{\downarrow}{\dot{a}}
$$

* F1-D0-D4 or dyonic instantons preserve 4 SUSY :

$Q_{\dot{+}}^{\dot{+}}$

Index of Instantons from the D0-dynamics (ADHM)

* Index for BPS states with nonzero instantons

$$
I_{k}\left(\mu^{i}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)=\operatorname{Tr}_{k}\left[(-1)^{F} e^{-\beta Q^{2}} e^{-\mu^{i} \Pi_{i}} e^{-i \gamma_{1}\left(2 J_{1 L}\right)-i \gamma_{2}\left(2 J_{2}\right)-i \gamma_{R}\left(2 J_{R}\right)}\right]
$$

- $\quad \mu_{i}$: chemical potential for $\mathrm{U}(1)^{\mathrm{N}} \subset \mathrm{U}(\mathrm{N})_{\text {color }}$
adjoint hyper flavor
- $\gamma_{I}, \gamma_{2}, \gamma_{R}$: chemical potential for $S U(2)_{1 L}, S U(2)_{2 L}, S U(2)_{R}$
* calculate the index by the localization: $\quad I\left(q, \mu^{i}, \gamma_{1,2,3}\right)=\sum_{k=0}^{\infty} q^{k} I_{k}$
* 5d $N=2^{*}$ instanton partition function on $R^{4} \times S^{1}: \quad t \sim t+\beta$
* In $\beta \rightarrow 0$ and small chemical potential limit, the index becomes 4d Nekrasov instanton partition function :

D0-dynamics \& ADHM formalsm

* k D0 dynamics on N D4: dim. reduction of 10d SYM with $U(k)$ gauge group and N fundamental hypermultiplets.
* turn on the scalar expectation value $\Phi_{5}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{N}}\right)+$ FI term
* change of variables for hyper scalars so that there is no time-dependence.
* Choose the twisting

$$
\begin{equation*}
Q=\frac{1}{\sqrt{2}}\left(Q_{\dot{+}}^{\dot{+}}+Q_{\dot{-}}^{\dot{-}}\right) \tag{5}
\end{equation*}
$$

* Euclidean time with topological and cohomological setting + chemical potentials
* In the limit $\beta \rightarrow 0, \zeta$ and $\omega \rightarrow \infty$, the path integral comes from 1-loop around the saddle points

$$
\begin{aligned}
& \quad\left[\phi, B_{1}\right]=\frac{i\left(\gamma_{R}-\gamma_{1}\right)}{\beta} B_{1},\left[\phi, B_{2}\right]=\frac{i\left(\gamma_{R}+\gamma_{1}\right)}{\beta} B_{2}, \\
& {\left[B_{1}, B_{2}\right]+\bar{x}^{\dot{亡}} x_{\dot{+}}=0,\left[B_{1}^{\dagger}, B_{1}\right]+\left[B_{2}^{\dagger}, B_{2}\right]+\bar{x}^{\dot{+}} x_{\dot{+}}-\bar{x}^{\dot{-}} x_{-}=\zeta} \\
& x_{ \pm} \phi-\frac{\mu \pm i \gamma_{R}}{\beta} x_{ \pm}=0
\end{aligned}
$$

* N -colored Young diagram:

N-colored Young diagram \& index

$\sum_{i=1}^{N} k_{i}=k, k_{i}=\#$ of boxes in the $\mathrm{i}-$ th Young diagram

* For example

* Evaluate the Gaussian integral and obtain the instanton index

$$
\begin{gathered}
I_{\left\{Y_{1}, Y_{2}, \cdots, Y_{N}\right\}}=\prod_{i, j=1}^{N} \prod_{s \in Y_{i}}^{N} \frac{\sinh \frac{E_{i j}-i\left(\gamma_{2}+\gamma_{R}\right)}{2} \sinh \frac{E_{i j}+i\left(\gamma_{2}-\gamma_{R}\right)}{2}}{\sinh \frac{E_{i j}}{2} \sinh \frac{E_{i j}-2 i_{R}}{2}} \\
E_{i j}=\mu_{i}-\mu_{j}+i\left(\gamma_{1}-\gamma_{R}\right) h_{i}(s)+i\left(\gamma_{1}+\gamma_{R}\right)\left(v_{j}(s)+1\right)
\end{gathered}
$$

* The index for the instanton

$$
I=\sum_{k=0}^{\infty} q^{k} \sum_{k_{i}} \sum_{Y_{i}\left(k_{i}\right)} I_{\left\{Y_{1}, Y_{2}, \cdots Y_{N}\right\}}
$$

$\mathrm{U}(1)$ instantons

* D0‘s on a single D4
* As instantons are KK modes of $(2,0)$ theory, one expects a unique threshold bound state for each instanton number k.
* $U(1)$ index for $k=1$

$$
I_{c m}=\frac{\sin \left(\frac{\gamma_{1}+\gamma_{2}}{2}\right) \sin \left(\frac{\gamma_{1}-\gamma_{2}}{2}\right)}{\sin \left(\frac{\gamma_{1}+\gamma_{R}}{2}\right) \sin \left(\frac{\gamma_{1}-\gamma_{R}}{2}\right)}
$$

	$S U(2)_{1 L}$	$S U(2)_{1 R}$	$S U(2)_{2 L}$	$S U(2)_{2 R}$
B_{2}	3	1	1	1
ϕ_{I}	1	1	2	2
	1	1	1	1
λ	2	1	2	1
	2	1	1	2

* $\mathrm{U}(1)$ index [lqbal-Kozcaz-Shabbir 10]

$$
I_{U(1)}\left(q, e^{\gamma_{i}}\right)=P E\left[\frac{q}{1-q} I_{c m}\left(e^{\gamma_{i}}\right)\right] \text {, Plythethytic exponential }
$$

* Expand the single particle index in q

$$
\sum_{k=0}^{\infty} q^{k} I_{c m} \quad \text { unique threshold bound state }
$$

Dyonic Instantons in the Coulomb phase

* Compute the degeneracy of wrapped selfdual strings with momentum.

$$
\text { Index }=\mathbf{P I}\left[I_{c m} z_{s p}(q, \mu, \gamma)\right]
$$

* expand in z_{sp} in instanton number and electric charge;

$$
q, x=e^{-\left(\mu_{1}-\mu_{2}\right)}
$$

* $\operatorname{SU}(2): \mathrm{x}^{1}$ or $1-\mathrm{W}$ boson +n instantons

$$
\prod_{n=1}^{\infty} \frac{\left(1-q^{n} e^{i\left(\gamma_{2}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(\gamma_{2}-\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(\gamma_{1}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(\gamma_{2}-\gamma_{2}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(-\gamma_{1}+\gamma_{R}\right)}\right)\left(1-q^{n} e^{i\left(-\gamma_{2}-\gamma_{R}\right)}\right)}{\left(1-q^{n} e^{i\left(-\gamma_{1}-\gamma_{R}\right)}\right)}
$$

* Simplification: $\quad z_{s p}\left(\gamma_{1}=\gamma_{R}=0, \gamma_{2}=\pi\right)$
$x^{2}: \quad 0+16 q+288 q^{2}+2880 q^{3}+21056 q^{4}+125280 q^{5}+\cdots=q \frac{d}{d q}\left[\prod_{n=1}^{\infty} \frac{\left(1+q^{n}\right)^{8}}{\left(1-q^{n}\right)^{8}}\right]$
$x^{3}: \quad 0+24 q+1272 q^{2}+26952 q^{3}+360696 q^{4}+3605520 q^{5}+\cdots$
$x^{4}: 0+32 q+4160 q^{2}+169600 q^{3}+3842176 q^{4}+60216000 q^{5}+\cdots$
$x^{5}: 0+40 q+11080 q^{2}+809760 q^{3}+29471560 q^{4}+692554440 q^{5}+\cdots$

Find the S-duality calculation:
Study of multiple wrapped monopole strings + momentum

Dyonic Instantons in $\mathrm{U}(\mathrm{N})$ gauge theory

* Single W-boson:
$e^{-\left(\mu_{1}-\mu_{N}\right)}$

* 1+1 dim dynamics of monopole strings with momentum are need to produced above results in S-dual version.

Superconformal index

* To get the index in symmetric phase, integrate over $\mu_{i}=\mathrm{i} a_{i}$ with Haar measure
* DLCQ on null circle: Nonrelativistic superconformal symmetry
* \quad P. on the null circle $=$ instanton number
* Superalgebra: $\quad 2 i\{Q, S\}=i D \mp\left(4 J_{2 R}+2 J_{1 R}\right) \rightarrow i D \geq \pm\left(4 J_{2 R}+2 J_{1 R}\right)$
* Nonrelativistic superconformal index

$$
I_{S C}=\operatorname{Tr}\left[(-1)^{F} e^{-\beta\{\hat{Q}, \hat{S}\}} e^{-2 i i_{R} J_{R} J_{R}} e^{-2 i_{1} J_{1 L}-2 i_{2} J_{2 L}} e^{-i \alpha_{i} \Pi_{i}}\right]
$$

* In the limit $\beta \rightarrow 0$, this superconformal index becomes our index.
* For single instanton with $t=e^{-i \gamma_{R}}$

$$
I_{k=1}=\frac{e^{i \gamma_{2}}+e^{-i \gamma_{2}}-e^{i \gamma_{1}}-e^{-i \gamma_{1}}}{\left(1-t e^{i \gamma_{1}}\right)\left(1-t e^{-i \gamma_{1}}\right)}\left[t+\sum_{n=1}^{N-1}\left(e^{i n \gamma_{2}}+e^{-i n \gamma_{2}}\right) t^{n+1}-\chi_{\frac{N-2}{2}}\left(\gamma_{2}\right) t^{N+1}\right]
$$

* Large N

$$
I_{N \rightarrow \infty, k=1}=\frac{e^{i \gamma_{2}}+e^{-i \gamma_{2}}-e^{i \gamma_{1}}-e^{-i \gamma_{1}}}{\left(1-t e^{i \gamma_{1}}\right)\left(1-t e^{-i \gamma_{1}}\right)} \frac{t-t^{3}}{\left(1-t e^{i \gamma_{2}}\right)\left(1-t e^{-i \gamma_{2}}\right)}
$$

AdS7 \times S4 calculation confirm it.

4d N=2 SYM on $S^{3} \times S^{1}$ with `t Hooft operators

* Index on $S^{3} \times S^{1} \quad$ [Romelsberger; Kinney,Maldacena,Minwalla,Raju]
* the singular BPS Dirac solutions with nonabelian magnetic charge [ttHooft, E.Weinberg,Kapustin,....]
* include magnetic bubbling (or massless monopoles) [Kapustin,Witten:Weinberg]
* Confirm S-duality: (on S^{4}, [Gomis,Okuda,Pestun])
* 2d-4d relation [Dimofte,Gaiotto,Gukov;Ito,Okuda,Taki]

't Hooft operator on $S^{3} \times S^{1}$ in $N=4 S Y M$

$$
d s_{S^{3}}^{2}=d \chi^{2}+\sin ^{2} \chi\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

* $\quad \mathrm{SO}(4)_{\mathrm{rot}} \mathrm{x} \operatorname{SU}(4)_{\mathrm{R}}$

Fields

$$
A_{\mu}, X^{A B}\left(X^{A B}=\frac{1}{4} \epsilon^{A B C D}\left(X^{C D}\right)^{\dagger}\right), \psi^{A},(A=1,2,3,4 \text { of } S U(4))
$$

Superconformal:

$$
\begin{gathered}
Q^{\alpha A}, \bar{Q}_{A}^{\dot{\alpha}}, S_{A}^{\alpha}, \bar{S}^{\dot{\alpha} A} \\
\alpha \in(\mathbf{2}, 0), \dot{\alpha} \in(0, \mathbf{2}) \text { of } S U(2)_{L} \times S U(2)_{R}=S O(4)_{r o t}
\end{gathered}
$$

* 1/2 BPS Wilson and 't Hooft lines:

$$
\begin{array}{r}
W=\operatorname{Tr}_{R} \exp i \int d t\left(A_{0}-\phi_{9}\right) \\
H: F_{i j}=\frac{B}{4} \epsilon_{i j k} \frac{x_{k}}{|x|^{3}}, \quad \phi_{9}=\frac{1}{2} \frac{B}{|x|} \\
H: \quad F=-\frac{B}{2} \sin \theta d \theta \wedge d \varphi \\
X_{12}=X_{34}^{\dagger}=\frac{1}{2}\left(\phi_{6}+i \phi_{9}\right)=\frac{i B}{4} \sin \chi
\end{array}
$$

* Preserved supersymmetry: 1/2BPS, choose one supercharge

$$
Q=Q^{\alpha=1, A=1}+\bar{Q}_{A=2}^{\dot{\alpha}=1} \quad \text { Locking } S U(2)_{R}=S U(2)_{R}
$$

Index with Line operators

Supersymmetry

$$
Q=Q^{\alpha=1 . A=1}+\bar{Q}_{A=2}^{\dot{\alpha}}
$$

$$
\Delta=\left\{Q, Q^{\dagger}\right\}=\epsilon-\left(j_{L}+j_{R}\right)-r_{1}
$$

* $\quad \mathrm{U}(1)$ charge :

$$
r_{1}=\operatorname{diag}(1,-1,0,0), \quad A=1,2,3,4
$$

* commuting charge: $\left[Q, \epsilon+\left(j_{L}+j_{R}\right)\right]=0$
* Index:

$$
\operatorname{Index}_{\mathcal{H}_{L}}\left(x, \eta_{a}\right)=\operatorname{Tr}_{\mathcal{H}_{L}}(-1)^{F} x^{\epsilon+j_{L}+j_{R}} \prod_{a} \eta_{a}^{h_{a}}
$$

* Chemical potential: $\mathrm{N}=4 \quad \mathrm{r}_{2}=\operatorname{diag}(0,0,1,-1)$
* trace over the BPS states with $\Delta=\varepsilon-\left(j_{L}+j_{\mathrm{R}}\right)-\mathrm{r}_{1}=0$

Euclidean Path Integral

BPS Fluctuations around `t Hooft line

* Classical corrections vanishes with boundary terms.
* 1-loop: harmonic analysis around 't Hooft line: $\quad F=-\frac{B}{2} \sin \theta d \theta \wedge d \varphi$,
* taken into account A_{0} along S^{1}

$$
X_{12}:=X_{34}^{\dagger}=\frac{1}{2}\left(X_{6}+i X_{9}\right)=\frac{B}{4 \sin \chi}
$$

* $\mathrm{X}_{13}, \mathrm{X}_{14}$:

$$
M_{q_{\alpha}}^{2}=-\partial_{t}^{2}-\nabla_{S^{3}}+1+\frac{q^{2}}{\sin ^{2} \chi},\left(q_{\alpha}=\alpha(B) / 2\right)
$$

	ϵ	$j_{L}+j_{R}$	r_{1}	r_{2}	$e^{i \lambda}$
$X_{n, J, m}^{13, \alpha}$	$n+1$	m	1	1	$e^{i \alpha(\lambda)}$
$X_{n, J, m}^{14, \alpha}$	$n+1$	m	1	-1	$e^{i \alpha(\lambda)}$

$$
J=|q|,|q|+1, \ldots,|m| \leq J, \quad n=J, J+1, \ldots
$$

* \quad BPS $\Delta=0$ for $m=J, n=J=|q|,|q|+1, \ldots$ and index: $x^{2 J+1}=x^{2|q|+1}, x^{2|q|+3}, \ldots$
* index with chemical potential η for R-charge r_{2} and chemical potential for the gauge group

$$
I_{s p ; \mathcal{C}_{1}}\left(e^{i \lambda_{i}}, x, \eta\right)=\left(\eta+\eta^{-1}\right) \sum_{\alpha} \sum_{n=\left|q_{\alpha}\right|} x^{2 n+1} e^{i \alpha(\lambda)}=\left(\eta+\eta^{-1}\right) \sum_{\alpha} \frac{x \cdot x^{|\alpha(B)|} e^{i \alpha(\lambda)}}{1-x^{2}}
$$

$\left.\left\{e^{i \lambda_{i}}\right\}\right|_{i=1, \ldots,, \text { rank }(G)}$ for Cartan algebra basis $\left\{H_{i}\right\}$

Fermionic Fluctuations around `t Hooft line

* on $\Psi^{1}, \psi^{2} \quad M_{\bar{q}} \overline{=}\left(\begin{array}{rr}i \not D_{q} & q / \sin \chi \\ q / \sin \chi & -i \not D_{q}\end{array}\right)$

	ϵ	$j_{L}+j_{R}$	r_{1}	r_{2}	$e^{i \lambda}$
$\psi_{n, J, m}^{\alpha ; \pm, \kappa}$	$n+1$	m	1	0	$e^{i \alpha(\lambda)}$

$J=|q|-\frac{1}{2}$ (exist for $|q| \neq 0$), $|q|+\frac{1}{2},|q|+\frac{3}{2}$, $|m| \leq J, n=J, J+1 \ldots$

* BPS $\Delta=0$ for
* $m=J, n=J=|q|-1 / 2$ with $\mathrm{k}=1$: index $\quad-x^{2 J+1}=x^{2|q|}$
* $m=J, n=J=|q|+1 / 2,|q|+3 / 2, \ldots$ with $k=1,2$: index $-x^{2 J+1}=-x^{2|q|+2},-x^{2|q|+4}, \ldots$
* index from Ψ^{1}, Ψ^{2}

$$
\begin{aligned}
& I_{s p ; \mathcal{C}_{2}}\left(e^{i \lambda_{i}}, x, \eta\right)=\sum_{\alpha}\left[\sum_{J=\left|q_{\alpha}\right|+\frac{1}{2}}^{\infty}\left(-2 x^{2 J+1} e^{i \alpha(\lambda)}\right)-\left(1-\delta_{q \alpha, 0}\right) x^{2\left|q_{a}\right|} e^{i \alpha(\lambda)}\right] \\
& =\sum_{\alpha}\left(\frac{-2 x^{2} \cdot x^{|\alpha(B)|}}{1-x^{2}}-\left(1-\delta_{\alpha(B), 0}\right) x^{|\alpha(B)|}\right) e^{i \alpha(\lambda)} .
\end{aligned}
$$

* Index from Ψ^{3}, Ψ^{4} and A_{i}, X_{12} : no bps fluctuations and contributions

Index for $\mathrm{N}=4$ theory

* single particle index

$$
\begin{aligned}
& \tilde{I}_{s p}\left(e^{i \lambda_{i}}, x, \eta\right)=\sum_{i=1}^{4} I_{s p ; \mathcal{C}_{i}} \\
& =\sum_{\alpha}\left(\frac{\left(\eta+\eta^{-1}\right) x \cdot x^{|\alpha(B)|}}{1-x^{2}}-\frac{2 x^{2} \cdot x^{|\alpha(B)|}}{1-x^{2}}\right) e^{i \alpha(\lambda)}-\sum_{\alpha(B) \neq 0} e^{i \alpha(\lambda)} x^{|\alpha(B)|} .
\end{aligned}
$$

* multi particle index: Plethystic exponetial (P.E): P.E[f(x)]=exp[$\left.\Sigma_{n=1} f\left(x^{n}\right) / n\right]$

$$
I_{\text {multi }}\left(e^{i \lambda_{i}}, x, \eta\right)=\operatorname{P.E}\left[\tilde{I}_{s p}\left(e^{i \lambda_{i}}, x, \eta\right)\right]
$$

* the Haar measure for the unbroken gauge group $G_{B}=\{g: g \in G$ and $[g, B]=0\}$
* index for $\mathrm{N}=4$ theory

$$
\begin{aligned}
& I_{B}^{1-l o o p}(x, \eta)=\int[d U]_{B} Z_{B}^{1-l o o p}\left(e^{i \lambda_{i}}, x, \eta\right), \text { where } \\
& {[d U]_{B} \equiv \frac{1}{\operatorname{sym}(B)}\left(\prod_{i=1}^{\operatorname{rank}(G)} \frac{d \lambda_{i}}{2 \pi}\right) \prod_{\alpha \neq 0}\left(1-e^{i \alpha(\lambda)} x^{|\alpha(B)|}\right), \text { and }} \\
& Z_{B}^{1-l o o p}\left(e^{i \lambda_{i}}, x, \eta\right):=\operatorname{P.E}\left[I_{s p}\left(e^{i \lambda_{i}}, x, \eta\right)\right], \text { with } \\
& I_{s p}\left(e^{i \lambda_{i}}, x, \eta\right)=\sum_{\alpha=1}^{\operatorname{dim}(G)}\left(\frac{\left(\eta+\eta^{-1}\right) x \cdot x^{\alpha \alpha(B) \mid}}{1-x^{2}}-\frac{2 x^{2} \cdot x^{|\alpha(B)|}}{1-x^{2}}\right) e^{i \alpha(\lambda)}
\end{aligned}
$$

scalar of $\mathrm{N}=2$ adjoint hypermultiplet gluino of $\mathrm{N}=2$ vector multiplet

$N=4 \mathrm{U}(2)$ S-duality check

* Wilson line index with out magnetic charge (at the stationary point $\Phi=0$) es)

$$
I_{\mathcal{N}=4 ; B=0}(x)=\int[d U] \chi_{R}\left(e^{i \lambda}\right) \chi_{R}\left(e^{-i \lambda}\right) \exp \left(\sum_{\alpha} \sum_{n=1}^{\infty} \frac{1}{n} \frac{2 x^{n}}{1+x^{n}} e^{i n \alpha(\lambda)}\right)
$$

* fundamental and anti-fundamental at north and south pole ($\eta=1$)

$$
\begin{aligned}
I_{A_{1}}^{U(2)}(x)=\frac{1}{2} \int_{0}^{2 \pi} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}}\left(1-e^{i\left(\lambda_{1}-\lambda_{2}\right)}\right)(1 & \left.-e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right)\left(e^{i \lambda_{1}}+e^{i \lambda_{2}}\right)\left(e^{-i \lambda_{1}}+e^{-i \lambda_{2}}\right) \\
& \times \operatorname{P.E}\left[\frac{2 x}{1+x}\left(2+e^{i\left(\lambda_{1}-\lambda_{2}\right)}+e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right]\right.
\end{aligned}
$$

* `t Hooft operator with magnetic charge $B=(1,0)$

$$
\begin{aligned}
I_{B=(1,0)}^{U(2)}(x)= & \int_{0}^{2 \pi} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}}\left(1-x e^{i\left(\lambda_{1}-\lambda_{2}\right)}\right)\left(1-x e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right) \\
& \times \mathrm{P} . \mathrm{E}\left[\frac{2 x}{1+x}\left(2+x e^{i\left(\lambda_{1}-\lambda_{2}\right)}+x e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right]\right.
\end{aligned}
$$

* expansion in x

$$
\begin{aligned}
& I_{R=A_{1}}^{U(2)}=I_{B=(1,0)}^{U(2)} \\
& =1+2\left(\eta+\eta^{-1}\right) x+\left(1+3 \eta^{2}+3 \eta^{-2}\right) x^{2}+4\left(\eta^{3}+\eta^{-3}\right) x^{3}+\left(1+5 \eta^{4}+5 \eta^{-4}\right) x^{4} \\
& \quad+\left(6 \eta^{-5}+2 \eta^{-1}+2 \eta+6 \eta^{5}\right) x^{5}+\left(7 \eta^{-6}+\eta^{-2}-1+\eta^{2}+7 \eta^{6}\right) x^{6}+\ldots
\end{aligned}
$$

N=2 Index

* Hypermultiplets in the representation R_{i} : scalars, weight $\rho \in R_{i}$

$$
\sum_{\alpha} \frac{\left(\eta+\eta^{-1}\right) x \cdot x^{|\alpha(B)|}}{1-x^{2}} e^{i(\lambda)} \rightarrow \sum_{i} \sum_{\rho \in R_{i}} \frac{x \cdot x^{|\rho(B)|}}{1-x^{2}}\left(e^{i \rho(\lambda)} \prod_{a} \eta_{a}^{h_{a}, a}+e^{-i \phi(\lambda)} \prod_{a}^{\left.\eta_{a}^{-h_{i, a}}\right) .}\right.
$$

* index for the t Hooft line $I_{B}^{1-\operatorname{loop}}\left(x, \eta_{a}\right)=\int[d U]_{B} Z_{B}^{1-\operatorname{loop}}\left(e^{i \lambda_{i}}, x, \eta_{a}\right)$, where

$$
Z_{B}^{1-l o o p}\left(x, \eta_{a}, e^{i \lambda_{i} i}\right)=\mathrm{P} \cdot \mathrm{E}\left[I_{s p}\left(e^{i \lambda_{i}}, x, \eta\right)\right], I_{s p}=I_{s p}^{v e c}+I_{s p}^{\text {hyper }} \text { with }
$$

$$
I_{s p}^{v e c}=-2 \sum_{\alpha} \frac{x^{2} \cdot x^{|\alpha(B)|}}{1-x^{2}} e^{i \alpha(\lambda)} \text { and }
$$

$$
I_{s p}^{\text {hyper }}=\sum_{i} \sum_{\rho \in P_{i}} \frac{x \cdot x^{|\rho(B)|}}{1-x^{2}}\left(e^{i \rho(\lambda)} \prod_{a} \eta_{a}^{h_{i, a}}+e^{-i \rho(\lambda)} \prod_{a} \eta_{a}^{-h_{i, a}}\right) .
$$

* Wilson line

$$
I_{R}=\int[d U]_{B=0} \chi_{R}\left(e^{i \lambda}\right) \chi_{\bar{R}}\left(e^{i \lambda}\right) Z_{B=0}^{1-l o o p}\left(e^{i \lambda_{i}}, x, \eta_{a}\right) .
$$

Minuscule Representation

* All weights are related by Weyl reflections: the corresponding B cannot be screened and there is no magnetic bubbling.
* Totally anti-symmetric representation in $\mathrm{U}(\mathrm{N})$
* Index for Wilson lines.

$$
\begin{align*}
I_{R=A_{k}}^{U(N)}(x, \eta)= & \frac{1}{N!} \int \prod_{i=1}^{N}\left(\frac{d \lambda_{i}}{2 \pi}\right)\left(\prod_{i \neq j}\left(1-e^{i\left(\lambda_{i}-\lambda_{j}\right)}\right)\right) \text { P.E }\left[\frac{\left(\eta+\eta^{-1}\right) x-2 x^{2}}{1-x^{2}} \sum_{i, j=1}^{N} e^{i\left(\lambda_{i}-\lambda_{j}\right)}\right] \\
& \times \prod_{ \pm}\left(\sum_{1 \leq i_{1}<i_{2}, \ldots<i_{k} \leq N} e^{ \pm i\left(\lambda_{i_{1}}+\lambda_{i_{2}}+\ldots+\lambda_{i_{k}}\right)}\right) . \tag{4.1}
\end{align*}
$$

* Index for `t Hooft lines

$$
\begin{align*}
& I_{B=(1, k, 0 v-k)}^{U(N)}(x, \eta)=\frac{1}{k!(N-k)!} \int \prod_{i=1}^{N}\left(\frac{d \lambda_{i}}{2 \pi}\right) \\
& \times \prod_{(i \neq j)=1}^{k}\left(1-e^{i\left(\lambda_{i}-\lambda_{j}\right)}\right) \prod_{(i \neq j)=k+1}^{N}\left(1-e^{i\left(\lambda_{i}-\lambda_{j}\right)}\right) \prod_{i=1}^{k} \prod_{j=k+1}^{N} \prod_{ \pm}^{N}\left(1-x e^{ \pm i\left(\lambda_{i}-\lambda_{j}\right)}\right) \\
& \times \operatorname{PPE}\left[\frac{\left(\eta+\eta^{-1}\right) x-2 x^{2}}{1-x^{2}}\left(\left(\sum_{i, j=1}^{k}+\sum_{i, j=k+1}^{N}\right) e^{i\left(\lambda_{i}-\lambda_{j}\right)}+\sum_{i=1}^{k} \sum_{j=k+1}^{N} \sum^{N} e^{ \pm i\left(\lambda_{i}-\lambda_{j}\right)} x\right)\right] . \tag{4.2}
\end{align*}
$$

* Example: $B=(1,1,0,0)$ of $U(4)$

$$
\begin{aligned}
& I_{R=A_{2}}^{U(4)}=I_{B=(1,1,0,0)}^{U(4)} \\
& =1+2\left(\eta+\eta^{-1}\right)+\left(3+5 \eta^{-2}+5 \eta^{2}\right) x^{2}+\left(8 \eta^{-3}+6 \eta^{-1}+6 \eta+8 \eta^{3}\right) x^{3} \\
& \quad+\left(14 \eta^{-4}+7 \eta^{-2}+10+7 \eta^{2}+14 \eta^{8}\right) x^{4}+10\left(2 \eta^{-5}+\eta^{-3}+\eta^{-1}+\eta+\eta^{3}+2 \eta^{5}\right) x^{5}+\ldots,
\end{aligned}
$$

Magnetic bubbling

* With unbroken gauge group, nonabelian monopole can be screened by massless monopoles: $\quad B \rightarrow \nu$

* Contributions from massless monopoles
* One could assign the `t Hooft operator of magnetic charge B to the representation of the magnetic group ${ }^{L} G$, regarding B as the highest weight.
* But it is not clear how all weights of given magnetic group are realized.
* Also global color problem in the presence of nonabelian magnetic charge

Index with bubbling

* On S3, massless monopoles and anti-monopoles can be created and shield singular and singular anti-monopoles at north and south poles.

-B

$$
\int[d U]_{B} Z_{B}^{1-l o o p}\left(x, e^{i \lambda}\right) \quad \int[d U]_{v} Z_{\text {mono }}^{S^{3}}\left(B, v ; x, e^{i \lambda}\right) Z_{v}^{1-l o o p}\left(x, e^{i \lambda}\right)
$$

Final result

$$
I_{B}\left(x, \eta_{a}\right)=\sum_{v \in \operatorname{Rep}(B)} \int[d U]_{v} Z_{\text {mono }}^{S^{3}}\left(B, v ; e^{i \lambda_{i}}, x, \eta_{a}\right) Z_{v}^{1-l o o p}\left(e^{i \lambda_{i}}, x, \eta_{a}\right)
$$

$$
Z_{\text {mono }}^{S^{3}}\left(B, B ; x, e^{i \lambda}\right)=1 \text { (no screening effect) }
$$

Magnetic bubbling index

* How to calculate $Z_{\text {mono }}^{S^{3}}\left(B, \nu ; x, e^{i \lambda}\right)$
* Note that

* bubbling happens at two poles
* locally, $S^{3} \sim R^{3}$ near two poles
* Guess

$$
Z_{\text {mono }}^{S^{3}}(B, v)=Z_{\text {mono }}^{S}(B, v) Z_{\text {mono }}^{N}(B, v) \quad Z_{\text {mono }}^{(N, S)}(B ; v)=Z_{\text {mono }}^{\mathbb{R}^{3}}(B, v)
$$

* Recently it has been calculated for $\mathrm{U}(\mathrm{N})$: [Gomis,Okuda,Pestun;Ito,Okuda,Taki]
* relating singular and massless monopoles to instantons [Kronheimer]
* complicated sum over colored Young diagrams
* $\quad S^{4}, R^{3} \times S^{1}, S^{3} \times S^{1}$ are all different.

Magnetic bubbling index

$$
I_{B}(x)=\sum_{v \leq B} \int[d U]_{v} Z_{\text {mono }}^{s^{3}}\left(B, v ; x, e^{i \lambda}\right) Z_{v}^{1-\text { loop }}\left(x, e^{i \lambda}\right)
$$

where

$$
\begin{aligned}
& {[d U]_{B}=\frac{1}{\mid \text { weyl }\left(G_{B}\right) \mid}\left(\prod_{i=1}^{\operatorname{rank}(G)} \frac{d \lambda_{i}}{2 \pi}\right) \prod_{\alpha \neq 0}\left(1-x^{\mid \alpha(B)} e^{i \alpha(\lambda)}\right)} \\
& Z_{B}^{1-\operatorname{loop}}\left(e^{i \lambda_{1}}, x\right):=\exp \left[\sum_{\alpha} \sum_{n=1} \frac{1}{n} \frac{2 x^{n} x^{n|\alpha(B)|}}{1+x^{n}} e^{i n \alpha(\lambda)}\right] \\
& Z_{\text {mono }}^{s^{3}}=\left(Z_{\text {mono }}^{\mathbb{R}^{3}}\right)^{2}
\end{aligned}
$$

* Meaning of $v \leq B$:

G	\leftrightarrow	LG
magnetic charge B		highest weight ${ }^{\text {LR }}$
$\mathrm{V} \leq \mathrm{B}$		descendants

* example

$$
\begin{array}{ccc}
U(2) & \leftrightarrow & U(2) \tag{2}\\
v=(1,0),(0,1) & & \left(e_{1}, e_{2}\right) \text { of } \square \\
v=(2,0),(0,2),(1,1) & & \left(2 e_{1}, 2 e_{2}, e_{1}+e_{2}\right) \text { of }
\end{array}
$$

index with bubbling ($\mathrm{N}=4$ case)

* $B=(2,0), v=(1,1)$ in $U(2)$

$$
Z_{\text {mono }}^{S^{3}, U(2)}(B, v)=\left[\frac{1-2 x^{2}+x^{4}+\left(\eta^{-1}+\eta\right)\left(x+x^{3}\right)-2 x^{2}\left(e^{-i\left(\lambda_{1}-\lambda_{2}\right)}+e^{i\left(\lambda_{1}-\lambda_{2}\right)}\right)}{\left(1-e^{-i\left(\lambda_{1}-\lambda_{2}\right)} x^{2}\right)\left(1-e^{i\left(\lambda_{1}-\lambda_{2}\right)} x^{2}\right)}\right]^{2}
$$

* index with bubbling

$$
\begin{aligned}
I_{B=(2,0)}^{U(2)}(x, \eta)= & \int_{0}^{2 \pi} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}}\left(1-e^{i\left(\lambda_{1}-\lambda_{2}\right)} x^{2}\right)\left(1-e^{-i\left(\lambda_{1}-\lambda_{2}\right)} x^{2}\right) \\
& \times \operatorname{P.E}\left[\frac{\left(\eta+\eta^{-1}\right) x-2 x^{2}}{1-x^{2}}\left(2+e^{i\left(\lambda_{1}-\lambda_{2}\right)} x^{2}+e^{-i\left(\lambda_{1}-\lambda_{2}\right)} x^{2}\right)\right] \\
& +\frac{1}{2} \int_{0}^{2 \pi} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}} Z_{\text {mono }}^{S^{3}, U(2)}(B, v)\left(1-e^{i\left(\lambda_{1}-\lambda_{2}\right)}\right)\left(1-e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right) \\
& \times \operatorname{P.E}\left[\frac{\left(\eta+\eta^{-1}\right) x-2 x^{2}}{1-x^{2}}\left(2+e^{i\left(\lambda_{1}-\lambda_{2}\right)}+e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right)\right] .
\end{aligned}
$$

* index for Wilson line

$$
\begin{align*}
I_{R=(1,0)^{2}}^{U(2)}= & \frac{1}{2} \int_{0}^{2 \pi} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}}\left(1-e^{i\left(\lambda_{1}-\lambda_{2}\right)}\right)\left(1-e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right)\left(e^{i \lambda_{1}}+e^{i \lambda_{2}}\right)^{2}\left(e^{-i \lambda_{1}}+e^{-i \lambda_{2}}\right)^{2} \\
& \times \text { P.E }\left[\frac{\left.\eta+\eta^{-1}\right) x-2 x^{2}}{1-x^{2}}\left(2+e^{i\left(\lambda_{1}-\lambda_{2}\right)}+e^{-i\left(\lambda_{1}-\lambda_{2}\right)}\right)\right] . \tag{4.39}
\end{align*}
$$

* expansion in x :

$$
\begin{aligned}
& I_{B=(2,0)}^{U(2)}(x, \eta)=I_{R=(1,0)^{2}}^{U(2)}(x, \eta) \\
& =2+5\left(\eta+\eta^{-1}\right) x+\left(4+8 \eta^{2}+8 \eta^{-2}\right) x^{2}+\left(11 \eta^{3}+\eta^{-1}+\eta+11 \eta^{-3}\right) x^{3} \\
& \quad+\left(4+14 \eta^{-4}+14 \eta^{4}\right) x^{4}+\left(17 \eta^{-5}+6 \eta^{-1}+6 \eta+17 \eta^{5}\right) x^{5}+\ldots
\end{aligned}
$$

$\mathrm{N}=4 \mathrm{SU}(2)$ gauge group

* $\mathrm{SU}(2)$ magnetic charge: $\mathrm{B}=(\mathrm{p},-\mathrm{p}) / 2$,
* bubbling $v=(v,-v) / 2$ and $(B, v)=(p, v), v=p$ - even integer

* $\operatorname{SU}(2)$ bubbling index

$$
\begin{aligned}
& Z_{\text {mono }}^{N ; S U(2)}(2,0)=\frac{\left(1-2 x^{2}+x^{4}\right)+\left(\eta^{-1}+\eta\right)\left(x+x^{3}\right)-2 x^{2}\left(e^{-2 i \lambda}+e^{2 i \lambda}\right)}{\left(1-e^{-2 i \lambda} x^{2}\right)\left(1-e^{2 i \lambda} x^{2}\right)} \\
& Z_{\text {mono }}^{N ; S U(2)}(3,1)=\frac{2\left(1-x^{2}-x^{4}+x^{6}\right)+\left(\eta^{-1}+\eta\right)\left(x+x^{3}+x^{5}\right)-3 x^{3}\left(e^{-2 i \lambda}+e^{2 i \lambda}\right)}{\left(1-e^{-2 i \lambda} x^{3}\right)\left(1-e^{2 i \lambda} x^{3}\right)} .
\end{aligned}
$$

* S-duality

$$
\begin{aligned}
& I_{B=\operatorname{diag}(1,-1)}^{S U(2)}(x, \eta)=I_{R=(1,0)^{2}}^{S U(2)}(x, \eta) \\
& =2+3\left(\eta^{-1}+\eta\right) x+3\left(\eta^{-2}+\eta^{2}\right) x^{2}+\left(3 \eta^{-3}-2 \eta^{-1}-2 \eta+3 \eta^{3}\right) x^{3} \\
& \quad+\left(3 \eta^{-4}-\eta^{-2}+2-\eta^{2}+3 \eta^{4}\right) x^{4}+\left(3 \eta^{-5}+\eta^{-1}+\eta+3 \eta^{5}\right) x^{5}+\ldots \\
& I_{B=\operatorname{diag}\left(\frac{3}{2},-\frac{3}{2}\right)}^{S U(2)}(x, \eta)=I_{R=(1,0)^{3}}^{S U(2)}(x, \eta) \\
& =5+9\left(\eta^{-1}+\eta\right) x+\left(10 \eta^{-2}+1+10 \eta^{2}\right) x^{2}+\left(10 \eta^{-3}-5 \eta^{-1}-5 \eta+10 \eta^{3}\right) x^{3} \\
& \quad+\left(10 \eta^{-4}-4 \eta^{-2}+6-4 \eta^{2}+10 \eta^{4}\right) x^{4}+\left(10 \eta^{-5}-\eta^{-3}+3 \eta^{-1}+3 \eta-\eta^{3}+10 \eta^{5}\right) x^{5} \ldots
\end{aligned}
$$

S-duality in $N=2 \mathrm{SU}(2)$ with 4 flavors

* minimal magnetic charge $B=(2,-2) / 2$ is not miniscule.
* bubbling can be obtained by 2d-4d correspondence [iso,okuda,taki]
$Z_{\text {mono }}^{N ; S U(2), N_{f}=4}(2,0)=-\frac{\left(x^{2}+\prod_{i} \eta_{i}\right)}{x \prod_{i}^{1 / 2}}+\sum_{s= \pm 1} \frac{\prod_{i=1}\left(x e^{i s \lambda}-\eta_{i}\right)}{x\left(1-e^{2 i s \lambda}\right)\left(1-x^{2} e^{2 i s \lambda}\right) \prod_{i} \eta_{i}^{1 / 2}}$
* index for the t Hooft line with $B=(2,-2) / 2$

$$
\begin{aligned}
& I_{B=(1,-1)}^{S U(2) ; N_{f}=4}\left(x, \eta_{i}\right)=\int \frac{d \lambda}{2 \pi}\left(1-e^{2 i \lambda} x^{2}\right)\left(1-e^{-2 i \lambda} x^{2}\right) \\
& \quad \times \text { P.E }\left[\frac{x\left(e^{i \lambda} x+e^{-i \lambda} x\right)}{1-x^{2}} \sum_{i}\left(\eta_{i}+\eta_{i}^{-1}\right)-\frac{2 x^{2}}{1-x^{2}}\left(e^{2 i \lambda} x^{2}+e^{-2 i \lambda} x^{2}+1\right)\right] \\
& +\frac{1}{2} \int \frac{d \lambda}{2 \pi}\left(1-e^{2 i \lambda}\right)\left(1-e^{-2 i \lambda}\right)\left(Z_{\text {mono }}^{N ; S(2), N_{f}=4}(2,0)\right)^{2} \\
& \quad \times \text { P.E }\left[\frac{x\left(e^{i \lambda}+e^{-i \lambda}\right)}{1-x^{2}} \sum_{i}\left(\eta_{i}+\eta_{i}^{-1}\right)-\frac{2 x^{2}}{1-x^{2}}\left(e^{2 i \lambda}+e^{-2 i \lambda}+1\right)\right] .
\end{aligned}
$$

* index for minimal Wilson line

$$
\begin{aligned}
I_{R=2}^{S U(i) N} N_{1}=4\left(x, \eta_{i}\right)= & \frac{1}{2} \int \frac{d \lambda}{2 \pi}\left(1-e^{2 \lambda \lambda}\right)\left(1-e^{-2 i \lambda}\right)\left(e^{i \lambda}+e^{-i \lambda}\right)^{2} \\
& \times \operatorname{P.E}\left[\frac{x\left(e^{i \lambda}+e^{-i \lambda}\right)}{1-x^{2}} \sum_{i}\left(\eta_{i}+\eta_{i}^{-1}\right)-\frac{2 x^{2}}{1-x^{2}}\left(e^{2 \lambda}+e^{-2 \lambda}+1\right)\right] .
\end{aligned}
$$

S-duality $S U(2)$ with 4 flavors

* turn off the chemical potential: $\eta_{i}=1$

$$
\begin{aligned}
& \left.I_{B=(1,-1)}^{S U(2) ; N_{f}=4}\left(x, \eta_{i}\right)\right|_{\eta_{i}=1}=\left.I_{R=2}^{S U(2) ; N_{f}=4}\left(x, \eta_{i}\right)\right|_{\eta_{i}=1} \\
& =1+62 x^{2}+896 x^{4}+7868 x^{6}+51856 x^{8}+281836 x^{10}+1328923 x^{12} \\
& \quad+5611146 x^{14}+21671145 x^{16}+77725908 x^{18}+261809269 x^{20}+\ldots .
\end{aligned}
$$

* With chemical potential:

$$
\begin{aligned}
& I_{B=(1,-1)}^{S U(2) ; N_{f}=4}\left(x, \eta_{i}\right)=I_{R=2}^{S U(2) ; N_{f}=4}\left(x, \tilde{\eta}_{i}\right), \text { where } \\
& \tilde{\eta}_{1}=\sqrt{\eta_{1} \eta_{2} \eta_{3} \eta_{4}}, \tilde{\eta}_{2}=\frac{\sqrt{\eta_{1} \eta_{2}}}{\sqrt{\eta_{3} \eta_{4}}}, \tilde{\eta}_{3}=\frac{\sqrt{\eta_{2} \eta_{4}}}{\sqrt{\eta_{1} \eta_{3}}}, \tilde{\eta}_{4}=\frac{\sqrt{\eta_{1} \eta_{4}}}{\sqrt{\eta_{2} \eta_{3}}} .
\end{aligned}
$$

* Half-Index and Verlinde Loop Operators:....

Concluding Remarks

* For the N3 d.o.f. on M5 branes, we need to explore further. Maybe the understanding of the central charge in Toda model (via AGT) may help.
* For the instanton calculations, there are more information to be extracted.
* Study of magnetic monopole strings and confirmation of the instanton calculation
* Some hints about N3 has appeared.
* Further exploration along DLCQ of $(2,0)$ is necessary.
* For 4d-index with `t Hooft operators, the magnetic bubbling and Verlinde operators are related and need further study.
* Obviously there are more counting in 4,5,6 dim.

